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Abstract

We study industries where price is not limited to its allocative and distributional
roles and also serves as an investment into lower cost or higher demand. The existing
literature does not have a clear verdict on whether the investment role of price benefits or
hurts welfare. We use a combination of analytical and numerical approaches to compare
the equilibria of a learning-by-doing model to the first-best planner solution. We show
that dynamic competition leads to low deadweight loss and that the investment role of
price is socially beneficial. We investigate the mechanisms behind the low deadweight
loss.

1 Introduction

Economists traditionally view the price as playing two roles in a market. First, the price
provides firms and consumers with incentives to use scarce resources optimally. Second,
the price determines how the ensuing surplus is divided between firms and consumers. In
many important settings, though, the price plays a third role, namely that of an investment.
The investment role arises when a firm’s price affects not only its current profit but also its
future competitive position vis-a-vis its rivals. Examples include competition to accumulate
production experience on a learning curve or to acquire a customer base in markets with
network effects or switching costs. In these settings, a firm’s current sales translate into
lower cost or higher demand in the future, and the firm is thus able to shape the evolution of

the industry by pricing aggressively. Competition is dynamic as firms jostle for competitive
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advantage through the prices they set. This jostle for competitive advantage is a pervasive
feature of both “new economy” industries (e.g., Amazon versus Barnes & Noble in e-book
readers or Microsoft versus Sony in video game consoles) and “old economy” industries (e.g.,
Boeing versus Airbus in aircraft and Intel versus AMD in microprocessors).

It is well understood that the investment role of price opens up a second dimension of
competition between firms, namely competition for the market. For example, in their review
of the literature on network effects and switching costs, Farrell & Klemperer (2007) point
out that

[flor a firm, it [the presence of switching costs and proprietary network effects]
makes market share a valuable asset, and encourages a competitive focus on
affecting expectations and on signing up pivotal (notably early) customers, which
is reflected in strategies such as penetration pricing; competition is shifted from
textbook competition in the market to a form of Schumpeterian competition for

the market in which firms struggle for dominance. (p. 1976)

It is much less well understood what the welfare implications of this competition for the
market are. The central question of this paper is thus if, and why, dynamic competition is
socially beneficial.

At first glance it may seem obvious that dynamic competition is efficient when price
serves as an investment. This point can be made by drawing a contrast with the rent-seeking
literature (Posner 1975). In rent-seeking models, firms compete for market dominance by
engaging in socially wasteful activities (e.g., lobbying). In our case, firms also compete
for market dominance, but not through socially wasteful activities. Instead, firms transfer
surplus to consumers through low prices. Moreover, as a by-product of these low prices,
firms generate socially valuable learning economies in production or demand-side economies
of scale.

Though powerful, this intuition is ultimately not compelling. First, aggressive pric-
ing is not necessarily socially beneficial as prices that are too low can cause deadweight
loss from over-production, just as prices that are too high can cause deadweight loss from
under-production. Second, dynamic competition may give rise to equilibria that entail
predation-like behavior and monopolization of the industry in the long run (Dasgupta &
Stiglitz 1988, Cabral & Riordan 1994, Athey & Schmutzler 2001, Besanko, Doraszelski,
Kryukov & Satterthwaite 2010, Besanko, Doraszelski & Kryukov 2014). This can cause wel-
fare losses from monopoly pricing and suboptimal product variety. Third, as firms are overly
eager to enter the industry in the hope of eventually monopolizing it, dynamic competition
can distort entry behavior and result in coordination failures similar to the ones in natural

monopoly markets highlighted by Bolton & Farrell (1990). Dynamic competition can also



distort exit behavior as firms are overly reluctant to exit the industry and get caught up in
wars of attrition (Maynard Smith 1974, Tirole 1988, Bulow & Klemperer 1999).

In sum, it is not obvious that dynamic competition is fully efficient—or even close to
fully efficient—when price serves as an investment. In this paper, we make a first attempt to
assess how efficient dynamic competition is. We do so in a model of learning-by-doing along
the lines of Cabral & Riordan (1994), Besanko et al. (2010), and Besanko et al. (2014) that
involves price competition in a differentiated products market with entry and exit. Learning-
by-doing is not only an important setting in its own righ but also shares key features with
other settings such as network effects and switching costs (Besanko et al. 2014).

We use a combination of analytical and numerical approaches to compare the Markov
perfect equilibria of our learning-by-doing model to the solution of a first-best problem
that has a social planner controlling pricing, entry, and exit decisions. Deadweight loss is
the difference in the expected net present value of total surplus. We carefully explore the
parameter space and multiple equilibria using the homotopy or path-following method in
Besanko et al. (2010). We show that dynamic competition does indeed tend to lead to low
deadweight loss. Deadweight loss is less than 10% of the maximum value added by the
industry in more than 65% of parameterizations and less than 20% of value added in more
than 90% of parameterizations Moreover, the investment role of price tends to be socially
beneficial; if we shut it down, then deadweight loss increases—often substantially—in more
than 80% of parameterizations.

We then point out that low deadweight loss does not arise because equilibrium behavior
and the industry dynamics that it implies are similar to the first-best planner solution.
On the contrary, especially the “best” equilibria that entail the lowest deadweight loss are
remarkably different from the first-best planner solution. We further show in an analytically
tractable special case of our learning-by-doing model that there is nothing about dynamic
competition when price is an investment that precludes potentially costly distortions in
equilibrium entry and exit behavior. Too much or early entry, respectively, too little or late
entry lead to wasteful duplication and delay (Bolton & Farrell 1990), and too much or early
exit, respectively, too little or late exit similarly lead to welfare losses. In addition, what we
call cost-inefficient exit leads to welfare losses if a lower-cost firm exits the industry while a

higher-cost firm does not.

!For empirical studies of learning-by-doing in a broad set of industries, see Wright (1936), Hirsch (1952),
DeJong (1957), Alchian (1963), Levy (1965), Kilbridge (1962), Hirschmann (1964), Preston & Keachie (1964),
Baloff (1971), Dudley (1972), Zimmerman (1982), Lieberman (1984), Gruber (1992), Irwin & Klenow (1994),
Jarmin (1994), Pisano (1994), Bohn (1995), Hatch & Mowery (1998), Benkard (2000), Shafer, Nembhard &
Uzumeri (2001), Thompson (2001), and Thornton & Thompson (2001).

2The maximum value added by the industry is the difference in the expected net present value of total
surplus of the first-best planner solution and an industry that remains empty forever. We explain the rationale
for this normalization in Section



We next seek to identify the mechanisms through which dynamic competition leads to
low deadweight loss. We decompose deadweight loss into a pricing distortion that captures
differences in equilibrium pricing behavior from the first-best planner solution and a remain-
ing non-pricing distortion that subsumes a suboptimal number of firms and products being
offered by these firms, a suboptimal exploitation of learning economies, and cost-inefficient
exit. The low deadweight loss boils down to three regularities in these components.

First, while the pricing distortion tends to be the largest contributor to deadweight loss,
in the best equilibria it is quite low and it is “not so bad” in the “worst” equilibria that entail
the highest deadweight loss. We provide analytical bounds on the pricing distortion. The
bounds make plain that this regularity is rooted in learning-by-doing itself. In particular, the
bounds tighten as firms move down their learning curves and improve their cost positions.
Second, the non-pricing distortion in the worst equilibria tends to be low because competition
for the market resolves itself quickly and winnows out firms in a fairly efficient way. Third,
in the best equilibria the non-pricing distortion tends to be higher. Dynamic competition
tends to lead to over-entry and under—exitH Too many firms have social costs in terms of
incurred setup costs and forgone scrap values but also offsetting social benefits in terms of
additional product variety. Learning-by-doing again accentuates these benefits by making
the additional product variety less costly to procure.

All in all, we show that dynamic competition when price serves as an investment works
remarkably well—not because competition for the market is a “magic bullet” that achieves
full efficiency, but because the various contributions to deadweight loss are either small or

partly offset each other. And this, in turn, happens because of learning-by-doing itself.

Related literature. Our paper is related to a large literature on dynamic competition
in settings where price plays an investment role. Besides the aforementioned models of
learning-by-doing, this includes the models of network effects in Mitchell & Skrzypacz (2006),
Chen, Doraszelski & Harrington (2009), Dube, Hitsch & Chintagunta (2010), and Cabral
(2011); switching costs in Dube, Hitsch & Rossi (2009) and Chen (2011); experience goods
in Bergemann & Véliméki (1996) and Ching (2010); and habit formation in Bergemann
& Valimaki (2006). As shown in Besanko et al. (2014), these models share key features
with our leaning-by-doing model. In particular, a firm has two distinct motives for pricing
aggressively, namely to acquire competitive advantage or overcome competitive disadvantage
(the so-called advantage-building motive) and to prevent its rivals from acquiring competitive

advantage (the advantage-denying motive)

3Interestingly, this contrasts with static models of imperfect competition with free entry (Dixit & Stiglitz
1977, Koenker & Perry 1981, Besanko, Perry & Spady 1990, Anderson, de Palma & Thisse 1992).

4The advantage-denying motive also arises in price-setting models with costly quantity—or capacity—
adjustment and—perhaps more surprisingly—quantity-setting models with costly price adjustments (menu



While this literature has generally focused on characterizing equilibrium behavior rather
than anatomizing its implications for welfare, it has raised some red flags regarding the
efficiency of dynamic competition. Bergemann & Viliméki (1997) show that the equilib-
rium in their experience-goods model is inefficient because of an informational externality
between firms (see also Rob (1991) and Bolton & Harris (1999)). The literature on network
effects shows that an inferior product can be adopted and persist as the standard either
because consumers’ expectations are misaligned or favor the inferior product (Biglaiser &
Cremer 2016, Halaburda, Jullien & Yehezkel 2016). Nevertheless, none of these papers
directly addresses the question whether the investment role of price is socially beneficial.
Our learning-by-doing model also focuses more narrowly on entry and exit as generic ele-
ments of models of firm and industry dynamics (Jovanovic 1982, Hopenhayn 1992, Ericson
& Pakes 1995).

Although price does not serve as an investment in their model, Segal & Whinston (2007)
investigate the welfare implications of antitrust policies that restrict how an incumbent can
behave toward an entrant who has just entered the market with a disruptive innovation.
They show that antitrust policies that protect entrants at the expense of incumbents can
have the salutary effect of increasing the rate of innovation. The paper thus highlights
that there need not be a tension between competition for the market and competition in
the market. Our paper relates to Segal & Whinston (2007) in its focus on the welfare
implications of dynamic competition.

Finally, our paper has commonalities with Pakes & McGuire’s (1994) welfare analysis
in a quality-ladder model. Similar to our analysis, they find that deadweight loss can be
quite low even though equilibrium behavior and industry dynamics differ markedly from
the first-best planner solution. Different from our analysis, however, this finding pertains
to a single parameterization, so it is not clear to what extent it generalizes. In addition,
in the quality-ladder model price does again not serve as an investment, meaning that the

mechanisms through which dynamic competition leads to low deadweight loss are different.

Organization of paper. The remainder of this paper is organized as follows. Section
sets up our learning-by-doing model. Section [3] develops the first-best planner problem and
the welfare metrics we use in the subsequent analysis. Section [ provides an analytical
characterization of equilibria and associated deadweight loss for a special case of our model.

Sections ] and [6] present our numerical analysis of equilibria and associated deadweight

costs). This is because in these latter models a firm’s quantity has a direct effect on its rival’s price in the
current period and thus competitive position in the subsequent period (see Lapham & Ware (1994) and Jun
& Vives (2004) and the references therein). Finally, the advantage-denying motive arises in some investment
models, such as advertising models where goodwill accumulates according to a firm’s “share of voice” or
advertising is combative (see Jorgensen & Zaccour (2004) and the references therein).



loss over a wide range of the parameter space and summarizes the regularities that emerge.
Section [7] introduces our decomposition of deadweight loss and provides analytical bounds
on some of its components. Section [8 ties together the insights from the preceding sections
and offers a summary explanation of why dynamic competition leads to low deadweight loss
when price serves as an investment.

