A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities

Fei Chen (HUST)
Francis X. Diebold (UPenn)
Frank Schorfheide (UPenn)

April 28, 2014
Are big data informative for trends? No

Are big data informative for volatilities? Yes: realized volatility.

For durations? Yes: both trivially and subtly.

– Trivially: trade-by-trade data needed for inter-trade durations
 – Subtly: time deformation links volatilities to durations.
So big data inform us about vols which inform us about durations.
Why More Focus on Durations Now?

- We need better understanding of information arrival, trade arrival, liquidity, volume, market participant interactions, links to volatility, etc.
 - Financial market roots of the Great Recession
 - Purely financial-market events like the Flash Crash

- The duration point process is the ultimate process of interest. It determines everything else, yet it remains incompletely understood.

- Long memory is clearly present in calendar-time volatility and is presumably inherited from conditional intensity of arrivals in transactions time, yet there is little long-memory duration literature.
Stochastic Volatility Model

\[r_t = \sigma \sqrt{e^{h_t}} \cdot \varepsilon_t \]

\[h_t = \rho h_{t-1} + \eta_t \]

\[\varepsilon_t \sim iidN(0, 1) \]

\[\eta_t \sim iidN(0, \sigma^2) \]

\[\varepsilon_t \perp \eta_t \]

Equivalently,

\[r_t|\Omega_{t-1} \sim N(0, \sigma^2 e^{h_t}) \]
Time-deformation model of calendar time (e.g., “daily”) returns:

\[r_t = \sum_{i=1}^{e^{ht}} r_i \]

\[h_t = \rho h_{t-1} + \eta_t \]

(Trade-by-trade returns \(r_i \sim iidN(0, \sigma^2) \), daily volume \(e^{ht} \))

\[\implies r_t | \Omega_{t-1} \sim N(0, \sigma^2 e^{ht}) \]

- Volume/duration dynamics produce volatility dynamics
- Volatility properties *inherited* from duration properties
What Are the Key Properties of Volatility?

In general:

- Volatility dynamics fatten unconditional distributional tails
 e.g., \(r_t | \Omega_{t-1} \sim N(0, \sigma^2 e^{ht}) \implies r_t \sim "fat-tailed" \)
- Volatility dynamics are persistent
- Volatility dynamics are long memory

Elegant modeling framework that captures all properties:

Calvet and Fischer (2008),
Multifractal Volatility: Theory, Forecasting, and Pricing, Elsevier
Roadmap

- Empirical regularities in durations
- The MSMD model
- Preliminary empirics
Twenty-Five U.S. Firms Selected Randomly from S&P 100

- Consolidated trade data extracted from the TAQ database
- 20 days, 2/1/1993 - 2/26/1993, 10:00 - 16:00
- 09:30-10:00 excluded to eliminate opening effects

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Company Name</th>
<th>Symbol</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>ALCOA</td>
<td>ABT</td>
<td>Abbott Laboratories</td>
</tr>
<tr>
<td>AXP</td>
<td>American Express</td>
<td>BA</td>
<td>Boeing</td>
</tr>
<tr>
<td>BAC</td>
<td>Bank of America</td>
<td>C</td>
<td>Citigroup</td>
</tr>
<tr>
<td>CSCO</td>
<td>Cisco Systems</td>
<td>DELL</td>
<td>Dell</td>
</tr>
<tr>
<td>DOW</td>
<td>Dow Chemical</td>
<td>F</td>
<td>Ford Motor</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
<td>HD</td>
<td>Home Depot</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>INTC</td>
<td>Intel</td>
</tr>
<tr>
<td>JNJ</td>
<td>Johnson & Johnson</td>
<td>KO</td>
<td>Coca-Cola</td>
</tr>
<tr>
<td>MCD</td>
<td>McDonald's</td>
<td>MRK</td>
<td>Merck</td>
</tr>
<tr>
<td>MSFT</td>
<td>Microsoft</td>
<td>QCOM</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>T</td>
<td>AT&T</td>
<td>TXN</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>WFC</td>
<td>Wells Fargo</td>
<td>WMT</td>
<td>Wal-Mart</td>
</tr>
<tr>
<td>XRX</td>
<td>Xerox</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Stock ticker symbols and company names.
Figure: **Citigroup Duration Distribution.** We show an exponential QQ plot for Citigroup inter-trade durations between 10:00am and 4:00pm during February 1993, adjusted for calendar effects.
Persistent Dynamics

