Credit Spreads and Business Cycle Fluctuations

Simon Gilchrist

1Boston University and NBER

September 2014
Motivation

- Modigliani-Miller [*AER ’58]*: With frictionless financial markets, firms’ capital structure is indeterminate, and the aggregate mix of debt vs. equity is irrelevant for the evolution of the real economy.

- In light of the M-M result, business cycle theory has largely abstracted from incorporating financial factors into models of aggregate fluctuations:
 - IS-LM framework
 - Real business cycle models
 - New Keynesian synthesis
Motivation (cont.)

- Bernanke & Gertler [AER ’89]: Reflecting informational asymmetries between borrowers and lenders, borrowers’ balance sheets can play an important role in the propagation of economic shocks—the financial accelerator.
- Financial accelerator:
 - Informational frictions in credit markets induce a wedge between the cost of external and internal funds—the external finance premium (EFP).
 - Size of the EFP depends inversely on the borrower’s net worth.
 - Declines in equity valuation and/or unexpected deflation reduce borrowers’ net worth.
 - Procyclical net worth leads to countercyclical EFP, enhancing swings in borrowing, investment, and output.
Outline

• Lecture 1: Credit spreads and Economic Activity
 ▶ Credit spreads and leverage in a Costly-State Verification (CSV) framework
 ▶ Empirical evidence on the role of credit spreads in economic activity.

• Lecture 2: Credit Frictions in DSGE Models
 ▶ OLG Example (Bernanke-Gertler)
 ▶ An estimated DSGE model with financial accelerator.
 ▶ Implications for Monetary Policy

• Lecture 3: New Directions:
 ▶ Uncertainty, investment, and business cycle fluctuations.
 ▶ Inflation Dynamics During the Financial Crisis
Entrepreneur’s Investment Opportunity

- Entrepreneur starts period with net worth N.
- Entrepreneur borrows:

\[B = QK - N, \]

- $Q =$ price of capital (exogenous)

- Project payoff:

\[\omega R^k QK^\alpha, \quad 0 < \alpha < 1 \]

- $R^k =$ aggregate (gross) rate of return on capital (exogenous)
- $\omega =$ idiosyncratic shock to project’s return
- Assume: $\ln \omega \sim N\left(-\frac{\sigma^2}{2}, \sigma^2\right) \Rightarrow E[\omega] = 1$
Information Structure

- No asymmetric information *ex ante*:
 - R^k is known to both lender and entrepreneur before investment decision.
 - ω is realized after investment decision.

- Asymmetric information *ex post*:
 - ω is freely observed by entrepreneur.
 - To observe ω, lender must pay
 \[
 \mu \omega R^k Q K^\alpha
 \]
 - Parameter $0 \leq \mu < 1$ measures the cost of monitoring and hence the magnitude of credit market frictions.
Debt Contract

- Entrepreneur and lender agree to a standard debt contract (SDC) that pays lender an amount D as long as bankruptcy does not occur.
- If $\omega R^k Q K^{\alpha} \geq D$:
 - Entrepreneur pays D to lender and keeps residual profits.
- If $\omega R^k Q K^{\alpha} < D$:
 - Entrepreneur declares bankruptcy and gets nothing.
 - Lender pays bankruptcy cost to monitor entrepreneur and keeps profits net of bankruptcy cost.
Payoffs to Entrepreneur and Lender

- Bankruptcy occurs if $\omega \leq \overline{\omega}$:
 \[\overline{\omega} \equiv \frac{D}{R^k Q K^\alpha} \]

- Expected payoff to entrepreneur:
 \[\int_{\overline{\omega}}^{\infty} \omega R^k Q K^\alpha d\Phi(\omega) - \overline{\omega} \int_{\overline{\omega}}^{\infty} R^k Q K^\alpha d\Phi(\omega) \]

- Expected payoff to lender:
 \[(1 - \mu) \int_{0}^{\overline{\omega}} \omega R^k Q K^\alpha d\Phi(\omega) + \overline{\omega} \int_{\overline{\omega}}^{\infty} R^k Q K^\alpha d\Phi(\omega) \]

- Competitive loan market: Lender must earn an expected (gross) rate of return R on the loan amount B.
Payoffs as a Share of Expected Profits ($R^k Q K$)

- Define:

$$\Gamma(\bar{\omega}) \equiv \int_{0}^{\bar{\omega}} \omega d\Phi(\omega) + \bar{\omega} \int_{\bar{\omega}}^{\infty} d\Phi(\omega)$$

$$\mu G(\bar{\omega}) \equiv \mu \int_{0}^{\bar{\omega}} \omega d\Phi(\omega)$$

- Entrepreneur’s expected share of profits:

$$1 - \Gamma(\bar{\omega})$$

- Lender’s expected share of profits:

$$\Gamma(\bar{\omega}) - \mu G(\bar{\omega})$$
Optimal Contract

- Choose K and $\bar{\omega}$ to solve:

$$\max_{K, \bar{\omega}} \left[1 - \Gamma(\bar{\omega}) \right] R^k Q K^\alpha$$

subject to the lender’s participation constraint:

$$\left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega}) \right] R^k Q K^\alpha = R(QK - N)$$

- Lagrangean:

$$\max_{K, \bar{\omega}} \left\{ \left[(1 - \Gamma(\bar{\omega})) + \lambda (\Gamma(\bar{\omega}) - \mu G(\bar{\omega})) \right] R^k Q K^\alpha - \lambda R(QK - N) \right\}$$

- $\lambda = \text{Lagrange multiplier on the lender’s participation constraint and hence measures the shadow value of an extra unit of net worth to the entrepreneur.}$
- The term in brackets reflects total firm value when valued using the shadow price of external funds.
Optimality Conditions

- FOC w.r.t. $\bar{\omega}$:
 \[\lambda = \frac{\Gamma'(\bar{\omega})}{[\Gamma'(\bar{\omega}) - \mu G'(\bar{\omega})]} \geq 1 \]

- FOC w.r.t. K:
 \[\alpha [(1 - \Gamma(\bar{\omega})) + \lambda (\Gamma(\bar{\omega}) - \mu G(\bar{\omega}))] R^k Q K^{\alpha-1} = \lambda R Q \]

- FOC w.r.t. λ:
 \[[\Gamma(\bar{\omega}) - \mu G(\bar{\omega})] R^k Q K^{\alpha} = R(Q K - N) \]
External Finance Premium

- FOCs imply:
 \[\alpha R^k Q K^{\alpha - 1} = \rho(\bar{\omega}) R Q \]

 \[\rho(\bar{\omega}) = \left[\frac{\lambda}{1 - \Gamma(\bar{\omega})} + \lambda \left[\Gamma(\bar{\omega}) - \mu G(\bar{\omega}) \right] \right] \geq 1 \]

 \[\rho(\bar{\omega}) = \text{external finance premium (EFP)} \]

- EFP is increasing in the default barrier \(\bar{\omega} \):
 \[\rho'(\bar{\omega}) > 1 \]
Leverage and Default:

- The default barrier $\bar{\omega}$ is increasing in leverage:

$$\frac{QK}{N} = \frac{\psi(\bar{\omega})}{1 - (1 - \alpha)\psi(\bar{\omega})}$$

where

$$\psi(\bar{\omega}) = \left[1 + \frac{\lambda [\Gamma(\bar{\omega}) - \mu G(\bar{\omega})]}{1 - \Gamma(\bar{\omega})} \right] \geq 1$$

$$\psi'(\bar{\omega}) > 0$$

- Intuition:
 - An increase in leverage requires a higher default barrier to increase the payoff to the lender relative to the entrepreneur.
 - The increase in the default barrier also implies a higher shadow value of external funds λ.
 - An increase in net worth reduces the default barrier and lowers the premium on external funds.
Example: Constant Returns to Scale ($\alpha = 1$)

- The default barrier is determined by the rate of return on capital relative to the risk-free rate of return:

$$\frac{R^k}{R} = \rho(\bar{\omega})$$

- Given $\bar{\omega}$, capital expenditures are determined by available net worth:

$$\frac{QK}{N} = \psi(\bar{\omega})$$

- Combining these, we obtain a positive relationship between the premium on external funds and leverage:

$$\frac{R^k}{R} = s\left(\frac{QK}{N}\right), \quad s' > 0$$
Implications of Changes in Monitoring Costs μ