Throughout the paper we distinguish between propositions that are established through
formal arguments and results. A result either establishes a possibility through a numerical
example or summarizes a regularity through a systematic exploration of the parameter space.
Unless indicated otherwise, proofs of propositions are in the Appendix. The Online Appendix

contains additional results and technical details to support the analysis in the paper.

2 Model

We study a discrete-time, infinite-horizon dynamic stochastic game between two firms in an
industry that is characterized by learning-by-doing. At any point in time, firm n € {1,2}
is described by its state e, € {0,1,...,M}. A firm can be either an incumbent firm that
actively produces or a potential entrant. State e, = 0 indicates a potential entrant. States
en € {1,..., M} indicate the cumulative experience or stock of know-how of an incumbent
firm. By making a sale in the current period, an incumbent firm can add to its stock of know-
how and, through learning-by-doing, lower its production cost in the subsequent period.
Competitive advantage and industry leadership are therefore determined endogenously in
our model. The industry’s state is the vector of firms’ states e = (e1,e2). It completely
describes the number of incumbent firms—and therefore the extent of product variety—
along with their cost positions. If e; > ez (€1 < e3), then we refer to firm 1 as the leader
(follower) and to firm 2 as the follower (leader).

In each period, firms first set prices and then decide on exit and entry. During the price-
setting phase, the state changes from e to € depending on the outcome of the pricing game
between the incumbent firms. In particular, if firm 1 makes the sale and adds to its stock
of know-how, the state changes to € = e'* = (min{e; + 1, M}, e); if firm 2 makes the sale,
the state changes to € = e?T = (e, min{es + 1, M}).

During the exit-entry phase, the state then changes from e’ to €’ depending on the exit
decisions of the incumbent firms and the entry decisions of the potential entrants. We model
the entry of firm n as a transition from state e, = 0 to state e/, = 1 and exit as a transition
from state e/, > 1 to state e/ = 0. As the exit of an incumbent firm creates an opportunity
for a potential entrant to enter the industry, re-entry is possible. The state at the end of the
current period finally becomes the state at the beginning of the subsequent period.

Before analyzing firms’ decisions and the equilibrium of our dynamic stochastic game,



we describe the remaining primitives.

Learning-by-doing and production cost. Incumbent firm n’s marginal cost of produc-
tion c¢(e,,) depends on its stock of know-how through a learning curve with a progress ratio
p€[0,1]:

(1)

kplo82en if 1< e, <m,
clen) =

kp°82™ if  m <e, < M.

Because marginal cost decreases by 100(1 — p)% as the stock of know-how doubles, a lower
progress ratio implies stronger learning economies.

The marginal cost for a firm without prior experience, ¢(1), is k > 0. Once the firm
reaches state m, the learning curve “bottoms out,” and there are no further experience-
based cost reductions. We accordingly refer to an industry in state e as a mature duopoly

if e > (m,m) and as a mature monopoly if either e; > m and es = 0 or e; = 0 and ez > m.

Demand. The industry draws customers from a large pool of potential buyers. One buyer
enters the market each period and purchases one unit of either one of the “inside goods”
that are offered by the incumbent firms at prices p = (p1,p2) or an “outside good” at an
exogenously given price pg. The probability that firm n makes the sale is given by the logit
specification

_ew(E) ep()

C Yhopexp(TE) M gexp(Z)]

where v is gross utility and o > 0 is a scale parameter that governs the degree of product

Dy (p)

differentiation. As ¢ — 0, goods become homogeneous and the firm that sets the lowest price
makes the sale for sureH If firm n is a potential entrant, then we set its price to infinity so
that D, (p) = 0.

Throughout we assume that the outside good is supplied competitively and priced at its
marginal cost of production ¢y > 0. The price of the outside good py = ¢y determines the
overall level of demand for the inside goods. As it decreases, the market becomes smaller,

and ultimately the industry is no longer viable.

Scrap values and setup costs. To facilitate the subsequent computations, we “purify”
mixed exit and entry strategies. If incumbent firm n exits the industry, it receives a scrap
value X,, drawn from a symmetric triangular distribution Fx (-) with support [X — Ay, X +
Ax], where Ex(X,) = X and Ax > 0 is a scale parameter. If potential entrant n enters the
industry, it incurs a setup cost S;, drawn from a symmetric triangular distribution Fg(-) with

support [S — Ag, S+ Ag|, where E5(S,) = S and Ag > 0 is a scale parameter. Scrap values

5If there is more than one such firm, each of them makes the sale with equal probability.



and setup costs are independently and identically distributed across firms and periods, and
their realization is observed by the firm but not its rival.

Although in our model a firm formally follows a pure strategy in making its exit or entry
decision, the dependence of its decision on its randomly drawn, privately known scrap value,
respectively, setup cost implies that its rival perceives the firm as if it was following a mixed
strategy. As Ax — 0 and Ag — 0, the scrap value is fixed at X and the setup cost at S and
we revert to mixed exit and entry strategies (Doraszelski & Satterthwaite 2010, Doraszelski
& Escobar 2010).

2.1 Firms’ decisions

To analyze the pricing and exit decisions of incumbent firms and the entry decisions of
potential entrants, we work backwards from the exit-entry phase to the price-setting phase.
Combining exit and entry decisions, we let ¢,,(€') denote the probability, as viewed from the
perspective of its rival, that firm n decides not to operate in state e’: if e, > 0 so that firm
n is an incumbent, then ¢, (€’) is the probability of exiting; if e/, = 0 so that firm n is an
entrant, then ¢, (e’) is the probability of not entering.

We use V,(e) to denote the expected net present value (NPV) of future cash flows to
firm n in state e at the beginning of the period and U, (e’) to denote the expected NPV
of future cash flows to firm n in state e’ after pricing decisions but before exit and entry
decisions are made. The price-setting phase determines the value function V,, along with
the policy function p, with typical element V,,(e), respectively, p,(e); the exit-entry phase
determines the value function U,, along with the policy function ¢, with typical element

Upn(€'), respectively, ¢, (€').

Exit decision of incumbent firm. To simplify the exposition, we focus on firm 1; the
derivations for firm 2 are analogous. If incumbent firm 1 exits the industry, it receives the

scrap value X7 in the current period and perishes. If it does not exit, its expected NPV is

Xi(e) =8 [Vi(e)(1 — ¢a(€")) + Vi(e], 0)pq(e)]

where 8 € [0,1) is the discount factor. The probability of incumbent firm 1 exiting the
industry in state €’ is therefore ¢,(€') = Ex [1 [Xl > X, (e/)H = 1—Fx(Xi(€)), where 1[]
is the indicator function and X; (€') is the critical level of the scrap value above which exit

occurs. Moreover, the expected NPV of incumbent firm 1 in the exit-entry phase is given



by the Bellman equation

Ui(e) = Ex {max {Xl(e'),Xl}

= (1= 92()8 [Vi(e)(1 = #(e)) + V(€1 0)65(€))] + (e Ex | Xu|X1 = Ku(e)], (2)

where Ex [X1|X1 > )/51 (e )} is the expectation of the scrap value conditional on exiting the

industry.

Entry decision of potential entrant. There is a large queue of potential entrants.
Depending on the number of incumbent firms, up to two potential entrants can enter the
industry in each period. If a potential entrant does not enter, it perishes. If it enters, it
becomes an incumbent firm without prior experience in the subsequent period. Hence, upon

entry, the expected NPV of potential entrant 1 is
Si(e') = B [Vi(L e5)(1 — dy(€))) + Vi(1,0)¢5(¢")] -

In addition, potential entrant 1 incurs the setup cost S7 in the current period. The prob-
ability of potential entrant 1 not entering the industry in state €' is therefore ¢,(e’) =
Eg [1 [Sl > §1(e’)H = 1— Fg(5,(¢')), where Sy(€') is the critical level of the setup cost be-
low which entry occurs. Moreover, the expected NPV of potential entrant 1 in the exit-entry

phase is given by the Bellman equation

Ui(e') = Eg [max {§1 (€) — Si, 0}]

= (1= 61(N){ BV, eh)(1 = 6a(e)) + Vi(1,0)65(e))] — Es [S1]S1 < Si()] |, (3)

where EE [Sl|51 < S (e )} is the expectation of the setup cost conditional on entering the

industry.

6See for closed-form expressions for FEx [X1|X1 > )?1 (e’)] in equation (@) and
Es [51|Sl < §1(e')] in equation (3).



Pricing decision of incumbent firm. In the price-setting phase, the expected NPV of

incumbent firm 1 is

2
Vi(e) = max Di(p1, pa(e)) (pr — cler)) + > Dul(p1,p2(e))U7 (e™)
n=0
2
= H})?XDl(pbm(e))(Pl —c(er)) +Ui(e) + > Du(p1,pale)) [Ur (") —Ti(e)],  (4)
n=1

where we let e’* = e and use the fact that Zi:o D, (p) = 1. Because the maximand on
the right-hand side of Bellman equation () is strictly quasiconcave in p; (given ps(e) and

e), the pricing decision p;(e) is uniquely determined by the first-order condition

o

T DipEy et (e') = Ui(e)] + Y(p2(e)) [Ui(e) = U1 (€*)] =0, (5)

pi(e)

where p(e) = (p1(e), p2(e)) and

p2(e)
Ds(p(e)) P
T(p2(e)) = 5 —%?(p(e)) B exp (—22) SeXp (>2‘§e)>

is the probability of firm 2 making a sale conditional on firm 1 not making a sale.

The pricing decision p; (e) impounds two distinct goals beyond static profit Dy (p(e))(p1(e)—
c(e1)): the advantage-building motive Uy (e!T) — Uy (e) and the advantage-denying motive
Ui(e)—U (e2+). The advantage-building motive is the reward that the firm receives by win-
ning a sale and moving down its learning curve. The advantage-denying motive is the penalty
that the firm avoids by preventing its rival from winning the sale and moving down its learn-
ing curve. As shown in Besanko et al. (2014), the advantage-building and advantage-denying
motives arise in a broad class of dynamic models and together capture the investment role

of price.

2.2 Equilibrium and industry dynamics

Because the demand and cost specification is symmetric, we restrict ourselves to symmetric
Markov perfect equilibria (MPE) in pure strategies of our learning-by-doing model. Exis-
tence follows from the arguments in Doraszelski & Satterthwaite (2010). In a symmetric
equilibrium, the decisions taken by firm 2 in state e are identical to the decisions taken
by firm 1 in state (e2,e1). More formally, we have Va(e) = Vi(ea,e1), Us(e) = Ui(ea,e1),
p2(e) = pi(ez,e1), and ¢y(e) = ¢;(e2,e1). It therefore suffices to determine the value and

policy functions Vi, Uy, p1, and ¢, of firm 1.
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Despite the restriction to symmetric equilibria, there is a substantial amount of multi-
plicity (as in Besanko et al. 2010, Besanko et al. 2014). Because the literature offers little
guidance regarding equilibrium selection, we make no attempt to do so and thus view all
equilibria that arise for a fixed set of primitives as equally likely.

To study the evolution of the industry under a particular equilibrium, we use the policy
functions p; and ¢ to construct the matrix of state-to-state transition probabilities that
characterizes the Markov process of industry dynamics. From this, we compute the transient
distribution over states in period t, u,, starting from state (0, 0) (the empty industry with just
the outside good) in period OEI The typical element p,(e) is the probability that the industry
is in state e in period t. Depending on ¢, the transient distributions can capture short-run
or long-run (steady-state) dynamics. We think of period 500 as the long run and, with a
slight abuse of notation, denote p5q, by pt,. We use the transient distribution in period 500
rather than the limiting (or ergodic) distribution to capture long-run dynamics because the

Markov process implied by the equilibrium may have multiple closed communicating classes.

3 First-best planner, welfare, and deadweight loss

3.1 First-best planner

Our welfare benchmark is a first-best planner who makes pricing, exit, and entry decisions to
maximize the expected NPV of total surplus (consumer plus producer surplus)i In contrast
to the market, the planner centralizes and coordinates decisions across firms as in Bolton &
Farrell (1990). To “stack the deck” against finding small deadweight losses, we assume an
omniscient planner that has access to privately known scrap values and setup costs

Combining exit and entry decisions, we let wf B(e’) denote the probability that the
planner in state € decides to operate both firms in the subsequent period, ¢f 63 (e') the
probability that the planner decides to operate only firm 1, w& )19 (€) the probability that the
planner decides to operate only firm 2, and 1/)(1; {? (€') the probability that the planner decides
to operate neither firm.