Figure: **Citigroup Duration Time Series.** We show a time-series plot of inter-trade durations between 10:00am and 4:00pm during February 1993, measured in minutes and adjusted for calendar effects.
Figure: **Citigroup Duration Autocorrelations.** We show the sample autocorrelation function of Citigroup inter-trade durations between 10:00am and 4:00pm during February 1993, adjusted for calendar effects.
Roadmap

- Empirical regularities in inter-trade durations ✓
- The MSMD model
- Empirics
A Dynamic Duration Model

\[d_i \sim \frac{\epsilon_i}{\lambda_i}, \quad \epsilon_i \sim iidExp(1) \]

“Mixture of Exponentials” Representation
Point Process Foundations

\{ T_i(\omega) > 0 \}_{i \in 1,2,...} \text{ on } (\Omega, F, P) \text{ s.t. } 0 < T_1(\omega) < T_2(\omega) < \ldots

\[N(t, \omega) = \sum_{i \geq 1} 1(T_i(\omega) \leq t) \]

\[\lambda(t) = \lim_{\Delta t \downarrow 0} \left(\frac{1}{\Delta t} P[N(t + \Delta t) - N(t) = 1 \mid F_{t-}] \right) \]

\[P(t_1, \ldots, t_n | \lambda(\cdot)) = \prod_{i=1}^{n} \left(\lambda(t_i) \exp \left[- \int_{t_{i-1}}^{t_i} \lambda(t) dt \right] \right) \]

If \(\lambda(t) = \lambda_i \) on \([t_{i-1}, t_i) \), then:

\[P(t_1, \ldots, t_n | \lambda(\cdot)) = \prod_{i=1}^{n} (\lambda_i \exp [- \lambda_i d_i]) \]

\[d_i \sim \frac{\epsilon_i}{\lambda_i}, \quad \epsilon_i \sim iid\text{Exp}(1) \]

How to parameterize the conditional intensity \(\lambda_i \)?
Markov Switching Multifractal Durations (MSMD)

\[\lambda_i = \lambda \prod_{k=1}^{\bar{k}} M_{k,i} \]

\(\lambda > 0, \ M_{k,i} > 0, \ \forall k \)

Independent intensity components \(M_{k,i} \)

are Markov renewal processes:

\[M_{k,i} = \begin{cases} \text{draw from } f(M) & \text{w.p. } \gamma_k \\ M_{k,i-1} & \text{w.p. } 1 - \gamma_k \end{cases} \]

\(f(M) \) is identical \(\forall k \), with \(M > 0 \) and \(E(M) = 1 \)
Modeling Choices

Simple binomial renewal distribution $f(M)$:

$$M = \begin{cases}
 m_0 & \text{w.p. } 1/2 \\
 2 - m_0 & \text{w.p. } 1/2,
\end{cases}$$

where $m_0 \in (0, 2]$

Simple renewal probability γ_k:

$$\gamma_k = 1 - (1 - \gamma_{\bar{k}})^{b^{k-\bar{k}}}$$

$\gamma_{\bar{k}} \in (0, 1)$ and $b \in (1, \infty)$
Figure: **MSMD Intensity Component Renewal Probabilities.** We show the renewal probabilities \(\gamma_k = 1 - (1 - \gamma k) b^{k-k} \) associated with the latent intensity components \(M_k \), \(k = 3, \ldots, 7 \). We calibrate the MSMD model with \(\bar{k} = 7 \), and with remaining parameters that match our subsequently-reported estimates for Citigroup.
All Together Now

\[d_i = \frac{\epsilon_i}{\lambda_i} \]

\[\lambda_i = \lambda \prod_{k=1}^{\bar{k}} M_{k,i} \]