$\sigma = 0.28$

External Finance Premium

- Percentage Points
- $\mu = 0$
- $\mu = 0.12$
- $\mu = 0.24$
- $\mu = 0.36$

Default Productivity Threshold

- Leverage (logarithmic scale)
- Probability of Default
- Credit Spread

CSV Model

Gilchrist, Yankov & Zakrajšek (2009)

Gilchrist and Zakrajsek (2012)

BMA Forecasting: FGWZ (2012)
Financial markets are forward looking:
- Asset prices should impound information about investors’ expectations of future economic outcomes
- Extracting that information may be complicated by the presence of time-varying risk premia

Research on the role of asset prices in cyclical fluctuations stresses the predictive content of default-risk indicators. (Friedman & Kuttner [1992,1998]; Gertler & Lown [1999]; Mueller [2007])
Asset Prices and Economic Activity

- Financial markets are forward looking:
 - Asset prices should impound information about investors’ expectations of future economic outcomes
 - Extracting that information may be complicated by the presence of time-varying risk premia

- Research on the role of asset prices in cyclical fluctuations stresses the predictive content of default-risk indicators.

 (Friedman & Kuttner [1992,1998]; Gertler & Lown [1999]; Mueller [2007])
GYZ (2009): Methodology

- Use **security-level** data to construct **bond portfolios** that assign each bond outstanding to a category determined by:
 - Firm-specific expected probability of default (EDF).
 - Bond-specific remaining term-to-maturity.
- Use CRSP equity returns to construct matched **equity portfolios**.
Forecasting Framework

- Measures of economic activity:
 - EP: log of private nonfarm payroll employment
 - IP: log of industrial production

- Forecasting VAR specification:

\[
\Delta^{h} EP_{t+h} = \beta_1(L) \Delta EP_t + \beta_2(L) \Delta IP_t + \eta_1' Z_{1t} + \eta_2' Z_{2t} + \epsilon_{1,t+h}
\]

\[
\Delta^{h} IP_{t+h} = \gamma_1(L) \Delta EP_t + \gamma_2(L) \Delta IP_t + \theta_1' Z_{1t} + \theta_2' Z_{2t} + \epsilon_{2,t+h}
\]

- \(Z_{1t} \) = standard default-risk indicators
 (CP-bill spread, Aaa, Baa, HY spread)
- \(Z_{2t} \) = EDF-based portfolio credit spreads
In-Sample Predictive Power

(Sample period: Feb1990–Sep2008; 12-month forecast horizon)

<table>
<thead>
<tr>
<th>Credit Spreads</th>
<th>Pr > W_1</th>
<th>Pr > W_2</th>
<th>Adj. R^2</th>
<th>Pr > W_1</th>
<th>Pr > W_2</th>
<th>Adj. R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.003</td>
<td>-</td>
<td>0.665</td>
<td>0.109</td>
<td>-</td>
<td>0.200</td>
</tr>
<tr>
<td>EDF-Q1</td>
<td>-</td>
<td>0.000</td>
<td>0.727</td>
<td>-</td>
<td>0.000</td>
<td>0.563</td>
</tr>
<tr>
<td>EDF-Q2</td>
<td>-</td>
<td>0.000</td>
<td>0.759</td>
<td>-</td>
<td>0.000</td>
<td>0.641</td>
</tr>
<tr>
<td>EDF-Q3</td>
<td>-</td>
<td>0.000</td>
<td>0.739</td>
<td>-</td>
<td>0.000</td>
<td>0.528</td>
</tr>
<tr>
<td>EDF-Q4</td>
<td>-</td>
<td>0.000</td>
<td>0.704</td>
<td>-</td>
<td>0.000</td>
<td>0.439</td>
</tr>
<tr>
<td>EDF-Q5</td>
<td>-</td>
<td>0.000</td>
<td>0.685</td>
<td>-</td>
<td>0.000</td>
<td>0.420</td>
</tr>
<tr>
<td>Standard & EDF-Q1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.809</td>
<td>0.297</td>
<td>0.000</td>
<td>0.585</td>
</tr>
<tr>
<td>Standard & EDF-Q2</td>
<td>0.016</td>
<td>0.000</td>
<td>0.817</td>
<td>0.128</td>
<td>0.000</td>
<td>0.679</td>
</tr>
<tr>
<td>Standard & EDF-Q3</td>
<td>0.000</td>
<td>0.000</td>
<td>0.816</td>
<td>0.000</td>
<td>0.000</td>
<td>0.645</td>
</tr>
<tr>
<td>Standard & EDF-Q4</td>
<td>0.000</td>
<td>0.000</td>
<td>0.795</td>
<td>0.021</td>
<td>0.000</td>
<td>0.552</td>
</tr>
<tr>
<td>Standard & EDF-Q5</td>
<td>0.000</td>
<td>0.000</td>
<td>0.791</td>
<td>0.015</td>
<td>0.000</td>
<td>0.500</td>
</tr>
<tr>
<td>Memo: None</td>
<td>-</td>
<td>-</td>
<td>0.537</td>
<td>-</td>
<td>-</td>
<td>0.042</td>
</tr>
</tbody>
</table>
Out-of-Sample Predictive Power

(Sample period: Feb1990–Sep2008; 12-month forecast horizon)

<table>
<thead>
<tr>
<th>Credit Spreads</th>
<th>Nonfarm Employment (EP)</th>
<th></th>
<th></th>
<th>Industrial Production (IP)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSFE</td>
<td>Ratio</td>
<td>Pr ></td>
<td>S</td>
<td></td>
<td>RMSFE</td>
</tr>
<tr>
<td>Standard</td>
<td>1.113</td>
<td>-</td>
<td>-</td>
<td>3.676</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EDF-Q1</td>
<td>0.693</td>
<td>0.387</td>
<td>0.002</td>
<td>2.087</td>
<td>0.323</td>
<td>0.000</td>
</tr>
<tr>
<td>EDF-Q2</td>
<td>0.667</td>
<td>0.359</td>
<td>0.001</td>
<td>2.004</td>
<td>0.297</td>
<td>0.000</td>
</tr>
<tr>
<td>EDF-Q3</td>
<td>0.740</td>
<td>0.442</td>
<td>0.000</td>
<td>2.279</td>
<td>0.384</td>
<td>0.000</td>
</tr>
<tr>
<td>EDF-Q4</td>
<td>0.902</td>
<td>0.659</td>
<td>0.094</td>
<td>2.704</td>
<td>0.541</td>
<td>0.004</td>
</tr>
<tr>
<td>EDF-Q5</td>
<td>0.872</td>
<td>0.613</td>
<td>0.092</td>
<td>2.574</td>
<td>0.490</td>
<td>0.001</td>
</tr>
<tr>
<td>Standard & EDF-Q1</td>
<td>0.827</td>
<td>0.551</td>
<td>-</td>
<td>2.571</td>
<td>0.489</td>
<td>-</td>
</tr>
<tr>
<td>Standard & EDF-Q2</td>
<td>0.816</td>
<td>0.537</td>
<td>-</td>
<td>2.238</td>
<td>0.371</td>
<td>-</td>
</tr>
<tr>
<td>Standard & EDF-Q3</td>
<td>0.814</td>
<td>0.535</td>
<td>-</td>
<td>2.376</td>
<td>0.418</td>
<td>-</td>
</tr>
<tr>
<td>Standard & EDF-Q4</td>
<td>0.869</td>
<td>0.609</td>
<td>-</td>
<td>2.686</td>
<td>0.539</td>
<td>-</td>
</tr>
<tr>
<td>Standard & EDF-Q5</td>
<td>0.864</td>
<td>0.602</td>
<td>-</td>
<td>2.948</td>
<td>0.643</td>
<td>-</td>
</tr>
</tbody>
</table>

Memo: None 1.115 - - 3.882 - -
Structural Factor Model (FAVAR)