We use VB (e) to denote the expected NPV of total surplus in state e at the beginning of

"By starting from state (0,0) we take an ez ante perspective. We have in mind a setting in which two
firms have developed new products that can potentially draw customers away from an established product
(the outside good) but have not yet been brought to market. This is an interesting setting in its own right:
the jostle for competitive advantage by sellers of next-generation products aiming to establish a “footprint”
is a pervasive feature of the business landscape, and one where the investment role of price is particularly
salient. In addition, starting from state (0,0) “stacks the deck” against finding small deadweight losses by
fully recognizing any distortions in the entry process (see Section [).

8Mermelstein, Nocke, Satterthwaite & Whinston (2014) consider the expected NPV of total surplus and,
to a lesser extent, also the expected NPV of consumer surplus as possible objectives of an antitrust authority.
We follow them in using the same discount factor for planner and firms.

9 As Bolton & Farrell (1990) discuss, a central authority may often have more limited information.
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the period and U8 (€) the expected NPV of total surplus in state € after pricing decisions
but before exit and entry decisions are made. The price-setting phase determines the value
function VB along with the policy functions pf? for n € {1,2}; the entry-exit phase
determines the value function U¥Z along with the policy functions ¥ ? for + € {0,1}2.
We refer to ¢ = (i1,t2) as the operating decisions of the first-best planner. Note that
> ief0,1)2 FB(e’) = 1 and that the probability that firm 1 does not operate in state e’ is

FB 1 FB
1 (e/) = ZLQ:O wo,bz (e/)'
Operating decisions. Define

BVEB(hiy,ehta) + X1(1 —11) + Xo(1 — 1) if €} #0,¢5 >0,

UFB(e X, S) — BVEB (11, ehia) — S11 + Xa(1 — 19) if €} =0,¢ey>0, (©)
¢ T BVEB(li1,19) + X1(1 — 11) — Satg if €} >0,e,=0,
ﬁVFB(Ll, Lg) — SlLl — SQLQ if 6/1 = 0, 6/2 =0

to be the expected NPV of total surplus in state e given operating decisions ¢ € {0,1}2,
scrap values X = (X1, X3), and setup costs S = (S1,.52). Equation (@) distinguishes between
1= 0). If

firm n actively producing in the current period (e/, > 0) and it being inactive (e},

firm n is active, then the first-best planner receives the scrap value X,, upon deciding not
to operate it in the subsequent period (¢, = 0); if firm 7 is inactive, then the planner incurs

the setup cost S, upon deciding to operate it (¢, = 1). The optimal operating decisions are

UrB (¢/,X,8) = max_ USP(e,X,S),
{012 °

with associated operating probabilities
FB () =Exs[1[UTP (¢,X,8) =U/P(e, X, S)]] (7)
for ¢« € {0,1}2. Finally, the Bellman equation in the exit-entry phase is
UrB(e') = Ex s [UTP (¢/,X,9)]. (8)

Pricing decisions. In the price-setting phase, the expected NPV of total surplus is

2 2

Vit(e) = max CS(p) + > Du(P)(pn — clen)) + Y Du(PUT ("), (9)
n=1 n=0

12



where the first term

CS(p) =ocln <nzi:0exp <” ;“)) =v+oln <Zz:exp<_fn>> (10)

n=0

is consumer surplus and the second term is the static profit of incumbent ﬁrms Because
the outside good is priced at cost, its profit is zero.
The solution to the maximization problem on the right-hand side of Bellman equation

@) can be shown to exist and to be unique and is given by
pr(e) — c(en) _ [UFB (en+) _ UFB(e)}

for n € {1,2}. The pricing decision pZZ(e) reflects the marginal cost of production c(e,,) of
incumbent firm n net of the marginal benefit to society of moving the firm down its learning

curve.

Solution and industry dynamics. The solution to the first-best planner problem exists
and is unique from the contraction mapping theorem. Without loss of generality, we take the
solution to be symmetric in that VEP(e) = VIB(eg,e1), UFB(e) = UFB(eg,e1), pi'B(e) =
P3P (ez, 1), and 9, P (e) = ¢[17 (ea, 1) for ¢ € {0,1}2.

We again use the policy functions to construct the matrix of state-to-state transition
probabilities that characterizes the Markov process of industry dynamics and compute the

transient distribution over states in period ¢, uf B, starting from state (0,0) in period 0.

3.2 Welfare and deadweight loss

To capture both short-run and long-run dynamics, our welfare metric is the expected NPV of
total surplus. Under a particular equilibrium, total surplus in state e is the sum of consumer
and producer surplus:

TS(e) =CS(e) + PS(e),

where, with a slight abuse of notation, we denote C'S(p(e)) by CS(e), and PS(e) includes
the static profit II(e) = Zi:l D, (p(e))(pn(e) — c(e,)) of incumbent firms as well as their
expected scrap values and the expected setup costs of potential entrants The expected

OTf firm n is inactive, then we again set its price to infinity so that D, (p) = 0 and its contribution to
CS(p) is zero.

See for the expression for PS(e) and its counterpart PSTZ(e) under the first-best planner
solution.
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NPV of total surplus is

TS5 =58> i (e) TS(e), (11)
t=0 e

where, recall, p, (e) is the probability that the industry is in state e in period t.

Under the first-best planner solution, we define the expected NPV of total surplus T'S g B
analogously. By construction, T’ Sg B — vFB(0,0). The deadweight loss arising in equilib-
rium therefore is

DWLg=TSEP —TSp. (12)

Because DW Lg is measured in arbitrary monetary units, we normalize it to better
gauge its size and to make it more readily comparable across parameterizations. While
it seems natural to express DW Lg as a percentage of T'S g B in our learning-by-doing model
both T'S g B and TS vary linearly with gross utility v (because consumer surplus does; see
equation (I0)). Because v cancels out of DW Lg, we can therefore choose v to make DW Lg
any desired percentage of TSg B Note that the chosen value does not affect the behavior of
industry participants in any way.

To avoid this issue, we normalize DW Lg by the mazimum value added by the industry:

VAg=TSE" —T5S7,

where TS9 = vl__pﬁo is the expected NPV of total surplus if the industry remains empty
forever with just the outside good. V Az can be interpreted as a bound on the contribution
of the inside goods to the expected NPV of total surplus. Similar to DW Lg, V Ag does not

depend on v. We henceforth refer to Dxiﬁ as the relative deadweight loss.

4 Is dynamic competition necessarily fully efficient?

In contrast to rent-seeking models, firms in our learning-by-doing model jostle for competitive
advantage by pricing aggressively rather than by engaging in socially wasteful activities. To
the extent that rents can be efficiently transferred from firms to consumers, one may thus
conjecture that dynamic competition is necessarily fully efficient. This conjecture, however,
overlooks that dynamic competition extends beyond pricing into exit and entry. Even if
pricing is efficient, exit and entry may not be. Distortions in exit and entry can take the
form of over-exit (too much or early exit), under-exit (too little or late exit), over-entry (too
much or early entry), under-entry (too little or late entry), and cost-inefficient exit where
the lower-cost firm exits the industry while higher-cost firm does not.

We highlight distortions in exit and entry and demonstrate that dynamic competition

is not necessarily fully efficient in an analytically tractable special case of our model with a
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two-step learning curve, homogeneous goods, and mixed exit and entry strategies:
Assumption 1 (Two-step learning curve)

1. M=m=2;

2. 0=0;

3. Ax =Ag=0.

Because goods are homogeneous by part (2) of Assumption [, the firm that sets the lowest
price makes the sale. Moreover, aggregate demand for the inside goods is inelastic at prices
below pg. There are therefore no distortions in pricing.

To rule out uninteresting scenarios we further assume:
Assumption 2 (Parameter restrictions)

1. Po > Ky

S >
5. 8 (po—n+ 25 (o — pr)) > 5.
By part (1) of Assumption 2] the marginal cost of the outside good py = ¢¢ is at least as
high as the marginal cost ¢(1) =  of an incumbent firm at the top of its learning curve. By
part (2), the setup cost is positive and partially sunk and the scrap value is nonnegative.
By part (3), operating a single firm forever is socially beneficial.

The first-best planner solution is straightforward. Because goods are homogeneous and
product variety is not socially beneficial, the planner operates the industry as a natural
monopoly. In state (0,0) in period 0, the planner decides to operate a single firm (say firm
1) in the subsequent period. In state (1,0) in period 1, firm 1 charges any price below py,
makes the sale, and moves down its learning curve. The industry remains in state (2,0) in
period ¢ > 2 and firm 1 again makes the sale. The expected NPV of total surplus is thu

2

1-p

(v—pr)—S = Ul__];)+5 (po—%%-—lfﬂ(po—ﬂﬁ))—g,

TSgB =v—po+B(v—kK)+

and the maximum value added by the industry is

I} _
VAB:5<p0—K+m(pO—P“) - 5.
In the Online Appendix, we provide further details on the first-best planner solution and

the equilibria mentioned hereafter.

2The term v — po arises because the consumer purchases the outside good in state (0,0).
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Proposition 1 (Two-step learning curve) Under Assumptions[dl and[3, there exists the

equilibrium shown in Table[d. The deadweight loss is

_ $:(0,0)(1 = B) (1—4(0,0))?

DWLg= VAg+ —— == (S - X 13
P (X0 e v PR U ER S 19)
and the relative deadweight loss is
DWLﬁ — ¢1(070) B 5‘;51(070)2 (14)
VAg 1— B¢,(0,0)
_ 2
Moreover, W < 0 and %;;/VA;;) > 0: as learning economies strengthen, the

probability 1 — ¢1(0,0)? that the industry “takes off” increases and the relative deadweight

DW Lg
loss VA, decreases.

The deadweight loss arises because the entry process is decentralized and uncoordinated.
The industry can therefore suffer from over-entry and under-entry. To illustrate, we sketch
out the evolution of the industry in the equilibrium shown in Table [l In state (0,0) in
period 0, a single firm enters the industry with probability 2(1 —¢,(0,0))¢,(0,0), both firms
enter with probability (1 — ¢;(0,0))2, and no firms enter with probability ¢,(0,0)2. The

industry continues to evolve as follows:

e Case 1. If a single firm (say firm 1) enters, then in state (1,0) in period 1 it charges a
price just below the price of the outside good pg, makes the sale, and moves down its
learning curve. In state (2,0) firm 1 remains in the industry (¢,(2,0) = 0) and firm 2
does not enter (¢;(0,2) = 1). The industry remains in state (2,0) in period ¢ > 2, and

firm 1 again makes the sale.

e Case 2: Quer-entry. If both firms enter, then in state (1,1) in period 1 they charge
a price less than static marginal cost x. One of the firms (say firm 1) makes the sale
and moves down its learning curve. In state (2,1), the leader (firm 1) remains in the
industry (¢;(2,1) = 0) and the follower (firm 2) exits (¢;(1,2) = 1). The industry
moves to—and remains in—state (2,0) in period ¢ > 2. Note that pricing in state
(1,1) is so aggressive that both firms incur a loss of — <%(po — pK) — Y) that fully

dissipates any future gains from monopolizing the industry.

e (Case 3: Under-entry. If no firm enters, then the above process repeats itself in state
(0,0) in period 1.

In short, the intuition that dynamic competition is necessarily fully efficient is incomplete.