\[M_{k,i} = \begin{cases} M & \text{w.p. } 1 - (1 - \gamma_{\bar{k}}) b^{k-\bar{k}} \\ M_{k,i-1} & \text{w.p. } (1 - \gamma_{\bar{k}}) b^{k-\bar{k}} \end{cases} \]

\[M = \begin{cases} m_0 & \text{w.p. } 1/2 \\ 2 - m_0 & \text{w.p. } 1/2 \end{cases} \]

\[\epsilon_i \sim iid \ exp(1), \ \bar{k} \in \mathbb{N}, \ \lambda > 0, \ \gamma_{\bar{k}} \in (0, 1), \ b \in (1, \infty), \ m_0 \in (0, 2] \]

parameters \(\theta_{\bar{k}} = (\lambda, \gamma_{\bar{k}}, b, m_0)' \)

\(\bar{k} \)-dimensional state vector \(M_i = (M_{1,i}, M_{2,i}, \ldots, M_{\bar{k},i}) \)

2\(\bar{k} \) states
Figure: QQ Plot, Simulated Durations. $N = 22,988$; parameters calibrated to match Citigroup estimates.
Figure: Time-series plots of simulated $M_{1,i}$, ..., $M_{7,i}$, λ_i, and d_i. $N = 22,988$; parameters calibrated to match Citigroup estimates.
Figure: Sample Autocorrelation Function, Simulated Durations. $N = 22,988$; parameters calibrated to match Citigroup estimates.
The MSMD autocorrelation function satisfies

\[
\sup_{\tau \in I_{\bar{k}}} \left| \frac{\ln \rho(\tau)}{\ln \tau^{-\delta}} - 1 \right| \to 0 \quad \text{as} \quad \bar{k} \to \infty
\]

\[
\delta = \log_b E(\tilde{M}^2) - \log_b \{E(\tilde{M})^2\}
\]

\[
\tilde{M} = \begin{cases}
\frac{2m_0^{-1}}{m_0^{-1} + (2-m_0)^{-1}} & \text{w.p. } \frac{1}{2} \\
\frac{2(2-m_0)^{-1}}{m_0^{-1} + (2-m_0)^{-1}} & \text{w.p. } \frac{1}{2}
\end{cases}
\]
Literature I:
Mean Duration vs. Mean Intensity

Mean Duration:

\[d_i = \varphi_i \epsilon_i, \quad \epsilon_i \sim iid(1, \sigma^2) \]

- ACD: Engle and Russell (1998), ...
 - MEM: Engle (2002), ...

Mean Intensity:

\[d_i \sim \frac{\epsilon_i}{\lambda_i}, \quad \epsilon_i \sim iidExp(1) \]

- MSMD
- Bauwens and Hautsch (2006)
 - Bowsher (2006)
Literature II: Observation- vs. Parameter-Driven Models

Observation-Driven:

\[\Omega_{t-1} \text{ observed (like GARCH)} \]

- ACD
- MEM as typically implemented
 - GAS

Parameter-Driven:

\[\Omega_{t-1} \text{ latent (like SV)} \]

- MSMD
Short Memory: Quick (exponential) duration autocorrelation decay
- ACD as typically implemented
- MEM as typically implemented

Long-Memory: Slow (hyperbolic) duration autocorrelation decay
- MSMD
- FI-ACD: Jasiak (1999)
- FI-SCD: Deo, Hsieh and Hurvich (2010)
Literature IV: Reduced-Form vs. Structural Long Memory

Reduced Form:

\[(1 - L)^d y_t = v_t, \quad v_t \sim \text{short memory}\]

- FI-ACD
- FI-SCD

Structural:

\[y_t = v_{1t} + \ldots + v_{Nt}, \quad v_{it} \sim \text{short memory}\]

- MSMD
Roadmap

- Empirical regularities in inter-trade durations ✓
- The MSMD model ✓
- Empirics
Twenty-Five U.S. Firms Selected Randomly from S&P 100

- Consolidated trade data extracted from the TAQ database
- 20 days, 2/1/1993 - 2/26/1993, 10:00 - 16:00
- 09:30-10:00 excluded to eliminate opening effects