- Use a structural factor model to identify a credit market shock.
- FAVAR specification:
 - State-space equation:
 \[
 \begin{bmatrix}
 F_{1t} \\
 F_{2t}
 \end{bmatrix} = \Phi(L) \begin{bmatrix}
 F_{1,t-1} \\
 F_{2,t-1}
 \end{bmatrix} + \begin{bmatrix}
 \epsilon_{1t} \\
 \epsilon_{2t}
 \end{bmatrix}
 \]
 - Observation equation:
 \[
 \begin{bmatrix}
 X_{1t} \\
 X_{2t}
 \end{bmatrix} = \begin{bmatrix}
 \Lambda_{11} & \Lambda_{21} \\
 \Lambda_{21} & \Lambda_{22}
 \end{bmatrix} \begin{bmatrix}
 F'_{1t} \\
 F'_{2t}
 \end{bmatrix} + \begin{bmatrix}
 \nu_{1t} \\
 \nu_{2t}
 \end{bmatrix}
 \]
Estimation and Identification

- Observable variables and factors can be divided into 2 groups:
 - **Group 1:** variables (X_{1t}) and factors (F_{1t}) related to the real, nominal, and the financial side of the economy
 - **Group 2:** variables (X_{2t}) and factors (F_{2t}) pertaining to the corporate bond market
4-step Estimation Procedure:

- Extract F_{1t} as the first k_1 principle components of X_{1t}
- Regress X_{2t} on F_{1t} and take the residuals \hat{E}_t
- Extract F_2 as the first k_2 principle components of \hat{E}_t
- Estimate matrices of factor loadings ($\Lambda_{11}, \Lambda_{21}, \Lambda_{22}$) from the measurement equation by regression (imposing the restriction that $\Lambda_{12} = 0$)
Identifying credit market shocks:

- Impose identification on factor model.
- Recursive identification scheme: F_{2t} orthogonal to F_{1t}
- This is equivalent to ordering F_{2t} last in the Cholesky decomposition of $\Sigma_\epsilon = E(\epsilon\epsilon')$
Specification

- Group 1 variables (X_{1t}):
 - **Economic Activity** (11): unemployment rate, employment growth; industrial production; durable and nondurable goods orders, consumer spending, etc.
 - **Inflation Indicators** (6): CPI, core CPI, PPI, core PPI, commodity and oil prices (WTI)
 - **Real Interest Rates** (7): funds rate, Treasury yields (6-month, 1-year, . . . , 10-year)
 - **Financial Asset Indicators** (12): excess market return, excess equity returns by EDF quintile, Fama-French factors (HML, SMB) option-implied volatilities on equity prices and short- and long-term interest rates, foreign exchange value of the dollar

- Group 2 variables (X_{2t}):
 - EDF-based portfolios of credit spreads (20)

- Baseline specification: $k_1 = 4$, $k_2 = 2$, $p = 6$.
Macroeconomic and Financial Factors

Factor 1

Factor 2

Factor 3

Factor 4
Credit Factors

Factor 1

Factor 2

Std. deviations

NBER Peak

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3
Response of Corporate Bond Spreads

Short maturity credit spreads by EDF quintile*
- Percentage points
- Months after shock

Intermediate maturity credit spreads by EDF quintile*
- Percentage points
- Months after shock

Long maturity credit spreads by EDF quintile*
- Percentage points
- Months after shock

Very long maturity credit spreads by EDF quintile*
- Percentage points
- Months after shock

* Bonds with term to maturity under 3 years.
* Bonds with term to maturity 3–7 years.
* Bonds with term to maturity 7–15 years.
* Bonds with term to maturity above 15 years.
Response of Selected Variables

- Industrial production
- Core CPI
- Real federal funds rate
- Real 10-year Treasury yield
- Cumulative excess stock market return
- S&P 500 implied volatility (VIX)
- Cumulative excess stock return EDF Quintile 1
- Cumulative excess stock return EDF Quintile 5
Forecast Error Variance Decomposition

- Industrial production
- Core CPI
- Real federal funds rate
- Real 10-year Treasury yield
- Cumulative excess stock market return
- S&P 500 implied volatility (VIX)
- Cumulative excess stock return EDF Quintile 1
- Cumulative excess stock return EDF Quintile 5
Summary of Results

- Predictive content of credit spreads is concentrated in long-maturity corporate bonds issued by medium-risk firms.
- Shocks to medium-risk, long-maturity credit spreads account for a significant fraction of the variance in economic activity at 1–2 year horizon over the 1990–2008 period.
Credit Spreads and Economic Fluctuations

- Predictive content could reflect disruption in the supply of credit stemming from:
 - Worsening of the quality of borrowers’ balance sheets
 (Kiyotaki & Moore [1997]; Bernanke, Gertler & Gilchrist [1999]; Hall [2010])
 - Deterioration in the health of financial intermediaries
 (Gertler & Karadi [2009]; Gertler & Kiyotaki [2009])

- Predictive content could reflect the ability of the corporate bond market to signal more accurately than the stock market a decline in economic fundamentals.
 (Philippon [2009])
Credit Spreads and Economic Fluctuations

- Predictive content could reflect disruption in the supply of credit stemming from:
 - Worsening of the quality of borrowers’ balance sheets
 (Kiyotaki & Moore [1997]; Bernanke, Gertler & Gilchrist [1999]; Hall [2010])
 - Deterioration in the health of financial intermediaries
 (Gertler & Karadi [2009]; Gertler & Kiyotaki [2009])

- Predictive content could reflect the ability of the corporate bond market to signal more accurately than the stock market a decline in economic fundamentals.
 (Philippon [2009])
• Re-examine the evidence on the relationship between credit spreads and economic activity over the 1973–2010 period.

• Use prices of individual securities to construct a credit spread with a high information content for future economic activity.

• Decompose the predictive content of credit spread into:
 ▶ Component capturing countercyclical movements in expected defaults
 ▶ Component—the excess bond premium (EBP)—representing cyclical changes in the relationship between expected default risk and credit spreads

• Decomposition motivated in part by the “credit spread puzzle.”
 (Elton et al. [2009]; Collin-Dufresne et al. [2001]; Driessen [2005])
Gilchrist and Zakrajsek (2012)

- Re-examine the evidence on the relationship between credit spreads and economic activity over the 1973–2010 period.
- Use prices of individual securities to construct a credit spread with a high information content for future economic activity.
- Decompose the predictive content of credit spread into:
 - Component capturing countercyclical movements in expected defaults
 - Component—the excess bond premium (EBP)—representing cyclical changes in the relationship between expected default risk and credit spreads
- Decomposition motivated in part by the “credit spread puzzle.”
 (Elton et al. [2009]; Collin-Dufresne et al. [2001]; Driessen [2005])
• Re-examine the evidence on the relationship between credit spreads and economic activity over the 1973–2010 period.

• Use prices of individual securities to construct a credit spread with a high information content for future economic activity.

• Decompose the predictive content of credit spread into:
 ▶ Component capturing countercyclical movements in expected defaults
 ▶ Component—the excess bond premium (EBP)—representing cyclical changes in the relationship between expected default risk and credit spreads

• Decomposition motivated in part by the “credit spread puzzle.”
 (Elton et al. [2009]; Collin-Dufresne et al. [2001]; Driessen [2005])
Main Findings

• Predictive content of credit spreads for economic activity is almost entirely due to movements in the EBP.

• Unanticipated increases in the EBP:
 ▶ Lead to significant and protracted declines in economic activity and the stock market
 ▶ Account for a substantial fraction of the variation in real activity and stock market at business cycle frequencies
Main Findings

- Predictive content of credit spreads for economic activity is almost entirely due to movements in the EBP.
- Unanticipated increases in the EBP:
 - Lead to significant and protracted declines in economic activity and the stock market
 - Account for a substantial fraction of the variation in real activity and stock market at business cycle frequencies
Bond-Level Data

- CRSP/Compustat panel of U.S. nonfinancial firms matched with prices of outstanding corporate bonds traded in the secondary market.