In the equilibrium shown in Table [I, while the industry evolves towards the monopolistic
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e pi(e) $1(e) Vi(e) Ui(e)
07 0 S—BX _ o 0
(0,0 > 6(po—n+%(po—pn))—ﬁX
(0,1) 00 1 - 0
(0,2) 00 1 - 0
(1,0) Py o po — K+ 125 (po — pr) 5<p0—ﬁ+%(p0—mﬁ))
1L,1) | k= (Z5(po— pr) = X 1-5X - X X
@0 | 5= (25 o= pw) - X) | N ——
(1,2) K 1 X X
(2,0) ko 0 e 25 (po — pr)
(2,1) KT 0 (1= p)r + 125 (o — oK) 25 (po — pr)
(2,2) (L=A)X X X

% (po—pr)—BX

Table 1: Equilibrium. Two-step learning curve. In column labelled p;(e), superscript — indicates that firm 1 charges just below

the price stated.

e |pile $1(e) Vi(e) Ui (e)
0,0 S—BX - 0
0.9 > B(po—nJr%(po—pn))—BX
0,1) | o 1 = 0
0,2) | oo 1 - 0
(1,0) | po 0 po — K+ 125 (po — pK) B(po—wr%(po—pﬂ))
1,1 (1-p)X _ X X
O T
1,2 —RIATPLTAIE X X
(1,2) " B po—ﬁ-l-%(po—pﬁ))—ﬁx
(2,00 | py 0 Bg=ge 25 (po — pr)
2,1 (1=f)X - 1—p)+X X
@1 n B(po—r+125 (po—pr)) —AX =)
(1-X Bd B
22) ] pm 725 (Po—pr)—BX X X

Table 2: Equilibrium with cost-inefficient exit. Two-step learning curve. In column labelled p;(e), superscript — indicates that
firm 1 charges just below the price stated.



structure that the first-best planner operates, this may happen slowly over time due to either
over-entry or under—entry Wasteful duplication and delay (Bolton & Farrell 1990) are both
integral parts of the equilibrium.

The equilibrium shown in Table [I] further entails a war of attrition (Maynard Smith
1974, Tirole 1988, Bulow & Klemperer 1999) in state (2,2), although state (2,2) is off the
equilibrium path starting from state (0,0). The war of attrition arises because a firm is
better off staying in the industry if its rival exits but worse off if its rival stays. As a firm
hopes to outlast its rival, it clings to the industry. The resulting non-operating probability
is ¢,(2,2) = %&)—_% € (0,1), whereas the first-best planner ceases to operate one of
the two firms in state (2,2). Because the exit process is decentralized and uncoordinated,
the industry can suffer not only from over-exit but also from under-exit.

Under Assumptions [ and 2] there exist two other equilibria. Even in this special case of
our model, multiple equilibria are endemic. These equilibria differ from the one in Table [I]
only in the exit-entry phase in state (1,0). In the first equilibrium, the incumbent firm
exits the industry and the potential entrant enters (¢;(1,0) = 1 and ¢;(0,1) = 0); in the
second equilibrium, the incumbent firm and the potential entrant play mixed strategies

1,0) = 5-6X _ < (0,1) and 6,(0,1) = (1-p)X _ € (0,1)).
(#(1,0) 8(po—r+125 (po—pr) ) —BX (01) and ¢:(0,1) B(po—r+125 (po—pr)) —BX ©.1))

Because the exit-entry phase in state (1,0) is off the equilibrium path starting from state

(0,0), however, these equilibria give rise to the deadweight loss in equations (I3 and (I4)).

Finally, under the additional assumption that X > %/{(1 — p), there exists the equilib-
rium, shown in Table 2 with cost-inefficient exit. In state (2,1), the incumbent firms play
mixed strategies. Hence, the lower-cost firm may exit the industry while the higher-cost firm
does not. Note that this equilibrium entails cost-inefficient exit not only in an ex post sense
but also in an ex ante sense as the lower-cost firm exits the industry with higher probability
than the higher-cost firm (¢;(2,1) > ¢,(1,2)).

5 Numerical analysis and equilibrium

The special case of a two-step learning curve relies on extreme values of key parameters.
In doing so, it assumes away a meaningful role for product variety and competition from
the outside good that can be a source of distortions in pricing. Unfortunately, analytic
tractability rapidly declines beyond the two-step learning curve. Moreover, while theoretical

analysis has enabled us to establish that dynamic competition is not necessarily fully efficient,

» ©1(0,00(1-p)
1—B¢1(0,0)2
stochastic length of time over which under-entry may occur; the second term is due to over-entry and the
» (1-61(0,0))2
1—B¢4(0,0)2
potentially many periods of under-entry.

3The first term in equation ([@3) is due to under-entry and the “discount factor captures the

“discount factor captures the stochastic length of time over which over-entry can occur after
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theoretical analysis is ill-suited to answer the question of how efficient dynamic competition

is. We therefore turn to numerical analysis.

5.1 Computation and parameterization

To thoroughly explore the equilibrium correspondence and search for multiple equilibria
in a systematic fashion, we use the homotopy or path-following method in Besanko et al.
(2010) We caution that the homotopy algorithm cannot be guaranteed to find all equilibria
and refer to reader to Besanko et al. (2010) and Borkovsky, Doraszelski & Kryukov (2010,
2012) for additional discussion. We solve the first-best planner problem using value function
iteration combined with quasi-Monte Carlo integration (Halton sequences of length 10, 000)
to evaluate the operating probabilities in equation (7]) and the Bellman equation (8]).

Our learning-by-doing model has four key parameters: the progress ratio p € [0, 1], the
degree of product differentiation o > 0, the price of the outside good pg = ¢o > 0, and
the expected scrap value X € [-Ax,S + Ag + A X] To explore how the equilibria vary
with these parameters, we compute six two-dimensional slices through the equilibrium cor-
respondence along (p, o), (p,po0), (p, X), (¢,p0), (0,X), and (X,pg). We choose sufficiently
large upper bounds for o and pg so that beyond them “things don’t change much anymore.”
Back-of-the-envelope calculations yield ¢ < 10 and py < 20. Throughout we hold the re-
maining parameters fixed at the values in the second column of Table[Bl While this baseline
parameterization is not intended to be representative of any particular industry, it is neither
entirely unrepresentative nor extreme.

An industry without firms is unlikely to attract the attention of a central authority. We
therefore exclude extreme parameterizations for which the industry is not viable in the sense
that the probability 1 — ¢;(0,0)? that the industry “takes off” is below 0.01. Unsurprisingly,
these parameterizations involve a highly attractive outside good with pg < 5.

Due to the large number of parameterizations and multiplicity of equilibria, we require a
way to summarize them. In a first step, we average an outcome of interest over the equilibria
at a parameterization. This random sampling is in line with our decision to refrain from
equilibrium selection and ensures that parameterizations with many equilibria carry the
same weight as parameterizations with few equilibria.

In a second step, we randomly sample parameterizations. To make this practical, we
represent a two-dimensional slice through the equilibrium correspondence with a grid of

values for the parameters spanning the slice. The third column of Table [ lists the grid

'The equilibrium correspondence is H ! (w) = {x|H(x,w) = 0}, where w = (p,7,po, X,...) are the
parameters of the model, x = (V1, Uy, p1, ¢,) are the value and policy functions, and H(x,w) = 0 are the
Bellman equations and optimality conditions that define an equilibrium.

15The bounds on X follow from the economic requirement that upon exit a firm’s assets are valuable
(X» > 0) but that their value is limited by the firm’s initial outlay at the time of its inception (X, < Sy).
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parameter value | grid

maximum stock of know-how M 30

cost at top of learning curve & 10

bottom of learning curve m 15

progress ratio p 0.75 | p€{0,0.05,...,1}

gross utility v 10

product differentiation o 1 o€{02/0.3,...,1,1.3,1.6,2,
2.5,3.2,4,5,6.3,7.9,10}

price of outside good pg 10 po € {0,1,...,20}

scrap value X, Ax 15,15 | X € {-1.5,~1,...,7.5}

setup cost S, Ag 4.5, 1.5

discount factor 3 0.95

Table 3: Baseline parameterization and grid points.

points we use for the four key parameters. We mostly use uniformly spaced grid points,
except for o > 1, where the grid points approximate a log scale in order to explore very high
degrees of product differentiation. We associate each point in a two-dimensional grid with
the corresponding average over equilibria. We then pool the points on the six slices through
the equilibrium correspondence along (p, ), (p,po), (p, X), (¢,p0), (0, X), and (X,pg) and

obtain the distribution of the outcome of interest.

5.2 Equilibrium and first-best planner solution

To illustrate the types of behavior that can emerge in our learning-by-doing model, we
examine the equilibria that arise at the baseline parameterization in Table[Bl For two of these
three equilibria Figure [l shows the pricing decision of firm 1, the non-operating probability
of firm 2, and the time path of the probability distribution over industry structures (empty,
monopoly, and duopoly)

The upper panels of Figure [I] exemplify what Besanko et al. (2014) call an aggressive
equilibrium. The pricing decision in the upper left panel exhibits a deep well in state (1,1)
with pi(1,1) = —34.78. A well is a preemption battle where firms vie to be the first to
move down from the top of their learning curves. Such a battle is likely to ensue because
¢1(0,0) = 0.04 implies that the probability that both firms enter the industry in period
0 is 0.92. After the industry has emerged from the preemption battle in state (1,1), the
leader (say firm 1) continues to price aggressively (pi(2,1) = 0.08). Indeed, the pricing
decision exhibits a deep trench along the ej-axis with pq(e, 1) ranging from 0.08 to 1.24
for e; € {2,... ,30} A trench is a price war that the leader wages against the follower.

16The third equilibrium is essentially intermediate between the two shown in Figure [
"Because prices are strategic complements, there is also a shallow trench along the es-axis with p1(1,e2)
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Figure 1: Aggressive (upper panels) and accommodative (lower panels) equilibrium. Pricing
decision of firm 1 (left panels), non-operating probability of firm 2 (middle panels), and
time path of probability distribution over industry structures (right panels). Dots above

the surface in left panels are p;(eg,0) for e; > 0 and dots in middle panels are ¢4(0, e2) for
eo > 0 and ¢y(eq,0) for e; > 0. Baseline parameterization.
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We can think of a trench is an endogenous mobility barrier in the sense of Caves & Porter
(1977). In the trench the follower (firm 2) exits the industry with a positive probability
of ¢y(e1,1) = 0.22 for e; € {2,...,30} as the upper middle panel shows. The follower
remains in this exit zone as long as it does not win a sale. Once the follower exits, the leader
raises its price and the industry becomes an entrenched monopoly This sequence of events
resembles conventional notions of predatory pricingl.] The industry may also evolve into a
mature duopoly if the follower manages to crash through the mobility barrier by winning a
sale but, as the upper right panel of Figure [Il shows, this is far less likely than an entrenched
monopoly.

The lower panels of Figure [I] are typical for what Besanko et al. (2014) call an accom-
modative equilibrium. There is a shallow well in state (1,1) with p;(1,1) = 5.05 as the lower
left panel shows. A preemption battle is again likely to ensue because ¢,(0,0) = 0.05 implies
that the probability that both firms enter the industry in period 0 is 0.91. After the indus-
try has emerged from the preemption battle in state (1, 1), the leader enjoys a competitive
advantage over the follower. Without mobility barriers in the form of trenches, however, this
advantage is temporary and the industry evolves into a mature duopoly as the lower right

panel shows.

First-best planner solution. Figure [2is analogous to Figure [[l and illustrates the first-
best planner solution. In state (0,0) in period 0, the planner decides to operate a single firm
(say firm 1) in the subsequent period since 1/){?763(0,0) = 5119(0,0) = 0.5. In period t > 1,
the planner marches firm 1 down its learning curve. As the left panel shows, pf B (e) =3.25
if e; € {15,...,30} so that at the bottom of its learning curve firm 1 charges a price equal
to marginal cost. In short, the planner operates the industry as a natural monopoly.

As the middle panel shows, there is an exit zone somewhat similar to the one in the
aggressive equilibrium. Although state (1, 1) is off the equilibrium path starting from state
(0,0), Q,ng(l, 1) = gf(l, 1) = 0.04 implies that if both firms are at the top of their learning
curves, then the first-best planner ceases to operate one of them with probability 0.07 to
receive the scrap value. On the other hand, if both firms are part of the way down their
learning curves, then wf )19 (e) =1 for e > (3,3) implies that the planner continues to operate
both to secure the social benefit of product variety.

Outside the baseline parameterization in Table [B] the first-best planner does not neces-

ranging from 3.63 to 4.90 for e; € {2,...,30}.

18While our model allows for re-entry, whether it actually occurs depends on how a potential entrant
assesses its prospects in the industry. In this particular equilibrium, ¢,(e1,0) = 1.00 for e; € {2,...,30}, so
that the potential entrant does not enter if the incumbent firm has moved down from the top of its learning
curve.

