The Dark Corners of the Labor Market

Vincent Sterk

Conference on “Persistent Output Gaps: Causes and Policy Remedies”
EABCN / University of Cambridge / INET

University College London

September 2015
The main lesson of the crisis is that we were much closer to those dark corners than we thought—and the corners were even darker than we had thought too. – Olivier Blanchard (2014), in “Where Danger Lurks”.
Single vs multiple steady states

Single steady state

Multiple steady states

This paper: look for evidence in U.S. labor market data:

i) Estimate reduced-form model of the labor market and infer steady state(s).

ii) Quantitative horse race between standard DMP model and extension with multiple steady states.

Result: at least 3 steady states:

\[A : u \approx 5\% \text{ (stable)} \]
\[B : u \approx 10\% \text{ (unstable)} \]
\[C : u > 10\% \text{ (stable)} \]
Part I: reduced-form model

\[u_t = \left(1 - \rho_{f,t}\right) u_{t-1} + \rho_{x,t} \left(1 - \rho_{f,t}\right) (1 - u_{t-1}) \]

\[\rho_{x,t} = \rho_x(S_t) \]
\[\rho_{f,t} = \rho_f(S_t) \]

\(u_t \): unemployment rate
\(\rho_{f,t} \): job finding rate
\(\rho_{x,t} \): job loss rate
\(S_t \): vector containing \(m \) aggregate state variables
Steady states: example

Example: \(\rho_x (S_t) = \bar{\rho}_x, \quad \rho_f (S_t) = \gamma_0 + \gamma_1 u_{t-1} \)

\[\bar{u} = (1 - \gamma_0 - \gamma_1 \bar{u}) \bar{u} + \bar{\rho}_x (1 - \gamma_0 - \gamma_1 \bar{u}) (1 - \bar{u}) \]

quadratic equation, two solutions for \(\bar{u} \). Only one state variable \((S_t = u_{t-1})\).
Estimating steady states

Let $x_t \in \mathbb{R}^n$ be a vector of observed outcomes (including $\rho_{x,t}$, $\rho_{f,t}$ and possibly other variables, but not u_t).

Assumption underlying third equality: equilibrium mapping from $[s_1,t; s_2,t]$ to $[s_1,t; x_t]$ is invertible. Satisfied by linearized DSGE models. May need more than m observables if outcomes are non-monotonic functions of the state variables. Check that forecasts condition on enough variables (residual autocorrelation, more observables, more lags, etc.).
Estimating steady states

Let $\mathbf{x}_t \in \mathbb{R}^n$ be a vector of observed outcomes (including $\rho_{x,t}, \rho_{f,t}$ and possibly other variables, but not u_t).

Estimate direct $k-$step ahead forecasting function:

$$E_t \mathbf{x}_{t+k} = E \left[\mathbf{x}_{t+k} \mid S_t \right]$$
Estimating steady states

Let \(x_t \in \mathbb{R}^n \) be a vector of observed outcomes (including \(\rho_{x,t}, \rho_{f,t} \) and possibly other variables, but not \(u_t \)).

Estimate direct \(k \)-step ahead forecasting function:

\[
E_t x_{t+k} = E \left[x_{t+k} | S_t \right] \\
= E \left[x_{t+k} | s_{1,t} ; s_{2,t} \right] \\
\text{observed unobserved}
\]
Estimating steady states

Let \(x_t \in \mathbb{R}^n \) be a vector of observed outcomes (including \(\rho_{x,t}, \rho_{f,t} \) and possibly other variables, but not \(u_t \)).

Estimate direct \(k \)-step ahead forecasting function:

\[
E_t x_{t+k} = E [x_{t+k} | S_t] = E [x_{t+k} | s_{1,t}, s_{2,t}]
\]

where \(s_{1,t} \in \mathbb{R}^{m-n} \) contains lags of variables in \([x_t; u_t] \), and \(s_{2,t} \in \mathbb{R}^n \).
Estimating steady states

Let \(x_t \in \mathbb{R}^n \) be a vector of observed outcomes (including \(\rho_{x,t}, \rho_{f,t} \) and possibly other variables, but not \(u_t \)).

Estimate direct \(k \)-step ahead forecasting function:

\[
E_t x_{t+k} = E\left[x_{t+k} \mid S_t \right] \\
= E\left[x_{t+k} \mid s_{1,t} ; s_{2,t} \right] \\
= E\left[x_{t+k} \mid s_{1,t} ; x_t \right]
\]

where \(s_{1,t} \in \mathbb{R}^{m-n} \) contains lags of variables in \([x_t; u_t]\), and \(s_{2,t} \in \mathbb{R}^n \).