- Lehman/Warga & Merrill Lynch issue-level data:
 - Sample period: Jan1973–Jun2010 (month-end)
 - 1,116 U.S. nonfinancial issuers
 - 5,942 senior unsecured (fixed-coupon) bond issues
 - 338,615 observations
 - Information: price, issue date, maturity, coupon, issue size, etc.
• CRSP/Compustat panel of U.S. nonfinancial firms matched with prices of outstanding corporate bonds traded in the secondary market.

• Lehman/Warga & Merrill Lynch issue-level data:
 ▶ Sample period: Jan1973–Jun2010 (month-end)
 ▶ 1,116 U.S. nonfinancial issuers
 ▶ 5,942 senior unsecured (fixed-coupon) bond issues
 ▶ 338,615 observations
 ▶ Information: price, issue date, maturity, coupon, issue size, etc.
CONSTRUCTING CREDIT SPREADS

- Construct a risk-free security that replicates the cash-flows of the corporate debt instrument.
- Price of a bond with cash-flows: \(\{c(s): s = 1, 2, \ldots, S\} \)

\[
P_t = \sum_{s=1}^{S} c(s)D(t_s), \quad D(t) = e^{-r_t t}
\]

- \(P_t^f \) = price of a corresponding risk-free security
 - Cash-flows discounted using continuously-compounded zero-coupon Treasury yields in period \(t \)

- Credit spread: \(S_{it}[k] = y_{it}[k] - y_t^f[k] \)
 - \(y_{it}[k] = \text{YTM of corporate bond } k \) (issued by firm \(i \))
 - \(y_t^f[k] = \text{YTM of the corresponding risk-free bond} \)
CONSTRUCTING CREDIT SPREADS

• Construct a risk-free security that replicates the cash-flows of the corporate debt instrument.

• Price of a bond with cash-flows: \(\{c(s): s = 1, 2, \ldots, S\} \)

\[
P_t = \sum_{s=1}^{S} c(s)D(t_s), \quad D(t) = e^{-r_t t}
\]

• \(P_t^f \) = price of a corresponding risk-free security
 ▶ Cash-flows discounted using continuously-compounded zero-coupon Treasury yields in period \(t \)

• Credit spread: \(S_{it}[k] = y_{it}[k] - y_t^f[k] \)
 ▶ \(y_{it}[k] \) = YTM of corporate bond \(k \) (issued by firm \(i \))
 ▶ \(y_t^f[k] \) = YTM of the corresponding risk-free bond
Constructing Credit Spreads

- Construct a risk-free security that replicates the cash-flows of the corporate debt instrument.
- Price of a bond with cash-flows: \(\{c(s): s = 1, 2, \ldots, S\} \)

\[
P_t = \sum_{s=1}^{S} c(s) D(t_s), \quad D(t) = e^{-r_t t}
\]

- \(P_t^f \) = price of a corresponding risk-free security
 - Cash-flows discounted using continuously-compounded zero-coupon Treasury yields in period \(t \)
- Credit spread: \(S_{it}[k] = y_{it}[k] - y_t^f[k] \)
 - \(y_{it}[k] \) = YTM of corporate bond \(k \) (issued by firm \(i \))
 - \(y_t^f[k] \) = YTM of the corresponding risk-free bond
SUMMARY STATISTICS OF BOND CHARACTERISTICS

(Jan1973–Jun2010)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>P50</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of bonds per firm/month</td>
<td>2.89</td>
<td>3.54</td>
<td>1.00</td>
<td>2.00</td>
<td>74.0</td>
</tr>
<tr>
<td>Mkt. value of issue ($mil.)</td>
<td>317.9</td>
<td>319.7</td>
<td>1.22</td>
<td>236.1</td>
<td>5,628</td>
</tr>
<tr>
<td>Maturity at issue (years)</td>
<td>13.0</td>
<td>9.3</td>
<td>1.0</td>
<td>10.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Term to maturity (years)</td>
<td>11.3</td>
<td>8.5</td>
<td>1.0</td>
<td>8.2</td>
<td>30.0</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>6.48</td>
<td>3.19</td>
<td>0.91</td>
<td>6.08</td>
<td>15.8</td>
</tr>
<tr>
<td>Credit rating (S&P)</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>BBB1</td>
<td>AAA</td>
</tr>
<tr>
<td>Coupon rate (pct.)</td>
<td>7.32</td>
<td>2.00</td>
<td>1.70</td>
<td>7.00</td>
<td>17.5</td>
</tr>
<tr>
<td>Nominal effective yield (pct.)</td>
<td>7.73</td>
<td>3.23</td>
<td>0.60</td>
<td>7.19</td>
<td>44.3</td>
</tr>
<tr>
<td>Credit spread (bps.)</td>
<td>203</td>
<td>281</td>
<td>5</td>
<td>116</td>
<td>3,499</td>
</tr>
</tbody>
</table>

- **GZ spread**: cross-sectional average of credit spreads in period t

\[S_{t}^{GZ} = \frac{1}{N_{t}} \sum_{i} \sum_{k} S_{it}[k] \]
Summary Statistics of Bond Characteristics

(Jan1973–Jun2010)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>P50</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of bonds per firm/month</td>
<td>2.89</td>
<td>3.54</td>
<td>1.00</td>
<td>2.00</td>
<td>74.0</td>
</tr>
<tr>
<td>Mkt. value of issue ($mil.)</td>
<td>317.9</td>
<td>319.7</td>
<td>1.22</td>
<td>236.1</td>
<td>5,628</td>
</tr>
<tr>
<td>Maturity at issue (years)</td>
<td>13.0</td>
<td>9.3</td>
<td>1.0</td>
<td>10.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Term to maturity (years)</td>
<td>11.3</td>
<td>8.5</td>
<td>1.0</td>
<td>8.2</td>
<td>30.0</td>
</tr>
<tr>
<td>Duration (years)</td>
<td>6.48</td>
<td>3.19</td>
<td>0.91</td>
<td>6.08</td>
<td>15.8</td>
</tr>
<tr>
<td>Credit rating (S&P)</td>
<td>-</td>
<td>-</td>
<td>D</td>
<td>BBB1</td>
<td>AAA</td>
</tr>
<tr>
<td>Coupon rate (pct.)</td>
<td>7.32</td>
<td>2.00</td>
<td>1.70</td>
<td>7.00</td>
<td>17.5</td>
</tr>
<tr>
<td>Nominal effective yield (pct.)</td>
<td>7.73</td>
<td>3.23</td>
<td>0.60</td>
<td>7.19</td>
<td>44.3</td>
</tr>
<tr>
<td>Credit spread (bps.)</td>
<td>203</td>
<td>281</td>
<td>5</td>
<td>116</td>
<td>3,499</td>
</tr>
</tbody>
</table>

- **GZ spread**: cross-sectional average of credit spreads in period t

\[
S_t^{GZ} = \frac{1}{N_t} \sum_i \sum_k S_{it}[k]
\]
SELECTED CORPORATE CREDIT SPREADS

(Jan1973–Jun2010)
Predictive Content of Credit Spreads

- Forecasting specification (h-periods ahead):

$$ \nabla^h Y_{t+h} = \alpha + \sum_{i=0}^{p} \beta_i \nabla Y_{t-i} + \gamma_1 TS_t + \gamma_2 RFF_t + \gamma_3 CS_t + \epsilon_{t+h} $$

 - $\nabla^h Y_{t+h} \equiv \frac{c}{h} \ln \left(\frac{Y_{t+h}}{Y_t} \right)$, where (c = 400/1, 200)
 - Y_t = measure of economic activity
 - TS_t = term spread (Treas3mo − Treas10yr)
 - RFF_t = real federal funds rate (nominal FFR − core PCE infl.)
 - CS_t = credit spread (paper-bill, Baa-Aaa, GZ)

- Estimated by OLS w/ Hodrick (1992) SEs.
Economic Indicator: Payroll Employment

(Sample period: Jan1973–Jun2010)

