Citation

Discussion Paper Details

Please find the details for DP12224 in an easy to copy and paste format below:

Full Details   |   Bibliographic Reference

Full Details

Title: Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach

Author(s): Michael C. Knaus, Michael Lechner and Anthony Strittmatter

Publication Date: August 2017

Keyword(s): active labour market policy, conditional average treatment effects, individualized treatment effects and Machine Learning

Programme Area(s): Labour Economics

Abstract: We systematically investigate the effect heterogeneity of job search programmes for unemployed workers. To investigate possibly heterogeneous employment effects, we combine non-experimental causal empirical models with Lasso-type estimators. The empirical analyses are based on rich administrative data from Swiss social security records. We find considerable heterogeneities only during the first six months after the start of training. Consistent with previous results of the literature, unemployed persons with fewer employment opportunities profit more from participating in these programmes. Furthermore, we also document heterogeneous employment effects by residence status. Finally, we show the potential of easy-to-implement programme participation rules for improving average employment effects of these active labour market programmes.

For full details and related downloads, please visit: http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=12224

Bibliographic Reference

Knaus, M, Lechner, M and Strittmatter, A. 2017. 'Heterogeneous Employment Effects of Job Search Programmes: A Machine Learning Approach'. London, Centre for Economic Policy Research. http://www.cepr.org/active/publications/discussion_papers/dp.php?dpno=12224