Assumption underlying third equality: equilibrium mapping from \([s_{1,t}; s_{2,t}]\) to \([s_{1,t}; x_t]\) is invertible.
Estimating steady states

Let $x_t \in \mathbb{R}^n$ be a vector of observed outcomes (including $\rho_{x,t}$, $\rho_{f,t}$ and possibly other variables, but not u_t).

Estimate direct $k-$step ahead forecasting function:

$$
E_t x_{t+k} = E \left[x_{t+k} \mid S_t \right] \\
= E \left[x_{t+k} \mid s_{1,t} \ ; \ s_{2,t} \right] \\
\quad \text{observed unobserved} \\
= E \left[x_{t+k} \mid s_{1,t} ; x_t \right]
$$

where $s_{1,t} \in \mathbb{R}^{m-n}$ contains lags of variables in $[x_t ; u_t]$, and $s_{2,t} \in \mathbb{R}^n$.

Assumption underlying third equality: equilibrium mapping from $[s_{1,t} ; s_{2,t}]$ to $[s_{1,t} ; x_t]$ is invertible.

- Satisfied by linearized DSGE models. May need more than m observables if outcomes are non-monotonic functions of the state variables.
Estimating steady states

Let $x_t \in \mathbb{R}^n$ be a vector of observed outcomes (including $\rho_{x,t}$, $\rho_{f,t}$ and possibly other variables, but not u_t).

Estimate direct $k-$step ahead forecasting function:

$$\mathbb{E}_t x_{t+k} = \mathbb{E} [x_{t+k} | S_t]$$

$$= \mathbb{E} [x_{t+k} | s_{1,t}; s_{2,t}]$$

where $s_{1,t} \in \mathbb{R}^{m-n}$ contains lags of variables in $[x_t; u_t]$, and $s_{2,t} \in \mathbb{R}^n$.

Assumption underlying third equality: equilibrium mapping from $[s_{1,t}; s_{2,t}]$ to $[s_{1,t}; x_t]$ is invertible.

- Satisfied by linearized DSGE models. May need more than m observables if outcomes are non-monotonic functions of the state variables.

- Check that forecasts condition on enough variables (residual autocorrelation, more observables, more lags, etc.).
Estimating steady states

Steady state(s) satisfy:

\[
\begin{align*}
\bar{x} &= \mathbb{E}[x_{t+k} | \bar{s}_1; \bar{x}] \\
\bar{u} &= \bar{\rho}_x (1 - \bar{\rho}_f) / \left(\bar{\rho}_x (1 - \bar{\rho}_f) + \bar{\rho}_f \right)
\end{align*}
\]

which is a system of \(n + 1 \) equations in \(n + 1 \) unknowns.
Data

- CPS data on unemployment rate and flow rate from U to E (gross-flows).

- Construct job loss rate to be consistent with transition identity.

- IV estimator to account for noise in observations, using lagged values as instruments.
where \(u_t^* = \frac{\rho_x, t \left(1 - \rho_f, t \right)}{\rho_x, t \left(1 - \rho_f, t \right) + \rho_f, t} \); Hall (2005).
Model specifications

Three specifications turn out to summarize the main results:

(I) \(\mathbb{E}_{t} \rho_{f,t+k} = \gamma_0 + \gamma_1 \rho_{x,t} + \gamma_2 \rho_{f,t} + \varepsilon_{t+k} \)

(II) \(\mathbb{E}_{t} \rho_{f,t+k} = \gamma_0 + \gamma_1 \rho_{x,t} + \gamma_2 \rho_{f,t} + \gamma_3 u_t + \varepsilon_{t+k} \)

(III) \(\mathbb{E}_{t} \rho_{f,t+k} = \gamma_0 + \gamma_1 \rho_{x,t} + \gamma_2 \rho_{f,t} + \gamma_3 u_t + \gamma_3 u_t^2 + \varepsilon_{t+k} \)

plus AR(1) for \(\rho_{x,t} \).
Model selection

Diagnostics statistics

Model (I):
\[\rho_{f,t+k} = \beta_0 + \beta_1 \rho_{f,t} + \beta_2 \rho_{x,t} + \epsilon_{t+k} \]