<table>
<thead>
<tr>
<th>Financial Indicator</th>
<th>Forecast Horizon: 3 months</th>
<th>Forecast Horizon: 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term spread</td>
<td>-0.082 -0.087 -0.086 -0.099</td>
<td>-0.238 -0.239 -0.219 -0.267</td>
</tr>
<tr>
<td></td>
<td>[1.94] [2.05] [2.06] [2.39]</td>
<td>[4.82] [4.79] [4.71] [5.54]</td>
</tr>
<tr>
<td>Real FFR</td>
<td>-0.083 -0.011 -0.077 -0.132</td>
<td>-0.125 -0.111 -0.157 -0.208</td>
</tr>
<tr>
<td></td>
<td>[1.82] [0.18] [1.67] [2.84]</td>
<td>[2.38] [1.75] [3.15] [4.09]</td>
</tr>
<tr>
<td>CP-bill spread</td>
<td>-0.108 - - -0.022 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[2.40]</td>
<td>[0.64]</td>
</tr>
<tr>
<td>Baa–Aaa spread</td>
<td>- -0.020 - 0.111 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[0.52]</td>
<td>[2.31]</td>
</tr>
<tr>
<td>GZ spread</td>
<td>- - -0.272 -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[6.61]</td>
<td>[12.4]</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.661 0.667 0.660 0.705</td>
<td>0.448 0.447 0.456 0.577</td>
</tr>
</tbody>
</table>

NOTE: Parameter estimates are standardized; absolute t-statistics in brackets.
Economic Indicator: Real GDP

(Sample period: 1973:Q1–2010:Q2)

<table>
<thead>
<tr>
<th>Financial Indicator</th>
<th>Forecast Horizon: 1 quarter</th>
<th>Forecast Horizon: 4 quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term spread</td>
<td>-0.143 1.38</td>
<td>-0.175 1.63</td>
</tr>
<tr>
<td>Real FFR</td>
<td>-0.103 0.97</td>
<td>0.110 0.76</td>
</tr>
<tr>
<td>CP-bill spread</td>
<td>- 2.33</td>
<td>-0.254</td>
</tr>
<tr>
<td>Baa–Aaa spread</td>
<td>- 0.51</td>
<td>-0.059</td>
</tr>
<tr>
<td>GZ spread</td>
<td>- 3.98</td>
<td>-</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.176 3.98</td>
<td>0.191</td>
</tr>
</tbody>
</table>

Note: Parameter estimates are standardized; absolute t-statistics in brackets.

FRAMEWORK

- **Empirical bond-pricing model:**

 \[
 \ln S_{it}[k] = \beta_0 + \beta_1 DFT_{it} + \beta_2 Z_{it}[k] + \epsilon_{it}[k]
 \]

 - \(S_{it}[k] \) = credit spread on bond \(k \) (issued by firm \(i \))
 - \(DFT_{it} \) = measure of expected default risk for firm \(i \)
 - \(Z_{it}[k] \) = bond-specific control variables
 - \(\epsilon_{it}[k] \) = “pricing error”

- **Estimated by OLS w/ two-way clustered SEs.**
Credit Spread Decomposition

- Predicted level of the spread for bond k:

$$\hat{S}_{it}[k] = \hat{\theta} \tilde{S}_{it}[k]$$

 $\tilde{S}_{it}[k] = \exp(\hat{\beta}_0 + \hat{\beta}_1 DFT_{it} + \hat{\beta}'_3 Z_{it})$

 $\hat{\theta}$ obtained from pooled regression: $S_{it}[k] = \theta \tilde{S}_{it}[k] + \nu_{it}[k]$

- Predicted GZ spread:

$$\hat{S}_{GZ}^t = \frac{1}{N_t} \sum_i \sum_k \hat{S}_{it}[k]$$

- The excess bond premium:

$$EBP_t = S_{GZ}^t - \hat{S}_{GZ}^t$$
Credit Spread Decomposition

- Predicted level of the spread for bond k:

$$\hat{S}_{it}[k] = \hat{\theta}\tilde{S}_{it}[k]$$

 - $\tilde{S}_{it}[k] = \exp(\hat{\beta}_0 + \hat{\beta}_1 DFT_{it} + \hat{\beta}_3' Z_{it})$
 - $\hat{\theta}$ obtained from pooled regression: $S_{it}[k] = \theta\tilde{S}_{it}[k] + \nu_{it}[k]$

- Predicted GZ spread:

$$\hat{S}_{GZ}^t = \frac{1}{N_t} \sum_i \sum_k \hat{S}_{it}[k]$$

- The excess bond premium:

$$EBP_t = S_{GZ}^t - \hat{S}_{GZ}^t$$
Merton distance-to-default (DD) model:

- Value of the firm \(V \) follows a geometric Brownian motion

\[
dV = \mu_V V \, dt + \sigma_V V \, dW
\]

- Firm has just issued a discount bond \(D \) maturing in \(T \) periods

Distance-to-default (1-year horizon):

\[
DD = \frac{\ln(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}
\]

- \(V, \mu_V, \sigma_V \) estimated using data on \(E, D, \mu_E, \sigma_E \) (Bharath & Shumway [2008])

- Sample: U.S. nonfinancial corporate sector (\(\approx 11,000 \) firms)
Default Risk

- Merton distance-to-default (DD) model:
 - Value of the firm (V) follows a geometric Brownian motion
 \[dV = \mu_V V dt + \sigma_V V dW \]
 - Firm has just issued a discount bond (D) maturing in T periods

- Distance-to-default (1-year horizon):
 \[DD = \frac{\ln(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V} \]
 - V, μ_V, σ_V estimated using data on E, D, μ_E, σ_E
 (Bharath & Shumway [2008])

- Sample: U.S. nonfinancial corporate sector ($\approx 11,000$ firms)
Default Risk

- **Merton distance-to-default (DD) model:**
 - Value of the firm \(V \) follows a geometric Brownian motion

 \[
 dV = \mu_V V \, dt + \sigma_V V \, dW
 \]
 - Firm has just issued a discount bond \(D \) maturing in \(T \) periods

- **Distance-to-default (1-year horizon):**

 \[
 DD = \frac{\ln(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V}
 \]

 - \(V, \mu_V, \sigma_V \) estimated using data on \(E, D, \mu_E, \sigma_E \)

 (Bharath & Shumway [2008])

- **Sample:** U.S. nonfinancial corporate sector (\(\approx 11,000 \) firms)
Distance to Default

(Jan1973–Jun2010)

Monthly

Nonfinancial corporate sector (median)
Median
Interquartile range

STD. deviations

0 4 8 12 16 20

STD. deviations

0 4 8 12 16 20

Distance to Default and Actual Default Rate

(Jan1981–Sep2010)
Comparing Measures of Default Risk

(Sample period: Feb1990–Jun2010)

EDF Specification

| EDF_{it} | 0.098 (0.006) | 0.094 (0.005) | 0.060 (0.004) | 0.157 (0.010) |
| EDF_{it}^2 | - | - | - | -0.004 (0.000) |

Adj. R^2	0.396	0.437	0.631	0.648
Industry Effects	-	0.000	0.000	0.000
Credit Rating Effects	-	-	0.000	0.000

DD Specification

| $-DD_{it}$ | 0.127 (0.005) | 0.124 (0.005) | 0.084 (0.005) | 0.197 (0.011) |
| $(−DD_{it})^2$ | - | - | - | 0.007 (0.001) |

Adj. R^2	0.522	0.546	0.686	0.710
Industry Effects	-	0.000	0.000	0.000
Credit Rating Effects	-	-	0.000	0.000

Note: Standard errors in parentheses.
CALLABLE CORPORATE DEBT

(Jan 1973–Jun 2010)
Option-Adjusted Excess Bond Premium

- Movements in risk-free rates—by changing the value of embedded call options—have an independent effect on prices of callable bonds. (Duffee [1998])
- Prices of callable bonds are more sensitive to uncertainty regarding the future course of interest rates.
- Option-adjusted EBP:
 - Include call-option indicator in the bond-pricing regression
 - Spreads on callable bonds are allowed to depend on the level, slope, and curvature factors, as well as on interest rate volatility
Option-Adjusted Excess Bond Premium

- Movements in risk-free rates—by changing the value of embedded call options—have an independent effect on prices of callable bonds.

 (Duffee [1998])

- Prices of callable bonds are more sensitive to uncertainty regarding the future course of interest rates.