9Besanko et al. (2014) formalize the notion of predatory pricing in a dynamic pricing model and disentangle
it from mere competition for efficiency.
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Figure 2: First-best planner solution. Pricing decision of firm 1 (left panel), non-operating
probability of firm 2 (middle panel), and time path of probability distribution over industry
structures (right panel). Dots beside the surface in left panel are pi(eq,0) for e; > 0 and dots
in middle panel are ¢4(0, e2) for ez > 0 and ¢,(e1,0) for e; > 0. Baseline parameterization.

sarily operate the industry as a natural monopoly. In particular, if the degree of product
differentiation is sufficiently large, then the planner immediately decides to operate both

firms and continues to do so as they move down their learning curves.

Industry structure, conduct, and performance. To succinctly describe an equilib-
rium and compare it to the first-best planner solution, we use several metrics of industry
structure, conduct, and performance The second, third, and fourth columns of Table [
show these metrics for the aggressive and accommodative equilibrium and the planner solu-
tion. We discuss the fifth column of Table [l in Section

The expected short-run number of firms Nj is just above 1.90 in both equilibria, compared
to Nf B = 1.00 in the first-best planner solution. In the aggressive equilibrium, the expected
long-run number of firms N, is 1.08, quite close to the planner solution. In contrast, in
the accommodative equilibrium, N, = 2.00. The aggressive equilibrium therefore mainly
involves over-entry and the accommodative equilibrium involves both over-entry and under-
exit.

The expected long-run average price p5.2 = 3.25 in the first-best planner solution is equal

to marginal cost at the bottom of the learning curve. It is much higher in both equilibria. In

20Gee for formal definitions.
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aggr. | accom. | planner | counter-
egbm. | egbm. | solution | factual
structure:
expected short-run number of firms Ny 1.92 1.91 1.00 2.00
expected long-run number of firms Ny, 1.08 2.00 1.00 2.00
conduct:
expected long-run average price P, 8.28 5.24 3.25 5.24
expected time to maturity 1™ 19.09 37.54 15.02 53.91
performance:
expected NPV of consumer surplus C'Sg 93.87 | 103.29 131.66 56.88
expected NPV of total surplus 7'Sg 96.02 | 105.45 110.45 92.02
deadweight loss DW Lg 14.43 5.01 - 18.43
relative deadweight loss D‘Ziﬁ 13.06% | 4.54% — | 16.69%

Table 4: Industry structure, conduct, and performance. Aggressive and accommodate equi-
librium, first-best planner solution, and static non-cooperative pricing counterfactual. Base-
line parameterization.

the aggressive equilibrium, in particular, p,, = 8.28 reflects the fact that the industry most
likely evolves into an entrenched monopoly.

The expected time to maturity 7" is the expected time until the industry first becomes
either a mature monopoly or a mature duopoly; it measures the speed at which firms move
down their learning curves. Learning economies are exhausted fastest in the first-best planner
solution with 7™ 5 = 15.02, followed by the aggressive equilibrium with 7 = 19.10 and
the accommodative equilibrium with 7" = 37.50. This large gap arises because sales are
split between the inside goods in the accommodative equilibrium, as well as at least initially
with the outside good.

As the industry is substantially more likely to be monopolized in the aggressive equi-
librium than in the accommodative equilibrium, the expected NPV of consumer surplus
CSp is lower, as is the expected NPV of total surplus T'Sg. Consequently, the deadweight
loss DW Lg is higher in the aggressive equilibrium than in the accommodative equilibrium.

However, the relative deadweight loss D‘KLBB seems modest, with 13.06% of the maximum

value added by the industry in the aggressive equilibrium and 4.54% in the accommodative

equilibrium.

6 Does dynamic competition lead to low deadweight loss?

The relative deadweight loss % is modest more generally. Summarizing a large number
]

of parameterizations and equilibria, Figure [B] shows the cumulative distribution function
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Figure 3: Distribution of relative deadweight loss DVW;L; . All equilibria (solid line), best equi-

librium (dotted line), and worst equilibrium (dashed line). Parameterizations and equilibria
within parameterizations weighted equally.

(CDF) of D‘Kiﬁ as a solid line. Result [ highlights some findings:

Result 1 The relative deadweight loss D‘Ziﬁ s less than 0.05, 0.1, and 0.2 in 26.40%,

DWLgs .
VABB is 0.0777.

65.83%, and 92.03% of parameterizations, respectively. The median of

There is a large relative deadweight loss D‘Zzﬁ for a small number of parameterizations.

Under these parameterizations, the industry almost fails to take off (in the sense that 1 —
$1(0,0)? ~ 0.01) because the outside good is highly attractive. Near this “cusp of viability”
the contribution of the inside goods to the expected NPV of total surplus is small and thus
VAg = 0.

Recall that we average over equilibria at a given parameterization to obtain the dis-

tribution of DVVZLBB . To look behind these averages, we consider the best equilibrium with

the highest value of T'Sg at a given parameterization as well as the worst equilibrium with

the lowest value of T'Sg. Figure B shows the resulting distributions of D‘Zzﬁ using a dot-

ted line for the best equilibrium and a dashed line for the worst equilibrium, and Result
summarizes:

Result 2 (1) For the best equilibrium, the relative deadweight loss D‘Zzﬁ 1s less than 0.05,
0.1, and 0.2 in 44.25%, 71.11%, and 92.10% of parameterizations, respectively. The median

of DVW;L; is 0.0571. (2) For the worst equilibrium, the relative deadweight loss D‘Zzﬁ 15 less
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than 0.05, 0.1, and 0.2 in 18.67%, 56.40%, and 91.80% of parameterizations, respectively.

The median of D‘KLBB is 0.0922.

Hence, even in the worst equilibria the relative deadweight loss D‘KLBB is modest for a wide

range of parameterizations.

Closer inspection shows that the best equilibrium is often accommodative in nature
whereas the worst equilibrium is often aggressive. In[Appendix C|we offer formal definitions
of aggressive and accommodative equilibria and show that they are closely linked to the
worst, respectively, best equilibria. To facilitate the exposition and build intuition, in what
follows we therefore identify the best equilibrium with an accommodative equilibrium and the
worst equilibrium—to the extent that it differs from the best equilibrium—with an aggressive
equilibrium If the equilibrium is unique, then we identify it with an accommodative

equilibrium.

6.1 Deadweight loss in perspective: static non-cooperative pricing coun-
terfactual

Is a relative deadweight loss D‘Kiﬁ of 10% of the maximum value added by the industry

“small” and a relative deadweight loss of 30% “large”? To help put these percentages in
perspective, we show that the deadweight loss is lower than expected in view of the two
traditional roles of price (allocative and distributional). To this end, we shut down the
investment role of price. In the price-setting phase, incumbent firm 1 is thus left to maximize
static profit:

max Di(p1,p3" (€))(p1 — c(er))-

Hence, the pricing decision pISN (e) in this static non-cooperative pricing counterfactual is

uniquely determined by the first-order condition

g

SN e) =—cle .
PEe) =) T 1 (o), (o))

The expected NPV of incumbent firm 1 is

Vi (e) = Di(pi™ (e), 05" () (p1™ (e) — c(e1))
2
+UPN (@) + D D™ (e),p5™ (e) [UTY (1) — UPM (e)]

n=1

21This association is not perfect. For some parameterizations, e.g., those with weak product differentiation,
there are multiple equilibria all of which are aggressive.

26



and, in contrast to the pricing decision, accounts for the impact of a sale on the value
of continued play. Finally, the exit-entry phase remains unchanged Our computations
always led to a unique solution.

The fifth column of Table [ shows our metrics for industry structure, conduct, and perfor-
mance for the static non-cooperative pricing counterfactual at the baseline parameterization.
Similar to the accommodative equilibrium, the counterfactual involves both over-entry and
under-exit (NPV = 2.00 and NN = 2.00). Learning economies are exhausted even more
slowly than in the accommodative equilibrium (775N = 53.91 > 37.45 = T™) because
firms ignore the investment role of price in making their pricing decisions. The deadweight
loss DW Lg increases more than threefold relative to the accommodative equilibrium and by
more than a quarter relative to the aggressive equilibrium.

The investment role of price is socially beneficial more generally. Figure Ml shows the

median=1.784, Pr(<1)=18.80%|

o
(o)
T

0.4r

CDF (Cumulative probability)

o
N
T

i I

0 1
107 10" 10 10! 10
ratio of DWL(0,0)’s: SN/MPE (ratio>1 implies that SNP is worse)

. C . . . DWLZN .
Figure 4: Distribution of deadweight loss ratio WLBB‘ Log scale. Parameterizations and

equilibria within parameterizations weighted equally.

e . . DWLZN DWLZN .
distribution of the deadweight loss ratio DWL; Note that DwWL; 1 independent of our

normalization by V Az. Result Bl summarizes:

Result 3 DWLEN is at least as large as DW Lg in 80.11% of parameterizations, at least
twice as large in 44.01% of pammeterizgﬁions, and at least five times as large in 13.66% of

parameterizations. The median of WLﬂg is 1.7842.

22Qur static non-cooperative pricing counterfactual loosely corresponds to the version of the war of attrition
presented in Tirole (1988), with the addition of learning-by-doing and product differentiation.
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DWL;N is smaller than DW Lg in a number of parameterizations that mostly involve
an unattractive outside good (py > 15). The outside good constrains pricing decisions and
profitability much more in a monopolistic than in a duopolistic industry. A less attractive
outside good lifts this constraint and sharpens the incentive to monopolize the industry in
equilibrium. But if firms ignore the investment role of price in the static non-cooperative
pricing counterfactual, then a duopolistic industry with a lower deadweight loss emerges.

Generally speaking, we conclude that dynamic competition leads to low deadweight loss.
The deadweight loss is low not only relative to the maximum value added by the industry,
it is also smaller than the deadweight loss that arises if firms ignore the investment role of
price Put differently, the investment role of price is by and large socially beneficial. The
static non-cooperative pricing counterfactual also shows that a low deadweight loss is almost
certainly not hardwired into the primitives of our learning-by-doing model. Instead, there
is something in the nature of the investment role of price and dynamic competition that in

equilibrium leads to low deadweight loss.

6.2 Differences between equilibria and first-best planner solution

Dynamic competition leads to low deadweight loss despite distortions in pricing, exit, and
entry. Indeed, as we next show, there are typically substantial differences between the
equilibria and the first-best planner solution. Paradoxically, the best equilibrium can differ
even more from the planner solution than the worst equilibrium.

Recall that too low prices cause deadweight loss from overproduction, just as too high
prices cause deadweight loss from underproduction. To illustrate that the equilibria involve
prices that are too low, we first define 1 [p1(e) < c(e1) for some e € {1,..., M} x {0,...,M}]
to indicate that a price is below the marginal cost of production in at least one state. Second,
we define 1 [pi(e) < pi'B(e) for some e € {1,..., M} x {0,..., M}] to indicate that a price
is below the first-best planner solution in some state. Result [ summarizes the distribution

of these indicators:

Result 4 (1) pi(e) < c(e1) for some e € {1,...,M} x {0,..., M} in all equilibria in
79.75% of parameterizations. (2) pi(e) < pi'B(e) for some e € {1,...,M} x {0,..., M} in

all equilibria in 55.70% of parameterizations.

We caution that the states with too low prices are not necessarily on the equilibrium path

starting from state (0, 0).

2We also find that the deadweight loss under competition is lower than the deadweight loss that arises
when firms behave collusively with respect to both pricing and entry/exit decisions. For the baseline param-
eterization, the deadweight loss as a percentage of value added in the fully collusive solution is 14.32%.
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We next turn from pricing to exit and entry and compare the expected short-run and
long-run number of firms between the equilibria and the first-best planner solution. Figure
shows the distribution of Ny — N{"® as a solid line and Result [5 highlights some findings:

1F T T T T T T =
All MPE  (median=0.7733)
------ Best MPE (median=0.7733)
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Figure 5: Distribution of Ny — N{B. All equilibria (solid line), best equilibrium (dotted
line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally.

