What the perfect ESM would look like
Ramon Marimon*

European University Institute, UPF – Barcelona GSE, CEPR and NBER

CEPR-ESM workshop on crisis resolution in the euro area
Luxembourg, November 19, 2019

*With the collaboration of Aitor Erce, Andreja Lenarčič (ESM) and Carolina-López-Quíles (EUI). As usual, neither them nor our institutions should be blamed for what I say.
What the perfect ESM would look like

There is no such a thing as a perfect organization,
as there is no perfect world.

But monetary and fiscal organizations can play a major role
to enhance the stability and growth of imperfect societies...

if they are properly designed and managed
What the perfect ESM would look like

On legacy debt and its value (a couple of snapshots)

On the design of a European Stability Fund (ESF)

From the ESM to the ESF
Sovereign debts are high (> 60% GDP target) & and higher than before the euro crisis.
An important fraction of them being held by the Eurosystem.

Source: IMF
but not an unusual fraction by OECD standards

Non EA Domestic Central Bank Holdings
(% of total outstanding)

Source: IMF
With a key fraction – the euro crisis fraction -- being held by the ESM (ESM, IMF, Market as % GDP; from Corsetti, Erce & Uy 2019)
The ESM redesigning the euro crisis debt while reducing its cost

<table>
<thead>
<tr>
<th></th>
<th>Dec-10</th>
<th>Dec-11</th>
<th>Dec-12</th>
<th>Dec-13</th>
<th>Dec-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFSF/ESM</td>
<td>Maturity</td>
<td>5 years</td>
<td>10 years</td>
<td>30 years</td>
<td>32 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>404 bps</td>
<td>362 bps</td>
<td>93 bps</td>
<td>123 bps</td>
</tr>
<tr>
<td>IMF</td>
<td>Maturity</td>
<td>5 years</td>
<td>5 years</td>
<td>8 years</td>
<td>8 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>323 bps</td>
<td>321 bps</td>
<td>307 bps</td>
<td>410 bps</td>
</tr>
<tr>
<td>Ireland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFSF/ESM</td>
<td>Maturity</td>
<td>7.5 years</td>
<td>15 years</td>
<td>15 years</td>
<td>22 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>525 bps</td>
<td>272 bps</td>
<td>255 bps</td>
<td>226 bps</td>
</tr>
<tr>
<td>IMF</td>
<td>Maturity</td>
<td>7 years</td>
<td>7 years</td>
<td>7 years</td>
<td>7 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>337 bps</td>
<td>321 bps</td>
<td>307 bps</td>
<td>309 bps</td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFSF/ESM</td>
<td>Maturity</td>
<td>-</td>
<td>15 years</td>
<td>15 years</td>
<td>22 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>-</td>
<td>277 bps</td>
<td>233 bps</td>
<td>210 bps</td>
</tr>
<tr>
<td>IMF</td>
<td>Maturity</td>
<td>-</td>
<td>7 years</td>
<td>7 years</td>
<td>7 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>-</td>
<td>321 bps</td>
<td>307 bps</td>
<td>309 bps</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFSF/ESM</td>
<td>Maturity</td>
<td>-</td>
<td>-</td>
<td>12.5 years</td>
<td>12.5 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>-</td>
<td>-</td>
<td>98 bps</td>
<td>132 bps</td>
</tr>
<tr>
<td>IMF</td>
<td>Maturity</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cyprus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFSF/ESM</td>
<td>Maturity</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>82 bps</td>
</tr>
<tr>
<td>IMF</td>
<td>Maturity</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 years</td>
</tr>
<tr>
<td></td>
<td>Interest</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>109 bps</td>
</tr>
</tbody>
</table>

Sources: International Monetary Fund, European Commission, European Financial Stability Facility and European Stability Mechanism.
What is the value of the Greek debt at the ESM?
What is the value of the EA legacy debt?
What is the value of government debt?
ABSTRACT

The market value of government debt equals the present discounted value of primary surpluses.
ABSTRACT

The market value of government debt equals
the present discounted value of primary surpluses.