- Option-adjusted EBP:
 - Include call-option indicator in the bond-pricing regression
 - Spreads on callable bonds are allowed to depend on the level, slope, and curvature factors, as well as on interest rate volatility
OPTION-ADJUSTED EXCESS BOND PREMIUM

- Movements in risk-free rates—by changing the value of embedded call options—have an independent effect on prices of callable bonds. ([Duffee [1998]](Duffee%20[1998]))

- Prices of callable bonds are more sensitive to uncertainty regarding the future course of interest rates.

- **Option-adjusted EBP:**
 - Include call-option indicator in the bond-pricing regression
 - Spreads on callable bonds are allowed to depend on the level, slope, and curvature factors, as well as on interest rate volatility
SELECTED MARGINAL EFFECTS BY TYPE OF BOND

(Sample period: Jan1973–Jun2010)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Est.</th>
<th>S.E.</th>
<th>Est.</th>
<th>S.E.</th>
<th>Mean</th>
<th>STD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance-to-default: $-DD_{it}$</td>
<td>0.230</td>
<td>0.012</td>
<td></td>
<td></td>
<td>0.159</td>
<td>0.008</td>
</tr>
<tr>
<td>Callable Term structure: LEV_t</td>
<td></td>
<td></td>
<td>-0.742</td>
<td>0.052</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Callable Term structure: SLP_t</td>
<td></td>
<td></td>
<td>-0.165</td>
<td>0.032</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Callable Term structure: CRV_t</td>
<td></td>
<td></td>
<td>-0.071</td>
<td>0.037</td>
<td>0.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Callable Term structure: VOL_t (%)</td>
<td></td>
<td></td>
<td>0.253</td>
<td>0.040</td>
<td>1.862</td>
<td>1.242</td>
</tr>
</tbody>
</table>
ACTUAL AND PREDICTED CREDIT SPREADS

(Jan1973–Jun2010)
OPTION-ADJUSTED EXCESS BOND PREMIUM

(Jan1973–Jun2010)
Excess Bond Premium and Economic Activity

(Sample period: Jan1973–Jun2010)

<table>
<thead>
<tr>
<th>Financial Indicator</th>
<th>Forecast Horizon: 3 months</th>
<th>Forecast Horizon: 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EMP</td>
<td>UER</td>
</tr>
<tr>
<td>Term spread</td>
<td>-0.102</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>[2.47]</td>
<td>[6.63]</td>
</tr>
<tr>
<td>Real FFR</td>
<td>-0.076</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>[1.66]</td>
<td>[2.16]</td>
</tr>
<tr>
<td>Predicted OA-GZ spread</td>
<td>-0.158</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>[4.19]</td>
<td>[5.95]</td>
</tr>
<tr>
<td>Excess bond premium</td>
<td>-0.201</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>[6.80]</td>
<td>[14.0]</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.704</td>
<td>0.407</td>
</tr>
</tbody>
</table>

NOTE: Parameter estimates are standardized; absolute t-statistics in brackets.
Excess Bond Premium and Real GDP
(Sample period: 1973:Q1–2010:Q2)

<table>
<thead>
<tr>
<th>Financial Indicator</th>
<th>Forecast Horizon: 1 quarter</th>
<th>Forecast Horizon: 4 quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term spread</td>
<td>-0.213</td>
<td>-0.231</td>
</tr>
<tr>
<td></td>
<td>[2.07]</td>
<td>[3.35]</td>
</tr>
<tr>
<td>Real FFR</td>
<td>-0.084</td>
<td>-0.090</td>
</tr>
<tr>
<td></td>
<td>[0.79]</td>
<td>[0.66]</td>
</tr>
<tr>
<td>Predicted OA-GZ spread</td>
<td>-0.123</td>
<td>-0.166</td>
</tr>
<tr>
<td></td>
<td>[1.69]</td>
<td>[1.68]</td>
</tr>
<tr>
<td>Excess bond premium</td>
<td>-0.290</td>
<td>-0.238</td>
</tr>
<tr>
<td></td>
<td>[3.91]</td>
<td>[2.96]</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.239</td>
<td>0.307</td>
</tr>
</tbody>
</table>

Note: Parameter estimates are standardized; absolute t-statistics in brackets.
Excess Bond Premium and AD-Components

(Sample period: 1973:Q1–2010:Q2)

<table>
<thead>
<tr>
<th>Financial Indicator</th>
<th>C-NDS</th>
<th>C-D</th>
<th>I-RES</th>
<th>I-ES</th>
<th>I-HT</th>
<th>I-NRS</th>
<th>INV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term spread</td>
<td>-0.395</td>
<td>-0.511</td>
<td>-0.529</td>
<td>-0.378</td>
<td>-0.085</td>
<td>0.329</td>
<td>-0.136</td>
</tr>
<tr>
<td></td>
<td>[3.79]</td>
<td>[2.64]</td>
<td>[5.40]</td>
<td>[3.41]</td>
<td>[0.76]</td>
<td>[2.78]</td>
<td>[1.65]</td>
</tr>
<tr>
<td>Real FFR</td>
<td>0.128</td>
<td>0.110</td>
<td>0.037</td>
<td>-0.137</td>
<td>-0.158</td>
<td>-0.175</td>
<td>-0.059</td>
</tr>
<tr>
<td></td>
<td>[1.35]</td>
<td>[0.65]</td>
<td>[0.33]</td>
<td>[1.42]</td>
<td>[1.16]</td>
<td>[1.49]</td>
<td>[0.68]</td>
</tr>
<tr>
<td>Predicted OA-GZ spread</td>
<td>-0.144</td>
<td>0.088</td>
<td>-0.083</td>
<td>-0.147</td>
<td>-0.331</td>
<td>-0.141</td>
<td>-0.225</td>
</tr>
<tr>
<td></td>
<td>[1.67]</td>
<td>[0.68]</td>
<td>[1.14]</td>
<td>[1.60]</td>
<td>[3.51]</td>
<td>[1.64]</td>
<td>[3.40]</td>
</tr>
<tr>
<td>Excess bond premium</td>
<td>-0.152</td>
<td>-0.075</td>
<td>0.042</td>
<td>-0.465</td>
<td>-0.301</td>
<td>-0.553</td>
<td>-0.603</td>
</tr>
<tr>
<td></td>
<td>[2.15]</td>
<td>[0.56]</td>
<td>[0.60]</td>
<td>[4.22]</td>
<td>[3.24]</td>
<td>[5.35]</td>
<td>[8.53]</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.366</td>
<td>0.193</td>
<td>0.376</td>
<td>0.418</td>
<td>0.386</td>
<td>0.533</td>
<td>0.554</td>
</tr>
</tbody>
</table>

NOTE: Parameter estimates are standardized; absolute *t*-statistics in brackets.
Robustness Check: 1985–2010 Period

- Apparent decline in macroeconomic volatility since the mid-1980s:
 - Changes in the conduct of monetary policy
 - Changes in government policy (e.g., demise of Regulation Q)
 - Rapid growth of securities markets

- Changes in the structure of the corporate bond market:
 - Re-emergence of the market for speculative-grade debt
 - Decline in information costs associated with credit-risk analysis
 - Changes in investors’ risk perceptions
Robustness Check: 1985–2010 Period

- Apparent decline in macroeconomic volatility since the mid-1980s:
 - Changes in the conduct of monetary policy
 - Changes in government policy (e.g., demise of Regulation Q)
 - Rapid growth of securities markets

- Changes in the structure of the corporate bond market:
 - Re-emergence of the market for speculative-grade debt
 - Decline in information costs associated with credit-risk analysis
 - Changes in investors’ risk perceptions
Excess Bond Premium and Real GDP

(Sample period: 1985:Q1–2010:Q2)

<table>
<thead>
<tr>
<th>Financial Indicator</th>
<th>Forecast Horizon: 1 quarter</th>
<th>Forecast Horizon: 4 quarters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term spread</td>
<td>-0.308</td>
<td>-0.449</td>
</tr>
<tr>
<td></td>
<td>[2.32]</td>
<td>[3.35]</td>
</tr>
<tr>
<td>Real FFR</td>
<td>0.384</td>
<td>0.360</td>
</tr>
<tr>
<td></td>
<td>[2.08]</td>
<td>[2.17]</td>
</tr>
<tr>
<td>Predicted OA-GZ spread</td>
<td>0.101</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>[0.86]</td>
<td>[0.58]</td>
</tr>
<tr>
<td>Excess bond premium</td>
<td>-0.423</td>
<td>-0.436</td>
</tr>
<tr>
<td></td>
<td>[3.25]</td>
<td>[3.86]</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.357</td>
<td>0.275</td>
</tr>
</tbody>
</table>