Result 5 Ny is larger than N{ P in 78.78% of parameterizations and smaller than N8 in
0.15% of parameterizations. The median of Ny — NI'B is 0.7733.

Thus, the equilibria typically have too many firms in the short run, consistent with over-
entry. They very rarely have too few firms in the short run. Figure [B] also breaks out the
best equilibrium as a dotted line and the worst equilibrium as a dashed line. Similar to our
examples in Section (£.2] there is no discernible difference between the best and the worst
equilibrium.

Figure [6 shows the distribution of Ny, — NEP as a solid line and breaks out the best

equilibrium as a dotted line and the worst equilibrium as a dashed line. Result [f] summarizes:

Result 6 (1) No, is larger than NEB in 53.77% of parameterizations and smaller than
NEB in 5.07% of parameterizations. The median of Ny — NEP is 0.0038. (2) For the
best equilibrium, Ny, s larger than NOIZB in 59.21% of parameterizations and smaller than
NEB in 0.94% of parameterization. The median of Ny — NEB is0.1327. (3) For the worst
equilibrium, N, is larger than NOIZB in 58.77% of parameterizations and smaller than NOJ‘ZB
in 6.27% of parameterizations. The median of Noo — NEB is 0.0167.
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Figure 6: Distribution N, — NEZB. All equilibria (solid line), best equilibrium (dotted line),
and worst equilibrium (dashed line). Parameterizations and equilibria within parameteriza-
tions weighted equally.

Thus, the equilibria regularly have too many firms in the long run, consistent with under-
exit. This tendency is exacerbated in the best equilibrium. The equilibria very rarely have
too few firms in the long run.

We finally turn to the speed at which firms move down their learning curves. Recall
that the expected time to maturity 7" depends on both the number of incumbent firms and

— T™FB 45 a solid line and

their pricing decisions. Figure [7] shows the distribution of T™
breaks out the best equilibrium as a dotted line and the worst equilibrium as a dashed line.

Result [7 summarizes:

Result 7 (1) T™ is larger than T™"B in 90.69% of parameterizations and smaller than
T™FB in 8.35% of parameterizations. The median of T™ — T™FB s 5.2502. (2) For the
best equilibrium, T™ is larger than T™B in 91.97% of parameterizations and smaller than
T™FB in 6.46% of parameterization. The median of T™ — T™B s 11.3581. (8) For the
worst equilibrium, T™ is larger than T™ B in 90.49% of parameterizations and smaller than
T8 in 8.69% of parameterizations. The median of T™ — T™B is 6.6216.

The speed of learning in the equilibria is generally too slow. Moreover, the best equilibrium
exhausts learning economies even more slowly than the worst equilibrium. This is because
pricing is initially less aggressive and more firms split sales in an accommodative equilibrium

than in an aggressive equilibrium.
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Figure 7: Distribution of 7™ — T™¥8B . All equilibria (solid line), best equilibrium (dotted
line), and worst equilibrium (dashed line). Parameterizations and equilibria within param-
eterizations weighted equally.

7 Why does dynamic competition lead to low deadweight

loss?

Section [6lleaves us with a puzzle. Dynamic competition leads to low deadweight loss, but this
is not because the equilibrium resembles the first-best planner solution. On the contrary, the

best equilibrium can differ even more from the planner solution than the worst equilibrium.

7.1 Decomposition

To better understand why dynamic competition leads to low deadweight loss, we quantify
the importance of three factors that together make up deadweight loss: pricing conduct, exit

and entry conduct, and market structure. We accordingly decompose the deadweight loss

in equation (I2)) as

DWLs=TSE? —TS3 = DWLER + DWLEP + DWLY®,
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where

DWLER=>"5">"j,(e) [CSFB(e) + II"B(e) — (CS(e) +1I(e))] , (15)
t=0 e
DWLEP = "5 " p,(e) [PS"P(e) — 11"B(e) — (PS(e) —1I(e))] , (16)
t=0 e
DWLYS =33 " [uf® (e) — g (e)] TS5 (e), (17)
t=0 e

and, recall, TI(e) = S22_, D,.(p(e))(pn(e) — c(en)). TIFB(e) is defined analogously.

CS(e)+1I(e) is the sum of consumer surplus and the static profit of the incumbent firms
in state e. The pricing distortion DWLg R in equation (IH)) is the incremental deadweight
loss due to state-wise differences in pricing conduct between the equilibrium and the first-best
planner solution

PS(e)—1II(e) is the difference of producer surplus and the static profit of the incumbent
firms in state e and thus the part of producer surplus that accounts for scrap values and
setup costs. The exit and entry distortion DWLgE in equation (I0]) is therefore the incre-
mental deadweight loss due to state-wise differences in exit and entry conduct between the
equilibrium and the first-best planner solution. Expected inflows from scrap values in state
e contribute positively to PS(e) —II(e) and expected outflows from setup costs negatively.
A positive value of DWLgE thus reflects a tendency for over-entry or under-exit relative to
the first-best planner solution while a negative value reflects a tendency for under-entry or
over-exit.

The market structure distortion DWLg/[ % in equation (I7) is the incremental deadweight
loss due to differences in the evolution of the industry over time between the equilibrium
and the first-best planner solution. Recall that the state e completely describes the num-
ber of incumbent firms—and therefore the extent of product variety—along with their cost
positions. A negative value of DWLg/[ S therefore indicates that the equilibrium puts more
weight on more favorable market structures with higher values of 7'S*'Z(e) than the planner
solution; a positive value indicates the reverse. Note that T.S*Z(e) is high if firms’ cost
positions in state e in relation to the price of the outside good yield large gains from trade.
TSFB(e) is also high if a large number of firms fosters product variety. Perhaps less obvi-
ously, TS5 (e) is high if in state e there are too many firms from the perspective of the
first-best planner, thus allowing the planner to receive scrap values by ceasing to operate
excess firms. Of course, these last two effects of the number of firms are mutually exclu-

sive. The factors contributing to a negative value of DWL% S are therefore over-entry and

21In our model, there is no distinction between price and quantity distortions. As demand is invertible,
consumer surplus in equation (I0) can be written as a function of quantities rather than prices.
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under-exit as well as fast exploitation of learning economies. The factors contributing to a
positive value of DWL% S are under-entry, over-exit, slow exploitation of learning economies,
and cost-inefficient exit. Cost-inefficient exit contributes to a positive value of DWLg/[ S'in
the same way as slow exploitation of learning economies by rendering firms’ cost positions
less favorable. Table Bl summarizes the distortions that the signs of DWLEE and DWLg/[ S

indicate.

term positive negative

DWLEE over-entry, under-exit under-entry, over-exit

DWLg/[ S | under-entry, over-exit, slow ex- | over-entry, under-exit, fast ex-
ploitation of learning economies, | ploitation of learning economies
cost-inefficient exit

Table 5: Decomposition terms and contributing distortions.

DWLE E and DWLg/[ S can offset each other as they depend on over-entry and under-exit
in opposite ways. We therefore define the non-pricing distortion as DWLJBV PR — DWLgE +
DWLg/[ S, Tt reflects (1) the net social loss from a suboptimal number of firms (setup costs
net of scrap values net of social benefits of product variety), (2) the gross social loss from
a suboptimal exploitation of learning economies, and (3) the gross social loss from cost-

inefficient exit.

Examples. Table [( illustrates the decomposition for the aggressive and accommodative

equilibria at the baseline parameterization. The pricing distortion DWLE R —10.78 is the

DW Lg DWL}B)R DWLEE DWLg/[S DWLgPR
aggr. eqbm. 14.43 10.78 4.67 -1.01 3.66
accom. eqbm. 5.01 2.35 7.32 -4.67 2.66

Table 6: Decomposition. Aggressive and accommodative equilibrium. Baseline parameteri-
zation.

largest part of deadweight loss DW Lg = 14.43 in the aggressive equilibrium. It is mainly
driven by the high expected long-run average price p,, = 8.28 (see Table[]) that results as the
industry most likely evolves into an mature monopoly. In the accommodative equilibrium,
the pricing distortion DWL]; R — 2.35 is a smaller part of deadweight loss DWLg = 5.01
because the industry evolves into a mature duopoly. Interestingly, DWLg R is small even

though the expected long-run average price p,, = 5.24 is almost two-thirds larger than in
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the first-best planner solution (5F = 3. 25)

In the accommodative equilibrium, the largest part of deadweight loss DW Lg = 5.01
is the exit and entry distortion DWLEE = 7.32. This reflects both wasteful duplication
of setup costs due to over-entry and scrap values that firms forgo in equilibrium due to
under-exit. The latter is analogous to the wasteful duplication of per-period, avoidable fixed
costs that arises in the standard war of attrition model in Tirole (1988)12% In contrast, in
the aggressive equilibrium DWLEE = 4.67 is a smaller part of DW Lg = 14.43 because the
follower is likely to eventually exit the industry and receive the scrap value.

In both equilibria, the market structure distortion DWLg/[ S is negative, indicating that
the industry spends more time in favorable market structures than in the first-best planner
solution. This is driven by over-entry and under-exit as opposed to fast exploitation of
learning economies. Indeed, in both equilibria learning economies are exhausted more slowly
(T™ = 19.10 and T™ = 37.50, see again Table @) than in the planner solution (7B =
15.02).

As DWL% S partially offsets DWLEE , the non-pricing distortion DWLJﬁV PR — 366 is
much smaller than the pricing distortion DWL}B) R = 10.78 in the aggressive equilibrium.
In the accommodative equilibrium the non-pricing distortion DWLéV PR — 266 is slightly
larger than the pricing distortion DWLgR = 2.35.

DWLEE  DWLEE DWLAS
. . . . ﬁ ﬁ ﬁ
General results. Figure [ shows the distribution of DWL; DWL;® DWL;

DWLYPE . . .
WﬂLB' We scale each term of the decomposition by DW Lg to better gauge its size.

Result [§] highlights some findings:

and

Result 8 (1) The pricing distortion DWLPR is positive in 96.44% of parameterizations.
WLPR
The median of DWL is 0.6565. (2) The exit and entry distortion DWLEE is positive in

EE

DWLE
81.26% of parameterizations. The median of DWL is 0.5728. (8) The market structure

DWLIVIS
distortion DWLMS is negative in 70.07% of parameterizations. The median of DWLﬁ 1

—0.2279. (4) The non-pricing distortion DWLNPR is positive in 92.03% of parameteriza-
NPR

tions. The median of % 15 0.3435.

DWLEE is typically positive by part (2) of Result 8 because of over-entry and under-exit.

Also because of over-entry and under-exit, DWLg/[ 9 'is typically negative by part (3), as the

**Dynamic first-best prices (p{ “(e),p5 ?(e)), in turn, coincide with static first-best prices (c(e1),c(e2)) if
e > (m,m).

26In the Online Appendix, we establish that our model with scrap values is equivalent to a model with
per-period, avoidable fixed costs but without scrap values.
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equilibria within parameterizations weighted equally.

speed of learning in the equilibria is generally too slow (see Figure [l and Result IZI) Thus,
as highlighted in Result [ DWLg/[ S typically offsets DWLEE so that DWLg PR is very

often smaller than its largest component (in absolute value):

Result 9 |DWL]5VPR| 1s less than max{‘DWLEE , ‘DWL?{IS‘} in 88.64% of parameteri-

zations.

Parts (1) and (4) of Result 8 show that generally both pricing and non-pricing distortions
contribute to deadweight loss. As Result [0l shows, the pricing distortion is often larger than

the non-pricing distortion:

Result 10 The pricing distortion DWLg R is larger than the non-pricing distortion DWLg PR

in 73.23% of parameterizations.

7.2 Why is the best equilibrium so good?

The deadweight loss in the best equilibrium is small although it often differs greatly from
the first-best planner solution. Recall that the best equilibrium is often accommodative.
To see why the deadweight loss in an accommodative equilibrium is small, recall from

Result 10 that the pricing distortion is often larger than the non-pricing distortion. In a

27DWL}3WS can be positive if the degree of product differentiation o is sufficiently large to ensure that the
industry evolves into a mature duopoly under the equilibrium and the first-best planner solution. In this
case, the positive value of DWL?{I 3 reflects mainly the slow exploitation of learning economies.
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first step, we show that the pricing distortion DWLg R is small. In a second step, we argue
that the non-pricing distortion DWL]BV PR is small because of the social benefit of product

variety.