Model (II):
\[\rho_{f,t+k} = \beta_0 + \beta_1 \rho_{f,t} + \beta_2 \rho_{x,t} + \beta_3 u_t + \epsilon_{t+k} \]

Model (III):
\[\rho_{f,t+k} = \beta_0 + \beta_1 \rho_{f,t} + \beta_2 \rho_{x,t} + \beta_3 u_t + \beta_4 u_t^2 + \epsilon_{t+k} \]

Correlation \(\epsilon_t, \epsilon_{t+k+1} \) vs. forecast horizon in months (k)

R\(^2\) statistic vs. forecast horizon in months (k)
Implied steady states

Steady state curve for $\rho_{x,t}^* = \rho_x$. Shaded area’s denote 90 percent (bootstrapped) confidence bands.
Robustness

1. Additional higher-order terms
 ▶ similar results to model (III);

2. AR(1) specification
 ▶ similar to model (I) → invalidated

3. Alternative data source (duration-based CPS data)
 ▶ similar results;

4. Longer data sample (1960-2014)
 ▶ similar results;

5. Additional macro variables / unobserved states (Industrial Production, Consumer Price Inflation, Federal Funds Rate)
 ▶ similar results;

6. Alternative estimator (OLS)
 ▶ similar results;

7. Additional lags
 ▶ similar results;
Phase diagram

DARK CORNER

2009:7
\(\Delta u = 0 \)
\(\Delta \rho_f = 0 \)

2000:9
2009:11

unemployment rate (u)
job finding rate (\(\rho_f \))

Sterk (University College London)
Dark Corners
September 2015
Part II: horse race between search and matching models

Feed job loss rates observed in the data through:

1. standard Diamond-Mortensen-Pissarides model \rightarrow single steady state

2. extension with skill losses à la Pissarides (1992) \rightarrow multiple steady states...
 - ...but unique dynamic equilibrium
Model

- Risk neutral agents
- Random search
- Exogenous but stochastic rate of job loss

-Timing within period:

1. Rate of job loss is revealed and job losses take place.

2. Job losers and previously unemployed workers find a job with an endogenous probability $\rho_{f,t}$. Vacancies ($v_t \geq 0$) are posted at a cost $\kappa > 0$ per unit and filled with an endogenous probability q_t.

3. Production and consumption take place. Employed workers produce \bar{A} units of goods and receive a wage. Unemployed workers receive $b < \bar{A}$ units of goods.
Model: skill losses

- Job losers who immediately find a new job retain their productivity.

- Job losers who become unemployed need to be re-trained upon re-employment, at a cost $\chi \geq 0$ to the employer. Basic DMP model is obtained by setting $\chi = 0$.

- The fraction of job searchers with reduced skills, p_t, is given by:

$$p_t = \frac{u_{t-1}}{u_{t-1} + \rho_{x,t} (1 - u_{t-1})}.$$
Vacancy posting (free-entry) condition

\[
\frac{\kappa}{q_t} + p_t \chi = \mathbb{E}_t \sum_{k=0}^{\infty} \beta^t s_{t,t+k} \left(A - w_{t+j} \right) + \xi_t
\]

where

- \(s_{t,t+k} \equiv \prod_{j=1}^{k} (1 - \rho_{x,t+j}) \) is the probability that the match survives until period \(t + k \)
- \(\xi_t \) is the Lagrange multiplier on the constraint \(\nu_t \geq 0 \).
Labor market

- Matching function:
 \[m_t = s_t^{\alpha} v_t^{1-\alpha}, \]
 where \(s_t \equiv u_{t-1} + \rho_{x,t} (1 - u_{t-1}) \) is the number of searchers ⇒ \(\rho_{f,t} = \frac{m_t}{s_t} \)
 and \(q_t = \frac{m_t}{v_t} = \rho_{f,t}^{\frac{\alpha}{\alpha-1}} \).