NOTE: Parameter estimates are standardized; absolute t-statistics in brackets.
Macroeconomic Implications

• 8-variable VAR(2) specification:
 ▶ log-difference of real PCE
 ▶ log-difference of real BFI
 ▶ log-difference of real GDP
 ▶ GDP price inflation
 ▶ 10-year (nominal) Treasury yield
 ▶ effective federal funds rate
 ▶ log-difference of the (value-weighted) price-dividend ratio
 ▶ option-adjusted excess bond premium

• Estimation period: 1973:Q1–2010:Q2
• EBP shocks identified using the Cholesky decomposition.
Adverse EBP Shock

Macroeconomic Variables

![Graphs showing the impact of an adverse EBP shock on various macroeconomic variables such as Consumption, Investment, Output, and Prices, with shaded bands indicating 95-percent confidence intervals.](image)

NOTE: Shaded bands denote 95-percent confidence intervals.
Adverse EBP Shock

Financial Variables

![Graphs of financial variables](Image)

Note: Shaded bands denote 95-percent confidence intervals.
Forecast Error Variance Decomposition

Macroeconomic Variables

- **Consumption**
- **Investment**
- **Output**
- **Prices**

NOTE: Shaded bands denote 95-percent confidence intervals.
Forecast Error Variance Decomposition

Financial Variables

- **Price-dividend ratio**
- **10-year Treasury yield**
- **Federal funds rate**
- **Excess bond premium**

Note: Shaded bands denote 95-percent confidence intervals.
INTERPRETATION

- The EBP provides a timely gauge of credit-supply conditions.
- Increase in the EBP leads to an economic downturn vis-à-vis the financial accelerator mechanism.
- Financial shocks may also cause variation in the risk attitudes of the marginal investor pricing corporate bonds:
 - Corporate bond market is dominated by large institutional investors
 - These financial intermediaries face capital requirements
 - A shock to their financial capital makes them act in a more risk-averse manner
 - Shift in their risk attitudes leads to an increase in the EBP (He & Krishnamurthy [2010]; Adrian, Moench & Shin [2010])
INTERPRETATION

- The EBP provides a timely gauge of credit-supply conditions.
- Increase in the EBP leads to an economic downturn vis-à-vis the financial accelerator mechanism.
- Financial shocks may also cause variation in the risk attitudes of the marginal investor pricing corporate bonds:
 - Corporate bond market is dominated by large institutional investors
 - These financial intermediaries face capital requirements
 - A shock to their financial capital makes them act in a more risk-averse manner
 - Shift in their risk attitudes leads to an increase in the EBP
 (He & Krishnamurthy [2010]; Adrian, Moench & Shin [2010])
INTERPRETATION

- The EBP provides a timely gauge of credit-supply conditions.
- Increase in the EBP leads to an economic downturn vis-à-vis the financial accelerator mechanism.
- Financial shocks may also cause variation in the risk attitudes of the marginal investor pricing corporate bonds:
 - Corporate bond market is dominated by large institutional investors
 - These financial intermediaries face capital requirements
 - A shock to their financial capital makes them act in a more risk-averse manner
 - Shift in their risk attitudes leads to an increase in the EBP ([He & Krishnamurthy [2010]; Adrian, Moench & Shin [2010]])
EBP & Changes in Bank Lending Standards

(Jan1973–Sep2010)
EBP & FINANCIAL SECTOR PROFITABILITY
(Jan1973–Sep2010)
Evidence From Primary Dealers

- Primary Dealers (PDs): major banks and broker-dealers that trade in U.S. Government securities with the FRBNY:
 - By buying/selling securities for a fee and holding an inventory of securities PDs play a key role in financial markets
 - PDs are often highly leveraged and engage in active pro-cyclical management of leverage
- Collected monthly data on CDS spreads and equity valuations.
EBP & Financial Intermediary CDS Spreads
(Jan2003–Sep2010)

- Excess bond premium (left scale)
- Broker-dealers average 1-year CDS spread (right scale)

Lehman Bros. bankruptcy
Shocks to the Profitability of FIs

- 6-variable VAR(2) specification:
 - option-implied volatility on the S&P 500 (VIX)
 - excess (value-weighted) market return
 - excess (value-weighted) portfolio return of broker-dealers
 - average 1-year broker-dealer CDS spread
 - average 5-year broker-dealer CDS spread
 - option-adjusted excess bond premium
 - dummy for Sep2010 (Lehman Bros. bankruptcy)

- Estimation period: Jan2003–Sep2010

- Shocks to the profitability of FIs identified using the Cholesky decomposition.
Transmission of Profitability Shocks

NOTE: Shaded bands denote 95-percent confidence intervals.
• Information content of credit spreads reflects:
 ▶ Downside risk not well captured by other asset prices
 ▶ “Risk-aversion” of financial intermediaries

• Increases in spreads signal disruptions in credit markets that have important consequences for macroeconomic outcomes.

• Integrating asset pricing with macroeconomic models used in policy analysis is a necessary step to understanding the interaction between the financial sector and the real economy.
CONCLUDING REMARKS

• Information content of credit spreads reflects:
 ▶ Downside risk not well captured by other asset prices
 ▶ “Risk-aversion” of financial intermediaries

• Increases in spreads signal disruptions in credit markets that have important consequences for macroeconomic outcomes.

• Integrating asset pricing with macroeconomic models used in policy analysis is a necessary step to understanding the interaction between the financial sector and the real economy.
CONCLUDING REMARKS

• Information content of credit spreads reflects:
 ▶ Downside risk not well captured by other asset prices
 ▶ “Risk-aversion” of financial intermediaries

• Increases in spreads signal disruptions in credit markets that have important consequences for macroeconomic outcomes.

• Integrating asset pricing with macroeconomic models used in policy analysis is a necessary step to understanding the interaction between the financial sector and the real economy.
FGWZ(2012): MOTIVATION

- Forecasting economic activity in real time is hard.
- Amazingly little predictability beyond the current quarter: (Sims [2005]; Tulip [2005]; Faust & Wright [2009]; Edge & Gürkaynak [2011])
 - Greenbook four-quarter-ahead forecast of real GDP growth is no better that the unconditional mean.
- Estimated medium-scale DSGE models and complex statistical models cannot beat forecasts of output growth and inflation based on univariate autoregressions.
FGWZ (2012): Methodology

- Provides an evaluation of the marginal information of credit spreads in real-time economic forecasting.
- Utilizes portfolio credit spreads based on an extensive micro-level data set of secondary market bond prices. (Gilchrist, Yankov & Zakrajšek [2009]; Gilchrist & Zakrajšek [2011])
- Employs Bayesian Model Averaging (BMA) to forecast real-time measures of economic activity using portfolio credit spreads and many other asset market indicators:
 - BMA framework addresses model search and selection issues.
Measuring Credit Spreads & Default Risk

- Construct a risk-free security replicating the cash-flows of the corporate debt instrument:
 - Cash-flows discounted using continuously-compounded zero-coupon Treasury yields in period t.
- Measure default risk using the “distance-to-default:”
 \[\text{DD} = \frac{\ln(V/D) + (\mu_V - 0.5\sigma_V^2)}{\sigma_V} \]
 - V, μ_V, σ_V estimated using data on E, D, μ_E, σ_E.
 \[\text{(Bharath & Shumway [2008])} \]
Call Option Adjustment

- More than one-half of bonds in our sample are callable, on average.

- Movements in risk-free rates—by changing the value of embedded call options—have an independent effect on prices of callable bonds.

 (Duffee [1998])

- Use an empirical credit-spread model to construct "option-adjusted" spreads.