Why is the pricing distortion small? At first blush, there appears to be no reason
for the pricing distortion in an accommodative equilibrium to be particularly small. At
the baseline parameterization, equilibrium prices (pi(e),p2(e)) substantially exceed static
first-best prices (c(e1),c(e2)) even once the industry becomes a mature duopoly.

Proposition 2 however, bounds the contribution CS¥5(e) + 1B (e) — (CS(e) + II(e))
to the pricing distortion DWLIBD R by the demand for the outside good Dy(p(e)):

Proposition 2 Consider a symmetric state e = (e, e), where e > 0. If pg > K, p1(e) > c(e),
and Dy(p(e)) < 3, then

CSPB(e) + (e - (C5(e) + 1(e)) < L= o))t~ Dyfple). (1)
Note that the bound on the right-hand side of equation (I8]) approaches zero as the demand
for the outside good approaches zero. This often has bite: as the incumbent firms move
down their learning curves, they improve their cost positions relative to the price of the
outside good and drive the share of the outside good close to zero. Exceptions occur only if
learning economies are weak—p is close to 1—or inconsequential because the outside good
is highly attractive.

While the bound on the right-hand side of equation (I8]) relies on logit demand, the
intuition is more general. To a first-order approximation, the deadweight loss due to market
power decreases as demand becomes less price elastic (Harberger 1954). With logit demand,
a decrease in the price elasticity of aggregate demand for the inside goods is associated with
a decrease in the demand for the outside good. With linear demand, the aggregate demand
for the inside goods similarly becomes less elastic as their prices—and with them the demand

for the outside good—decrease.

Why is the non-pricing distortion small? Recall that the non-pricing distortion DWL]BV PR —
DWLE B DWL% S reflects the net social loss from a suboptimal number of firms as well as

the gross social losses from suboptimal exploitation of learning economies and cost-inefficient

exit. Recall, too, that, broadly speaking, in particular accommodative equilibria have too
many firms, both in the short run and in the long run, consistent with over-entry and under-

exit (Results [ [6] and parts (2) and (3) of Result B). Negative values of DWL% ¥ thus tend

to offset positive values of DWLEE (Result [@).
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Of course, too many firms give rise to a social loss from the wasteful duplication of setup
costs due to over-entry and scrap values that firms forgo in equilibrium due to under-exit.
However, there is a “silver lining”: too many firms give rise to a social benefit from additional
product variety. Because of the social benefit of product variety, the net social loss from
too many firms is small. This is especially relevant because accommodative equilibria tend
to arise when the degree of product differentiation o is high (see [Appendix CJ). Hence, the
social benefit of product variety tends to be large.

Learning economies accentuate the silver lining of additional product variety. Suppose
the industry evolves into a mature duopoly in an accommodative equilibrium and into a
mature monopoly in the first-best planner solution, and that there is no further exit and
entry. Then there exists a period t* such that for period t > t*, the equilibrium transient
distribution p, (e) puts all mass on state e, where e > (m,m), and the first-best transient
distribution p!"P (e) puts all mass on state e, where either e; > m and ez = 0 or e; = 0
and es > m. Because learning economies are exhausted and there is no further exit and
entry, we have TS"B(e) = TSTB(m,m) if e > (m,m), and TSFB(e) = TSFB(m,0) if
either e; > m and e3 = 0 or e; = 0 and ey > m. Moreover, T'SFB(m,m) = CSFB(m,m)
and TSTB(m,0) = CSFB(m,0) because the planner sets static first-best prices. Hence, the

market structure distortion DWLé/[ 9 can be approximated as

t* t*+1
B (B (e) — i (e)] TS (e) - f_—ﬁ [CSTE (m,m) — CSTE(m, 0)] ,
t=0 e

where the last term can be thought of as a reduction in DWLg/[ S—and thus in the non-
pricing distortion DWL]BV PE__due to the social benefit of additional product variety. From
equation ([I0) it is straightforward to establish that

CST¥B(m,m) — CSTB(m,0)

oo () e (22)) o () o (221

where ¢(m) = kp'°%2™ from equation (), and

d(CSFB(m,m) — CSFB(m,0))

dp = — (2D1(c(m), e(m)) — Di(c(m), 00)) £p'*2 ™ logy m < 0,

since 2D1(c(m), c(m)) = )) = Dy(e(m),00). Hence, as

2 > 1
2+Cxp<_<p0*;(7n)>> 1+Oxp<_<p0*;(7n)
learning economies strengthen, the reduction in DWLé/[ S and DWL]BV PR due to the social

benefit of additional product variety increases.
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7.3 Why is the worst equilibrium not so bad?

Recall that the worst equilibrium is aggressive. To see why the deadweight loss in an
aggressive equilibrium is small (albeit not as small as in the best equilibrium), we show
in a first step that the pricing distortion DWL]BD R is small. In a second step, we argue that
the non-pricing distortion DWLg PR js small because of a fairly efficient winnowing out of
firms.

We emphasize that the arguments below do not imply that the deadweight loss in an
aggressive equilibrium is close to zero. Rather, each one speaks to an economic force in
the model that serves as a “headwind” that prevents the deadweight loss from becoming

excessively large.

Why is the pricing distortion small? There again appears to be no reason for the
pricing distortion in an aggressive equilibrium to be small. At the baseline parameteriza-
tion, the industry evolves into a mature monopoly. Proposition [2] bounds the contribution
CSFB(e) + I1'B(e) — (CS(e) +II(e)) to the pricing distortion DWLgR by the degree of
product differentiation o and the advantage-building motive Uy (e't) — Uy (e):

Proposition 3 Consider a state e = (e,0), where e > 0. Then

CSTB(e) +11"B(e) — (CS(e) + II(e))

< { o if 0<Uy(e!t)—Ui(e) <o (1 + exp (P_o—ac(e)» 7
o+ |Up (') — Ui (e)| otherwise.
(19)

Note that the bound on the right-hand side of equation (I9]) approaches o as the incumbent
firm moves down its learning curve and Uj (e1+) — Uj (e) approaches zero. While Propo-
sition [3 relies on logit demand, the intuition that the threat of substitution to the outside
good holds market power in check transcends the logit specification.

Proposition B] has bite because aggressive equilibria tend to arise when the degree of
product differentiation o is low (see [Appendix C]). This is intuitive: pricing aggressively
to marginalize one’s rival or altogether force it from the industry is especially attractive if

products are close substitutes so that firms on an equal footing would fiercely compete.

Why is the non-pricing distortion small? While an aggressive equilibrium usually
involves delayed exit (relative to the first-best planner solution), it involves rather brisk
eventual exit. Thus, the industry usually quickly evolves towards the first-best market

structure in an aggressive equilibrium, which tends to keep DWL% S and thus DWL]BV PR
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small. The small non-pricing distortion reflects the resulting relatively low net social loss
from a suboptimal number of firms. Put another way, in an aggressive equilibrium, this net
social loss is small because competition for the market resolves itself quickly and winnows

out firms in a fairly efficient way.

8 Summary and conclusion

We study industries where price is not limited to its allocative and distributional roles and
also serves as an investment. The investment role arises when a firm’s price affects not only
its current profit but also its future competitive position vis-a-vis its rivals. Competition is
dynamic as firms jostle for competitive advantage through the prices they set.

Our starting point is the conjecture that dynamic competition is necessarily fully efficient
in our learning-by-doing model because firms merely transfer rents to consumers by pricing
aggressively rather than engage in socially wasteful activities as in rent-seeking models. We
argue that this conjecture overlooks that dynamic competition extends beyond pricing into
exit and entry. As we show in the special case of a two-step learning curve, even if pricing is
efficient, exit and entry are not, and there are coordination failures (Bolton & Harris 1999)
and wars of attrition (Maynard Smith 1974, Tirole 1988, Bulow & Klemperer 1999). In sum,
dynamic competition when price serves as an investment is not a “magic bullet.”

Still, our analysis suggests that in settings where price plays an investment role, dynamic
competition is fairly efficient. Deadweight loss tends to be low (Results [l and 2]) and the
investment role of price socially beneficial (Result [3]). This is surprising because equilibrium
behavior and industry dynamics often differ markedly from the first-best planner solution.
In particular, dynamic competition tends to lead to too low prices (Result ), too many firms
in the short run and in the long run (Results bl and [6]), and too slow learning (Result [7]).

So why is dynamic competition fairly efficient? The answer boils down to the key fun-
damental that gives rise to the investment role of price in the first place: learning-by-doing.

The pricing distortion tends to be the largest contributor to deadweight loss (part (i)
of Result [ and Result [[0). Our bounds on the pricing distortion tighten as the incumbent
firms move down their learning curves (Propositions 2] and B]). If the industry evolves into a
mature duopoly in an accommodative equilibrium, this happens because the demand for the
inside goods becomes less elastic as the incumbent firms improve their cost positions relative
to the outside good and drive the share of the outside good close to zero. If the industry
evolves into a mature monopoly in an aggressive equilibrium, the bound further tightens as
the degree of product differentiation decreases and the threat of substitution to the outside
good holds market power in check. But this is precisely when aggressive equilibria tend to

arise in the first place.
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The non-pricing distortion comprises the exit and entry distortion and the market struc-
ture distortion. In an aggressive equilibrium, the non-pricing distortion tends to be low
despite the wasteful duplication of setup costs due to over-entry because competition for the
market resolves itself quickly and winnows out firms in a fairly efficient way. In an accom-
modative equilibrium, the non-pricing distortion tends to be higher. However, the market
structure distortion tends to partly offset the exit and entry distortion (parts (ii) and (iii)
of Result [§ and Result [). Too many firms give rise not only to a social loss from incurred
setup costs due to over-entry and forgone scrap values due to under-exit, but also to a so-
cial benefit from additional product variety. Learning-by-doing accentuates this benefit by
making product variety less costly to procure.

Put simply, when price serves as an investment, dynamic competition is fairly efficient
because of the efficiency-enhancing properties of the investment.

From a policy perspective, our analysis suggests that in settings where price serves as an
investment, the upside from competition policy or regulatory interventions—beyond those
aimed at preventing collusion between firms—is likely to be limited. Though we show in
Besanko et al. (2014) that pricing conduct restrictions can lead to welfare gains, achieving
these gains in practice requires detailed knowledge of demand and cost primitives. Unless
a competition authority executes flawlessly based on this knowledge, it may be preferable
not to intervene at all and tolerate the “not so bad” welfare losses that typically arise under

dynamic competition.

Appendix A Omitted expressions

Exit decision of incumbent firm. The probability of incumbent firm 1 exiting the
industry in state e’ is

41(e) = 1-Fx(Xi(e)

1 if X,(¢/) < X — Ay,
= L BN R e [R- Ay, X+ Ay,
0 if Xi(e) > X+ Ax

and the expectation of the scrap value conditional on exiting the industry is

- nyjAl)_( oy X1dFx (X1)
Ex | X1|1X, ZXl(e/)} = Il ¢1(;)2e/)
1
1

¢1(e/) [ZX (0) - ZX (1 - qbl(e/))] )
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where

—L(X - Ay)’ it 1-¢<0,
Ie(ogy= L) FO X)) (A -9)’ i 1-se 0]
A% %(AX+X)H§%£T¢D<—§@:3L—@ —1X7 if 1-¢€ (51
t(X+Ax)" —3X if 1-¢>1
d
- ~1 it 1-¢<0,

“1+2(0-¢) if 1-¢€]0,3],
1- /28 if 1-¢€|5.1],
1 if l1-¢>1

Fyl(l—¢) =X+ Ax

Entry decision of potential entrant. The probability of potential entrant 1 not entering
the industry in state €’ is

¢1(e)) = 1-Fs(Si(e)

1 if Si(e) < S — Ag,
= {1 B 5y eFoasTra
2 285 1 1(916[ s,S + Ag],
0 if Sl(e,)>§—|—Ag

and the expectation of the setup cost conditional on entering the industry is

“1(1_o, (e
IEFEAS ¢1( )) SldFS(Sl)
(1—¢y(e))

Es 51|Sl S §1(e')] =

1 /
— g 125 (- au(e) ~ Zs ()],
where
L(5-Ag)’ if  1-¢<0,
P (85 -3) (B9 + 3 (B0 —g) i 1-0c 03],
R T AV R G P )
5(S+05)° — 45" it 1-g21
d
an 1 if  1-¢<0,

~1+2(1-9¢) if 1-9¢€]|0,3],
1—+/2¢ if 1-¢¢€|3.1],
1 if 1—¢>1.