I find that [for US]

half of the variation in the market value of debt to GDP ratio
corresponds to

varying forecasts of future primary surpluses,
and half to varying discount rates.

Variation in expected growth rates is unimportant.
varying forecasts of future primary surpluses, and varying discount rates.
Is the EA in a ‘(r-g) ≤ 0’ regime? (Blanchard’s ? for US)

More like a recent visit, to which Italy has not been invited!

While Greece, with the ESM help, has been!
Is the EA in a ‘(r-g) ≤ 0’ regime? (Blanchard’s ? for US)

but let’s not mistake a visit with a trend...

Source: ECB
Since debt services to GDP are not trivial for many...
even when we only count the interest expenditures
varying forecasts of future primary surpluses,
and varying discount rates.
For welfare, not only the present value of ‘primary surpluses’ matters, but how they behave (the stochastic discount factor)...

The lack of proper counter-cyclical fiscal policies:

excessive

austerity in times of crisis

exuberance in good times

i.e.

the time-inconsistency of fiscal policy!
There is no dichotomy between risk-reduction and risk-sharing (countercyclical fiscal transfers), once social welfare is accounted for!
What about moral hazard?

The ESM can not provide permanent transfers!
Designing a *European Stability Fund* as a *Constrained-efficient mechanism* for who?
for a long-term self-enforcing partnership...

(Not a Federal State)

the European Union!

(which is not the case for the IMF)

(or the European Area, which is also a Monetary Union)
Based "On the Optimal Design of Financial Stability Fund"* by Árpád Ábrahám, Eva Carceles-Poveda, Yan Liu, and Ramon Marimon

The ESF is a public financial intermediary that transforms uncontingent defaultable debts into state-contingent (safe) liabilities.

In our model, ‘who’ is an infinitely-lived impatient risk-averse, ‘stressed country’, and an infinitely-lived, more patient, risk-neutral Fund (infiniteness and risk-aversion are the only important assumptions). Furthermore, all country’s debt is sovereign debt, i.e. is a current account model.

Maximizing social value, but subject to which constraints?
Designing the ESF accounting for 3+2 constraints:

1. **The sovereignty constraint**: a sovereign country can always EU-exit (or EA-exit): the borrower’s *limited enforcement constraint*.

 (in the model, exit is defaulting in the debt market with the possibility of getting back to it, but not to the Fund)

2. **The no-persistent transfers constraint**: a bound on redistribution, or value-at-risk: the lender’s *limited enforcement constraint*.

 (in the model: value-at-risk = 0, for all \(t \geq 0 \))
Designing the ESF accounting for 3+2 constraints:

3. **The moral hazard constraint**: ‘(r-g)’ and the severity of shocks depends on which policies and reforms are implemented, but sovereign countries have ownership of their policies (i.e. not all contingencies are contractable, not all threats are credible). An *ex-post* moral hazard constraint and a proper *ex-ante* country risk-assessment, and/or eligibility criteria (IMF prior actions?; I come back to this).

(in the model: calibration as risk-assessment and ex-post moral hazard constraint, no ex-ante conditionality; see Chima Simpson-Bell’s follow-up model of moral hazard)
Designing the ESF accounting for 3+2 constraints:

4. **The asymmetry constraint**: there is no ex-ante `veil of ignorance' and countries may start with large (debt) liabilities.

 (in the model: ESF contracts are country – i.e. ‘risk-type’ -- specific, borrowers are different from the lender, and countries can enter the fund with relatively large liabilities)

5. **The funding constraint**: the ESF should be (mostly) self-funded. The ESF contract is designed to be, as safe as it can possibly be liability; i.e. no need for ESF capital or external guarantees.

 ==> The ESF can issue e-bonds!
A closer look at the ESF contract

• The ESF contract is the policy instrument of the ESF

• Defines state-contingent transfers (primary surpluses); contingent on:
 • exogenous shocks (θ), endogenous (G), and contract asset/liabilities (a); i.e.
 • $\tau(\theta, G, a)$ from the borrower to the lender.