 (Gilchrist & Zakrajšek [2011])
AVERAGE CREDIT SPREADS
(Jan1986–Jun2010)

Nonfinancial firms

Monthly

- Option-adjusted credit spread
- Raw credit spread

Financial firms

Monthly

- Option-adjusted credit spread
- Raw credit spread
BOND, STOCK, AND DD PORTFOLIOS

Procedure:

- Sort bond issuers into categories based on the cross-sectional distribution of DDs in month \(t - 1 \).
- Within each DD-category, sort bonds into maturity categories.
- For each month \(t \) calculate:
 - Average credit spread within each DD/maturity category.
 - Average excess stock return within each DD category.
 - Average DD within each DD quartile.

Use the same procedure to construct stock and DD portfolios for all U.S. nonfinancial and financial corporations.
The BMA Setup

- \(n \) possible (linear) forecasting models:

\[
y_{t+h} = \alpha + \beta_i x_{it} + \sum_{j=1}^{p} \gamma_j y_{t-j} + \epsilon_{t+h}, \quad i = 1, \ldots, n
\]

- Priors:
 - All models are equally likely: \(P(M_i) = 1/n. \)
 - Priors for \(\alpha, \gamma_1, \ldots, \gamma_p, \sigma^2 \): proportional to \(1/\sigma. \)
 - \(g \)-prior for \(\beta_i \): \(N(0, \phi \sigma^2 (X_i'X_i)^{-1}) \).
The BMA Setup (cont.)

- Bayesian h-period-ahead forecast for model M_i:

$$
\tilde{y}_{T+h|T} = \hat{\alpha} + \tilde{\beta}_i x_{it} + \sum_{j=1}^{p} \hat{\gamma}_j y_{t-j}
$$

- $\hat{\alpha}, \tilde{\beta}, \hat{\gamma}_1, \ldots, \hat{\gamma}_p =$ OLS estimates
- $\tilde{\beta}_i = \left(\frac{\phi}{\phi+1}\right) \hat{\beta}_i =$ posterior mean of β_i

- Posterior probabilities (given the observed data D):
 - Posterior probability that the M_i model is “true:”

$$
P(M_i|D) \propto P(D|M_i)P(M_i)
$$

- Marginal likelihood of the M_i model:

$$
P(D|M_i) \propto \left[\frac{1}{1 + \phi}\right]^{-\frac{1}{2}} \times \left[\frac{1}{1 + \phi}SSR_i + \frac{\phi}{1 + \phi}SSE_i\right]^{-(T-p)/2}
$$
The BMA Forecast

- **BMA forecast:**
 \[
 \tilde{y}_{T+h|T} = \sum_{i=1}^{n} \tilde{y}_{T+h|T}^i \times P(M_i|D)
 \]

- **BMA forecasts depends on the value of \(\phi \):**
 - “Small” \(\phi \) \(\Rightarrow \) equal-weighted model averaging.
 - “Large” \(\phi \) \(\Rightarrow \) weighting models by their in-sample \(R^2 \).
 - Relationship between \(\phi \) and RMSPE is often U-shaped.
 - Benchmark: \(\phi = 4 \).
The Forecasting Setup

- Forecast economic activity in quarter $t, t + 1, \ldots, t + 4$ using macro data available through quarter $t - 1$ and asset market indicators at the end of the first month of quarter t:
 - **Economic activity indicators:** GDP, PCE, BFI, IP, nonfarm payrolls, unemployment rate, imports, exports
- All variables are in real time.
 - Including the option adjustment to credit spreads.
Predictors & Forecast Evaluation

- Predictors:
 - Option-adjusted credit spreads in DD-based bond portfolios.
 - Average DDs in DD-based portfolios (bond issuers, financial and nonfinancial firms).
 - Excess stock returns in DD-based portfolios (bond issuers, financial and nonfinancial firms).
 - 15 macroeconomic series.
 - 110 asset market indicators.

- BMA forecasts compared with forecasts based on an AR(p) model.
BMA Out-of-Sample Predictive Accuracy

Predictor Set: All Variables

<table>
<thead>
<tr>
<th>Economic Activity Indicator</th>
<th>Forecast Horizon (h quarters)</th>
<th>$h = 0$</th>
<th>$h = 1$</th>
<th>$h = 2$</th>
<th>$h = 3$</th>
<th>$h = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td></td>
<td>0.94</td>
<td>0.82</td>
<td>0.73</td>
<td>0.79</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.04]</td>
<td>[0.01]</td>
<td>[0.00]</td>
<td>[0.02]</td>
<td>[0.05]</td>
</tr>
<tr>
<td>Business fixed investment</td>
<td></td>
<td>0.89</td>
<td>0.70</td>
<td>0.87</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.01]</td>
<td>[0.00]</td>
<td>[0.02]</td>
<td>[0.03]</td>
<td>[0.03]</td>
</tr>
<tr>
<td>Industrial production</td>
<td></td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
<td>0.93</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.06]</td>
<td>[0.06]</td>
<td>[0.07]</td>
<td>[0.08]</td>
<td>[0.06]</td>
</tr>
<tr>
<td>Private employment</td>
<td></td>
<td>0.88</td>
<td>0.79</td>
<td>0.83</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.01]</td>
<td>[0.00]</td>
<td>[0.01]</td>
<td>[0.05]</td>
<td>[0.03]</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td></td>
<td>0.92</td>
<td>0.78</td>
<td>0.73</td>
<td>0.74</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.01]</td>
<td>[0.00]</td>
<td>[0.00]</td>
<td>[0.00]</td>
<td>[0.02]</td>
</tr>
</tbody>
</table>

Note: Relative MSPEs; bootstrapped p-values in brackets.
BMA Out-of-Sample Predictive Accuracy

Predictor Set: All Variables Except Option-Adjusted Credit Spreads

<table>
<thead>
<tr>
<th>Economic Activity Indicator</th>
<th>Forecast Horizon (h quarters)</th>
<th>$h = 0$</th>
<th>$h = 1$</th>
<th>$h = 2$</th>
<th>$h = 3$</th>
<th>$h = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td></td>
<td>0.96</td>
<td>0.95</td>
<td>0.95</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.12]</td>
<td>[0.11]</td>
<td>[0.12]</td>
<td>[0.13]</td>
<td>[0.14]</td>
</tr>
<tr>
<td>Business fixed investment</td>
<td></td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
<td>0.96</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.01]</td>
<td>[0.04]</td>
<td>[0.07]</td>
<td>[0.10]</td>
<td>[0.07]</td>
</tr>
<tr>
<td>Industrial production</td>
<td></td>
<td>0.98</td>
<td>1.04</td>
<td>1.11</td>
<td>1.11</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.10]</td>
<td>[0.51]</td>
<td>[0.63]</td>
<td>[0.50]</td>
<td>[0.32]</td>
</tr>
<tr>
<td>Private employment</td>
<td></td>
<td>0.97</td>
<td>1.00</td>
<td>1.09</td>
<td>1.13</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.07]</td>
<td>[0.23]</td>
<td>[0.53]</td>
<td>[0.45]</td>
<td>[0.24]</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td></td>
<td>0.93</td>
<td>0.94</td>
<td>1.04</td>
<td>1.11</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[0.01]</td>
<td>[0.02]</td>
<td>[0.32]</td>
<td>[0.47]</td>
<td>[0.28]</td>
</tr>
</tbody>
</table>

Note: Relative MSPEs; bootstrapped p-values in brackets.
Which Predictors are the Most Informative?
(BMA posterior probabilities by predictor type)
E Volution of BMA Posterior Probabilities

(Four-quarter-ahead forecast horizon)
CONCLUDING REMARKS

• Credit spreads have been underutilized in real-time economic forecasting.

• Messy to deal with.

• Contain useful information for medium-term forecasts of economic activity.

• The predictive content appears to reflect almost entirely movements in the non-default component—that is, in the price of default risk rather than in the risk of default:

 (Gilchrist & Zakrajšek [2011])

 ▶ Downside risk not well captured by other asset prices.

 (Gourio [2010])

 ▶ “Risk-bearing capacity” of financial intermediaries.

 (He & Krishnamurthy [2010]; Adrian, Moench & Shin [2010])