Producer surplus (decentralized exit and entry). Producer surplus in state e is
2
= Z PS, (e
n=1
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where

2
PSi(e) =TIi(e) + > Dn(p(e)){l le1 > 0] ¢y (e"F) Ex [le(1 > X, (e”"’)}

n=0

-1 [61 = 0] (1 — ¢ (e"+)) Eg [51‘51 < §1 (e"+)] }
is producer surplus of firm 1 in state e with

II1(e) = Di(p(e))(p1(e) — c(e1)).

PSs(e) and ITz(e) are analogous.

Producer surplus (centralized exit and entry). Producer surplus in state e is

2
PSEBe) =11B(e) + Z D, (pFB(e))
n=0

{ P (e7%) Bxs [~1ler = 081 — 1[e2 = 0] S[{UTF (€77, X, 8) = UL'F (e7F,X,8)]
+f 8 (e") Exs [~1[e1 = 0] S1 + 1 [e2 > 0] Xo|[UTE (e"F,X,8) = U[F (e"", X, S)]
+01 (") Bxs [Ller > 0] X1 — 1lex = 0] So|UT7 ("7, X, S) = Up{’ ("7, X, S)]

b () Bxs [Ler > 0] X1+ 1[ez > 0] XU (€7, X, 8) = USF (e7F,X,8)] }

with IIFB(e) = S22_, D, (p"B(e)) (pEP(e) — clen)).

Industry structure, conduct, and performance. The expected short-run and long-run
number of firms is

N =Y (@) N(e), No=3 () Nie),

where number of firms in state e is

2
N(e)zZl[en>0].

n=1

The expected long-run average price is

_ Poo (€)
Poo= », —2——pe),
e>(0,0) - Noo(07 O)

where (share-weighted) average price in state e is




The expected time to maturity is
T™ = E[min {t > 0le; € Q}|eg = (0,0)],
where e; is the state of the industry in period ¢ and
Q={(m,0),...,(M,0),(0,m),...,(0,M),(m,m),...,(M,M)}

is the set of states in which the industry is either a mature monopoly or a mature duopoly.
min {¢t > 0le; € Q} is the so-called first passage time into the set of states 2. It can be shown
that 7™ is the solution to a system of linear equations (Kulkarni 1995, equation (4.72)).

The expected NPV of consumer surplus C'Sg is defined analogously to the expected NPV
of total surplus T'Sg in equation (III).

Appendix B Proofs

Proof of Proposition . The proof proceeds in two steps. First, we show that given the
policy functions, the value functions solve the Bellman equations ([2)), [3]), and (). Second,
we show that there is no profitable one-shot deviation in any state of the industry. The
details of this analysis are presented in the Online Appendix. m

Proof of Proposition [2I Define the sum of consumer surplus and static profit to be

®(p) = CS(p,p) +2D1(p, p)(p — c(e)).

Using this definition, in a symmetric state e = (e, e), where e > 0, we can write
CS"P(e) + TP (e) — (CS(e) +II(e)) = ®(p{ P (e)) — P(pi(e)).

We have

'(p) = —%(p —c(e))Do(p,p)(1 — Do(p; p)), (20)
" (p) = —% ((p = c(e))(1 = 2Do(p, p)) + o) Do(p, p)(1 — Do(p,p))- (21)

Hence, ®(p) is strictly quasiconcave in p and attains its maximum at p = ¢(e). Thus, we
obtain

CS"F(e) + 11" (e) — (CS(e) +11(e)) < (c(e)) — D(pi(e)). (22)

We bound the right-hand side of equation (22)). Let p be such that Dy(p,p) = %, SO
1—2Dq(p,p) > 0 for all p < p because Dy(p, p) increases in p. Equation (2I]) implies that ®(p)
is strictly concave in p over the interval [c(e), p]. This interval is non-empty: the assumption
po > Kk coupled with k > c¢(e) implies Dy(c(e),c(e)) < Dy(k,k) < % < 3 = Do(p,p). As
Dy(p, p) increases in p, it must be that c(e) < p.

By assumption, pi(e) € [c(e),p]. From Theorem 21.2 in Simon & Blume (1994) and
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equation (20)) we therefore have
®(c(e)) — ®(pi(e)) < ¥'(pi(e))(c(e) — pi(e))

_ MDo(pl(e%pl(e))(l ~ Dopi(e). p1(e)))- (23)

This establishes Proposition 2. m
Proof of Proposition Bl Define the sum of consumer surplus and static profit to be

®(p) = CS(p,00) + Di(p,00)(p — c(e)).

Using this definition, in a state e = (e,0), where e > 0, we can write
CS"P(e) + TP (e) — (CS(e) +TI(e)) = ®(p 7 (e)) — D(pi(e)).

We have
¥ (p) =~ (p — c{e)) Dolp, o) (1 ~ Do(p, 0)),

1
®"(p) = == ((p = e(e))(1 = 2Do(p, 00)) + ) Do(p, o) (1 = Do(p, 00)).
Hence, ®(p) is strictly quasiconcave in p and attains its maximum at p = c¢(e). Thus, we
obtain
CSTP(e) + 1175 (e) — (CS(e) + 11(e)) < D(c(e)) — B(pi(e)),

where ®(c(e)) = v —c(e) +oln (1 + exp (@%IJ‘)))

pi(e) is uniquely determined by the solution to the first-order condition ({); it can be
written as

pi(e) = (o) — U1 () ~ Ui (0)] + (1 b <exp (”0 —Ao+ [ ) “Uie] 1) )) ,

g

e1+ - e
where W (-) is the Lambert W function. Defining x = pO_Tc(e) and y = M

can be further written as

, this

pi(e) =cle) + o (~y+1+ W (exp(z +y—1))).
Hence,

1+ W (exp(z+y—1)) Y _
W (e +y—1)) >+1+wqwmx+y—n) Q

ym@»:v—d@+a<m<
and

P(c(e)) =v—c(e) + oln (1 +exp(—x)) .
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It follows that

®(c(e)) — 2(pi(e))
1+ W (exp(z+y—1)) Y
W (exp(z -y — 1)) > T W (ep@ ty—1)) “2 |
24

- (m (1+ exp(—z)) — In (

yW (exp(z +y — 1))

=0 (111 (1+exp(z)) —In(1+ W (exp(z +y—1))) — W (exp(z+y — 1)) +
(25)

Some properties of the Lambert W function are that W(z) is increasing in z, W (0) = 0,
and W (zexp(z)) = z for all z > 0.
Case 1: y < 1+ exp(x). We first show that if y < 1+ exp(x), then

1+ W (exp(z +y—1))
W (exp(x +y —1))

In (1 + exp(—z)) — In < > +1<1. (26)

To see this, note that equation (28) is equivalent to

1+ W (exp(z+y — 1))>
W (exp(zx +y —1))
1
W (exp(z +y — 1))
< exp(z) > W (exp(z +y —1)).

In(1+exp(—z)) <In (

& exp(—z) <

If y = 1+exp(x), then the right-hand side is W (exp(x + exp(x))) = W (exp(z) exp(exp(z))) =
exp(z). Moreover, because W(z) is increasing in z, exp(xz) > W (exp(x +y — 1)) for all
y < 1+ exp(x).

Consider equation (24]). From equation (26]) it follows that

(c(e)) — @(pi(e)) <o <1 YW (exptx +y— 1))> '

1
1+ W (exp(z+y—1))

®(c(e)) — (par(e)) <o (1+yl) (27)

Moreover, 0 < < 1. Therefore, if y < 0, then
and, if y > 0, then
B(c(e)) — B(pi(e)) < 0. (28)
Case 2: y > 1+ exp(x). We first show that if y > 1+ exp(x), then

In(1+exp(z)) —In(14+ W (exp(x+y—1))) — W (exp(x +y—1)) < 1. (29)
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To see this, note that

In(1+exp(z)) —In(1+ W (exp(x +y—1))) — W (exp(x +y — 1))
<In(1+exp(z)) —In(1+ W (exp(z + exp(x)))) — W (exp(z + exp(x)))
=In(1+exp(x)) —In (1 + exp(z)) — exp(z) = —exp(z) < 1.
Consider equation (25). From equation (29) it follows that

W (exp(z +y — 1)) )
14+ W(exp(z+y—1)) )

B(e(e) — B(p(e)) < o (1 Ty

W (exp(z+y—1))
Moreover, 0 < THW (exp(z+y—1

77 < 1. Because y > 1+ exp(z) > 0, we have

D(c(e)) — (pr(e)) <o (1 +y). (30)
Collecting equations (27)), (28], and (30]) establishes Proposition 3l m

Appendix C Aggressive and accommodative equilibria

We offer formal definitions of aggressive and accommodative equilibria, but note from the
outset that any attempt to classify equilibria is fraud with difficulty because the different
equilibria lie on a continuum and thus morph into each other in complicated ways as we vary
the parameters of the model.

Our definition of an aggressive equilibrium hones in on a trench in the pricing decision,
and our definition of an accommodative equilibrium on a lack of exit from a duopolistic
industry:

Definition 1 An equilibrium is aggressive if
pi(e) <piler,ea +1), pa(e) <paler,ea+1), oy(e) > Py(er,e2+ 1)
for some state € > (0,0) with e; > ea.
Definition 2 An equilibrium is accommodative if
p1(e) = Py(e) =0
for all states e > (0,0).

These definitions are not exhaustive. The percentage of equilibria classified as aggressive is
96.88%, the percentage of equilibria classified as accommodative is 1.99%, and the percentage
of unclassified equilibria is 1.13%. Our computations always led to a unique accommodative
equilibrium but often to multiple aggressive equilibria at a given parameterization.

An aggressive equilibrium exists if the degree of product differentiation o is sufficiently
low. As competition in a duopolististic industry becomes fiercer, monopolizing the industry
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aggressive | accommodative | unclassified
best 46.40% 98.04% 58.02%
worst | 98.11% 66.17% 27.67%

Table 7: Percentage of parameterizations at which an aggressive, accommodative, or unclas-
sified equilibrium (if one exists) is best or worst. Unweighted.

unique equilibrium | multiple equilibria
best worst
aggressive 2.83% 43.19%  97.96%
accommodative 83.82% 40.66%  1.36%
unclassified 13.35% 16.15%  0.68%

Table 8: Percentage of parameterizations at which the best or worst equilibrium is aggressive,
accommodative, or unclassified. Unweighted.

becomes more attractive. Other factors contributing to the existence of an aggressive equi-
librium are a high expected scrap value X and a high price of the outside good pg. The first
factor makes it easier for a firm to induce its rival to exit the industry and the second makes
monopolizing the industry more attractive by allowing the surviving firm to charge a higher
price. Conversely, an accommodative equilibrium exists if the degree of product differentia-
tion o is sufficiently high. Other factors contributing to the existence of an accommodative
equilibrium are a low expected scrap value X and a low price of the outside good py.

Our definitions of aggressive and accommodative equilibria map into worst, respectively,
best equilibria. Table [7 shows that an aggressive equilibrium (if one exists) is the worst
equilibrium in 98.11% of parameterizations while an accommodative equilibrium (if one
exists) is the best equilibrium in 98.04% of parameterizations. Conversely, Table [§ shows
that if there is a unique equilibrium, then it is classified as accommodative in 83.82% of
parameterizations. If there are multiple equilibria, then the best equilibrium is classified as
accommodative in 40.44% parameterizations and as aggressive in 43.19% parameterizations,
However, the worst equilibrium is classified as aggressive in 97.97% of parameterizations. To
facilitate the exposition and build intuition, we therefore identify the best equilibrium with
an accommodative equilibrium and the worst equilibrium—to the extent that it differs from
the best equilibrium—with an aggressive equilibrium. If the equilibrium is unique, then we
identify it with an accommodative equilibrium.
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