• In normal times, τ is just a counter-cyclical transfers [no MH].

• If an enforcement constraint is binding a (the carrot) is adjusted.

• With moral hazard constraints, a is also adjusted based on performance, G; i.e. a acts as a carrot and a stick.
 (not much effect in our model, more in Chima’s)

IMD: An Incomplet Markets Economy with Defaultable debt calibrated to data

Fund or **FSF**: The same economy with the ESF

<table>
<thead>
<tr>
<th>1^{st} Moments</th>
<th>Data</th>
<th>IMD</th>
<th>Fund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debt to GDP ratio</td>
<td>77.29%</td>
<td>78.6%</td>
<td>169.4%</td>
</tr>
<tr>
<td>Real bond spread</td>
<td>3.88%</td>
<td>3.61%</td>
<td>−0.058%</td>
</tr>
<tr>
<td>G to GDP ratio</td>
<td>20.18%</td>
<td>19.45%</td>
<td>19.21%</td>
</tr>
<tr>
<td>Primary surplus to GDP ratio</td>
<td>−0.78%</td>
<td>1.38%</td>
<td>2.96%</td>
</tr>
<tr>
<td>Fraction of working hours</td>
<td>36.74%</td>
<td>37.25%</td>
<td>37.83%</td>
</tr>
<tr>
<td>Maturity</td>
<td>5.38</td>
<td>5.38</td>
<td>5.38</td>
</tr>
<tr>
<td>2^{nd} Moments</td>
<td>Data</td>
<td>IMD</td>
<td>Fund</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Volatility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\sigma(C)/\sigma(Y)$</td>
<td>1.49</td>
<td>1.47</td>
<td>0.36</td>
</tr>
<tr>
<td>$\sigma(N)/\sigma(Y)$</td>
<td>0.92</td>
<td>0.70</td>
<td>0.61</td>
</tr>
<tr>
<td>$\sigma(G)/\sigma(Y)$</td>
<td>0.91</td>
<td>0.97</td>
<td>0.53</td>
</tr>
<tr>
<td>$\sigma(S/Y)/\sigma(Y)$</td>
<td>0.65</td>
<td>0.81</td>
<td>0.92</td>
</tr>
<tr>
<td>$\sigma(\text{real spread})$</td>
<td>1.53%</td>
<td>0.98%</td>
<td>0.023%</td>
</tr>
<tr>
<td>Correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho(C, Y)$</td>
<td>0.88</td>
<td>0.74</td>
<td>0.59</td>
</tr>
<tr>
<td>$\rho(N, Y)$</td>
<td>0.67</td>
<td>−0.10</td>
<td>0.93</td>
</tr>
<tr>
<td>$\rho(S/Y, Y)$</td>
<td>−0.29</td>
<td>0.13</td>
<td>0.95</td>
</tr>
<tr>
<td>$\rho(G, Y)$</td>
<td>0.35</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>$\rho(\text{real spread}, Y)$</td>
<td>−0.35</td>
<td>−0.29</td>
<td>0.26</td>
</tr>
</tbody>
</table>
IMD vs. Fund in periods of crises (IMD default episodes)

Output y
Consumption: c
Labour: n
IMD vs. Fund in periods of crises

(IMD default episodes)

Effort (a better G distr.): \(e \)

Spreads: \(r_f - r \)
IMD vs. Fund in an extreme shock (IMD default episodes)

Output y
Consumption: c
Labour: n
IMD vs. Fund in an extreme shock (IMD default episodes)