- Assume firms have all bargaining power ⇒ \(w_t = \bar{w} = b \) (rigid real wage). Could be relaxed.
Model summary

\begin{align}
 u_t &= \left(1 - \rho_{f,t}\right) u_{t-1} + \rho_{x,t} \left(1 - \rho_{f,t}\right) (1 - u_{t-1}) \tag{1} \\
 p_t &= \frac{u_{t-1}}{u_{t-1} + \rho_{x,t} (1 - u_{t-1})} \tag{2} \\
 \rho_{x,t} &= (1 - \lambda_x) \bar{\rho}_x + \lambda_x \rho_{x,t-1} + \varepsilon_{x,t} \tag{3} \\
 \beta \mathbb{E}_t \left(1 - \rho_{x,t+1}\right) \left(\chi p_{t+1} - \zeta_{t+1} + \kappa \rho_{f,t+1}^{\frac{\alpha}{1-\alpha}}\right) &= \chi p_t - \zeta_t + \kappa \rho_{f,t}^{\frac{\alpha}{1-\alpha}} - \bar{A} + \bar{W} \tag{4}
\end{align}

An equilibrium is characterized by laws of motion for $u_t, \rho_{f,t}, \rho_{f,t}, p_t$ and ζ_t that satisfy the above four equations, and the complementary slackness condition $\rho_{f,t} \zeta_t = 0$. The state of the aggregate economy can be summarized as $S_t = \left\{\rho_{x,t}, u_{t-1}\right\}$.
Phase diagram: no skill losses

\[\rho_f \]

\[\Delta u = 0 \]

\[\Delta \rho_f = 0 \]
Phase diagram: skill losses

\[\Delta \rho_f = 0 \]

\[\rho_f \]

\[\Delta u = 0 \]

\[u \]
Parameter values

- Model period: 1 month
- Steady-state targets:

<table>
<thead>
<tr>
<th>target</th>
<th>no skill losses</th>
<th>skill losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>u^A</td>
<td>0.055</td>
<td>0.055</td>
</tr>
<tr>
<td>u^B</td>
<td>—</td>
<td>0.095</td>
</tr>
<tr>
<td>parameter</td>
<td>description</td>
<td>no skill losses</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>β</td>
<td>discount factor</td>
<td>1.04$^{-\frac{1}{12}}$</td>
</tr>
<tr>
<td>α</td>
<td>matching function elast.</td>
<td>0.6</td>
</tr>
<tr>
<td>κ</td>
<td>vacancy cost</td>
<td>0.989</td>
</tr>
<tr>
<td>\overline{A}</td>
<td>worker productivity</td>
<td>1</td>
</tr>
<tr>
<td>$\overline{\rho}_x$</td>
<td>s.s. job loss rate</td>
<td>0.021</td>
</tr>
<tr>
<td>λ_x</td>
<td>persistence job loss rate shocks</td>
<td>0.896</td>
</tr>
<tr>
<td>$\overline{\sigma}_x$</td>
<td>s.t. deviation job loss shocks</td>
<td>$7.91e^{-4}$</td>
</tr>
<tr>
<td>χ</td>
<td>re-training cost</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>flow from unemployment</td>
<td>0.997</td>
</tr>
</tbody>
</table>
Propagation
deterministic simulation
Simulation

job loss rate ($\rho_{x,t}$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>0.016</td>
<td>0.018</td>
<td>0.020</td>
<td>0.022</td>
<td>0.024</td>
<td>0.028</td>
</tr>
</tbody>
</table>

job finding rate ($\rho_{f,t}$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
</tbody>
</table>

unemployment rate (u_t)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate</td>
<td>0.2</td>
<td>0.25</td>
<td>0.3</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data

- DMP model with skill losses
- Basic DMP model
- Constant job finding rate

Sterk (University College London)

Dark Corners

September 2015
Simulation

job finding rate ($\rho_{f,t}$)

- Data
- DMP model with skill losses
- Basic DMP model
- Constant job finding rate

Sterk (University College London)
Dark Corners
September 2015 28 / 31
Simulation

Data

DMP model with skill losses

Basic DMP model

Constant job finding rate
Conclusion

- Multiple-steady state model provides superior description of data.
- Threshold at around 10% unemployment.
- Possibly large and non-linear policy implications.
Appendix: firm decision problem

Large firms with constant returns-to-scale technologies decide on number of vacancies \((v_t)\), hires \((h_t)\) and employment \((n_t)\). Decision problem:

\[
V(n_{t-1}, S_t) = \max_{h_t, n_t, v_t} \left(\bar{A} - w_t \right) n_t - \left((\chi - d_t) \rho_t + \frac{\kappa}{q_t} \right) h_t + \beta \mathbb{E}_t V(n_t, S_{t+1}),
\]

subject to
\[
\begin{align*}
n_t &= \left(1 - \rho_{x,t} \right) n_{t-1} + h_t, \\
h_t &= q_t v_t, \\
h_t &\geq 0,
\end{align*}
\]

where \(w_t\) is the wage and \(d_t\) is a possible wage deduction for newly hired workers with reduced skills.