The Rate of Technology Adoption: Stability Implications for the Macroeconomy and for Asset Prices

Klaus Adam

University of Oxford & Dt. Bundesbank

Sebastian Merkel

Princeton University

February 2019

Introduction

- New technologies often associated with aggregate instability:
 - output & employment booms
 - stock price booms
 - booms often followed by output falls & spectacular asset price collapses
- Prominent examples:
 - 1990's dotcom boom: internet, biotech
 - 1920's boom: radio, automobiles, aviation, electrification
 - 19th century: railway boom in Britain

Introduction

- Present a simple (!) economic model that quantitatively replicates
 - behavior of postwar U.S. business cycle
 - volatility of postwar U.S. stock prices
 - comovement patterns between business cycle and stock prices

Introduction

- Model is quantitatively successful
 - occasional boom-bust like episodes in stock prices & ec. activity
 - booms feature a 'Minsky moment':
 booms followed by depressed ec. activity & stock prices
- Model predicts that the likelihood of boom-bust episodes
 - higher in periods of high productivity growth
 - higher in periods of low real interest rates

Only 'non-standard' model feature:

Subjective expectations about capital gains in the stock market

- Only 'non-standard' model feature:
 Subjective expectations about capital gains in the stock market
- All other expectations rational/objective

- Only 'non-standard' model feature:
 Subjective expectations about capital gains in the stock market
- All other expectations rational/objective
- Learning from experience:
 Malmendier & Nagel (2011), Adam, Marcet & Beutel (2017)

- Only 'non-standard' model feature:
 Subjective expectations about capital gains in the stock market
- All other expectations rational/objective
- Learning from experience:
 Malmendier & Nagel (2011), Adam, Marcet & Beutel (2017)
- Some amount of extrapolation from past return:

$$E_t^{\mathcal{P}}\left[\frac{P_{t+1}}{P_t}\right] = E_{t-1}^{\mathcal{P}}\left[\frac{P_t}{P_{t-1}}\right] + g\left(\frac{P_t}{P_{t-1}} - E_{t-1}^{\mathcal{P}}\left[\frac{P_t}{P_{t-1}}\right]\right)$$

Rationalizable as Bayesian learning:g>0 is the Kalman gain

Survey Data and Extrapolative Expectations

• Fundamental shocks => move stock prices

- Fundamental shocks => move stock prices
- Stock price movements **amplified** by extrapolation

- Fundamental shocks => move stock prices
- Stock price movements amplified by extrapolation
- Stock price movements translate into real economy:
 high capital price trigger investment => output & hours worked
 - => financial accelerator without financial friction

- Fundamental shocks => move stock prices
- Stock price movements amplified by extrapolation
- Stock price movements translate into real economy:
 high capital price trigger investment => output & hours worked
 - => financial accelerator without financial friction
- Amplification stronger when interest rates low or tech growth high

Stock Price Cycles and Business Cycles

Time-separable household preferences

$$E_0^P \sum_{t=0}^{\infty} \beta^t \left(\log C_t - H_t \right)$$

Standard 2-sector production structure

$$\begin{array}{lcl} Y_{C,t} & = & K_t^{\alpha_z} \left(Z_t H_{c,t} \right)^{1-\alpha_c} \\ Y_{I,t} & \propto & \left(Z_t H_{i,t} \right)^{1-\alpha_c} \end{array}$$

Technology shocks (only source of randomness):

$$Z_t = \gamma Z_{t-1} \varepsilon_t$$

Quantitative Performance: Real Variables

Moment	Data (StdDev)	Model
$\sigma(Y)$	1.72 (0.25)	1.83
$\sigma(C)/\sigma(Y)$	0.61 (0.03)	0.67
$\sigma(I)/\sigma(Y)$	2.90 (0.35)	2.90
$\sigma(H)/\sigma(Y)$	1.08 (0.13)	1.06
$\rho(Y,C)$	0.88 (0.02)	0.84
$\rho(Y, I)$	0.86 (0.03)	0.89
$\rho(Y, H)$	0.75 (0.03)	0.70

Quant. Perf.: Financial Variables, Comovement, Expectations

Moment	Data (StdDev)	Model
E[P/D]	152.3 (25.3)	149.95
$\sigma(P/D)$	63.39 (12.39)	44.96
$\rho(P/D)$	0.98 (0.003)	0.97
$E[r^e]$	1.87 (0.45)	1.25
$\sigma(r^e)$	7.98 (0.35)	7.07
$E[r^f]$	0.25 (0.13)	0.78
$\sigma(r^f)$	0.82 (0.12)	0.06
$\sigma(D_{t+1}/D_t)$	1.75 (0.38)	2.46
$\rho(H, P/D)$	0.51 (0.17)	0.79
$\rho(I/Y, P/D)$	0.58 (0.31)	0.69
$\rho(E^{\mathcal{P}}[r^e], P/D)$	0.79 (0.07)	0.52

Boom-Bust Cycles: Real & Financial Variables

Boom-Bust Cycles: Real & Financial Variables

Aggregate Growth and Macro Instability

 Model predicts more boom-bust episodes with high technology growth (or low real interest rates)

Aggregate Growth and Macro Instability

- Model predicts more boom-bust episodes with high technology growth (or low real interest rates)
- Equilibrium capital price equation (slightly simplified):

$$Q_t = rac{X_t}{1 - eta \gamma \cdot m_t}$$
,

where

 m_t : subjective capital gain expectations $E_t^{\mathcal{P}}[Q_{t+1}/Q_t]$

eta : discount factor (eta < 1)

 γ : gross aggregate growth rate $(\gamma>1)$

 X_t : end. variable that depend on parameters, technology, path of capital stock

Technology Growth and Macro Instability

• Equilibrium capital price equation (slightly simplified):

$$Q_t = rac{X_t}{1 - eta \gamma \cdot m_t},$$

Technology Growth and Macro Instability

Equilibrium capital price equation (slightly simplified):

$$Q_t = rac{X_t}{1 - eta \gamma \cdot m_t}$$
,

• Higher technology growth (or higher discount factor):

 $\beta\gamma$ moves closer to 1

- $= > \beta \gamma \cdot m_t$ closer to one
- =~>~ any given movement in m_t generates larger price effect
- = > fundamental price movements get amplified more!
- = > more boom-bust episodes

Technology Growth and Macro Instability

Equilibrium capital price equation (slightly simplified):

$$Q_t = rac{X_t}{1 - eta \gamma \cdot m_t}$$
,

Higher technology growth (or higher discount factor):

 $\beta\gamma$ moves closer to 1

- $= > \beta \gamma \cdot m_t$ closer to one
- =~>~ any given movement in m_t generates larger price effect
- = > fundamental price movements get amplified more!
- = > more boom-bust episodes
- ullet Quantitative results rather sensitive to changes in $eta\gamma$

Price Instability since 1970: S&P500

Conclusions

- Extrapolation in asset markets :
 a powerful amplification mechanism of fundamental shocks
- Simple and otherwise standard model:
 quantitatively consistent with BC & stock price evidence
- Model features boom and bust cycles:
 Higher frequency with higher technology growth/lower real rates