Effort (a better G distr.): e

Spreads: $r^f - r$
Welfare gains and absorbing capacity

<table>
<thead>
<tr>
<th>Shocks (θ_c, G_c)</th>
<th>Welfare Gain</th>
<th>$(-b'/y)_{\text{max}}$: M</th>
<th>$(-a'/y)_{\text{max}}$: F</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\theta_l, G_h) = (0.148, 0.038)$</td>
<td>5.91</td>
<td>1.71</td>
<td>66.16</td>
</tr>
<tr>
<td>$(\theta_m, G_h) = (0.299, 0.038)$</td>
<td>5.59</td>
<td>107.61</td>
<td>165.08</td>
</tr>
<tr>
<td>$(\theta_h, G_h) = (0.456, 0.038)$</td>
<td>3.76</td>
<td>215.15</td>
<td>317.09</td>
</tr>
<tr>
<td>$(\theta_l, G_l) = (0.148, 0.025)$</td>
<td>5.07</td>
<td>1.84</td>
<td>67.12</td>
</tr>
<tr>
<td>$(\theta_m, G_l) = (0.299, 0.025)$</td>
<td>5.14</td>
<td>111.47</td>
<td>164.63</td>
</tr>
<tr>
<td>$(\theta_h, G_l) = (0.456, 0.025)$</td>
<td>3.55</td>
<td>214.78</td>
<td>313.82</td>
</tr>
<tr>
<td>Average</td>
<td>5.04</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Welfare gains are expressed in consumption equivalent terms at $b = a = 0$ (\%).
- $(-b'/y)_{\text{max}}, (-a'/y)_{\text{max}}$ are the maximum levels country indebtedness expressed as the percentage of GDP in a given financial environment (Markets or Fund).
From ESM to ESF: few gaps to close...

Mandate

From:

Crisis resolution mechanism + (Banking Union Backstop)

To:

Crisis resolution and risk-sharing mechanism
+ (Banking Union Backstop, European Unemployment Insurance Fund,...)
From ESM to ESF: few gaps to close...

Risk assessment
From:
“The Commission and the ESM will follow and assess macroeconomic and financial risks as well as debt sustainability”

To:
A more integrated (theory-based) risk assessment based on few observable, measurable and contractable, elements.

An independent (from EU politics) risk assessment!
From ESM to ESF: few gaps to close...

Conditionality

From:

Restrictive eligibility criteria and ex-ante conditionality

The ‘new’ ESM toolbox:

- Precautionary Conditioned Credit Line (PCCL)
 i.e. risk-sharing for EC-rated AAA countries!
- Enhanced Conditions Credit Line (ECCL)
 i.e. for less than AAA an MoU of xxx conditions...

To:

A more extensive inclusive menu of risk-based ESF contracts

with ex-post conditionality (state dependence)
From ESM to ESF: few gaps to close...

From:
“What do you need to do, to get it”

To:
“What you get,
 depending on
 your expected risk and performance,
 and your ex-post results”
From ESM to ESF: few gaps to close...

Conditionality

From:
Mostly non-measurable (quantitative) indicators

To:
Almost exclusively measurable (quantitative) indicators

From:
Conditions as ‘sticks’

To:
Conditions as ‘sticks’ and ‘carrots’
On ESM conditionality

Many conditions, and numeric < 22%

Greece vs Portugal & Ireland:
more conditions, less numeric

Source: ESM
On IMF conditionality

Greece vs Portugal & Ireland:

more conditions, and less compliance (in %)
From ESM to ESF: few gaps to close...

Debt Restructuring (DR)

From:
(Proposed) excessive ex-ante DR, and (ad-hoc) ex-post DR or New Rounds

To:
None (or minimal) ex-ante DR and ex-post endogenous valuation adjustments (when constraints bind)

From:
Discretionary measure, prompt to speculation

To:
Explicit contracts, anchoring expectations
From ESM to ESF: a few gaps to close... or

a change of
approach,
paradigm,
mentality?

an opportunity!
Ongoing research to develop the theory and close the gaps

• The ESF in a monetary union: how ESF and ECB should interact?

Fiscal and Currency Union with Default and Exit

Alessandro Ferrari† Ramon Marimon‡ Chima Simpson-Bell§

October 29, 2019

• How ESF should design contracts including only a fraction of the government debt?

• How the ESF contracts compare to proposed Rainy-Day Funds?
 • ...