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Company Name</th>
<th>Symbol</th>
<th>Company Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Alcoa</td>
<td>ABT</td>
<td>Abbott Laboratories</td>
</tr>
<tr>
<td>AXP</td>
<td>American Express</td>
<td>BA</td>
<td>Boeing</td>
</tr>
<tr>
<td>BAC</td>
<td>Bank of America</td>
<td>C</td>
<td>Citigroup</td>
</tr>
<tr>
<td>CSCO</td>
<td>Cisco Systems</td>
<td>DELL</td>
<td>Dell</td>
</tr>
<tr>
<td>DOW</td>
<td>Dow Chemical</td>
<td>F</td>
<td>Ford Motor</td>
</tr>
<tr>
<td>GE</td>
<td>General Electric</td>
<td>HD</td>
<td>Home Depot</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>INTC</td>
<td>Intel</td>
</tr>
<tr>
<td>JNJ</td>
<td>Johnson & Johnson</td>
<td>KO</td>
<td>Coca-Cola</td>
</tr>
<tr>
<td>MCD</td>
<td>McDonald’s</td>
<td>MRK</td>
<td>Merck</td>
</tr>
<tr>
<td>MSFT</td>
<td>Microsoft</td>
<td>QCOM</td>
<td>Qualcomm</td>
</tr>
<tr>
<td>T</td>
<td>AT&T</td>
<td>TXN</td>
<td>Texas Instruments</td>
</tr>
<tr>
<td>WFC</td>
<td>Wells Fargo</td>
<td>WMT</td>
<td>Wal-Mart</td>
</tr>
<tr>
<td>XRX</td>
<td>Xerox</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Stock ticker symbols and company names.
Figure: Distribution of Duration Coefficients of Variation Across Firms. We show a histogram of coefficients of variation (the standard deviation relative to the mean), as a measure of overdispersion relative to the exponential. For reference we indicate Citigroup.
Figure: Duration Autocorrelation Function Profile Bundle. For each firm, we show the sample autocorrelation function of inter-trade durations between 10:00am and 4:00pm during February 1993, adjusted for calendar effects. For reference we show Citigroup in bold.
MSMD Likelihood Evaluation (Using $\bar{k} = 2$ for Illustration)

Each M_k, $k = 1, 2$ is a two-state Markov switching process:

$$\mathcal{P}(\gamma_k) = \begin{bmatrix} 1 - \gamma_k/2 & \gamma_k/2 \\ \gamma_k/2 & 1 - \gamma_k/2 \end{bmatrix}$$

Hence λ_i is a four-state Markov-switching process:

$$\lambda_i \in \{\lambda s_1 s_1, \lambda s_1 s_2, \lambda s_2 s_1, \lambda s_2 s_2\}$$

$$\mathcal{P}_\lambda = \mathcal{P}(\gamma_1) \otimes \mathcal{P}(\gamma_2) \text{ (by independence of the } M_{k,i})$$

Likelihood function:

$$p(d_{1:n}|\theta_{\bar{k}}) = p(d_1|\theta_{\bar{k}}) \prod_{i=2}^{n} p(d_i|d_{1:i-1}, \theta_{\bar{k}})$$

Conditional on λ_i, the duration d_i is $\text{Exp}(\lambda_i)$:

$$p(d_i|\lambda_i) = \lambda_i e^{-\lambda_i d_i}$$

Weight by state probabilities obtained by the Hamilton filter.
Figure: Maximized Log Likelihood Profile Bundle. We show likelihood profiles for all firms as a function of \bar{k}, in deviations from the value for $\bar{k} = 7$, which is therefore identically equal to 0. For reference we show Citigroup in bold.
Figure: Distributions of MSMD Parameter Estimates Across Firms, \(\bar{k} = 7 \). We show histograms of maximum likelihood parameter estimates across firms, obtained using \(\bar{k} = 7 \). For reference we indicate Citigroup.
Figure: Estimated Intensity Component Renewal Probability Profile Bundle, $\bar{k} = 7$. For reference we show Citigroup in bold.
Figure: **Empirical CDF of White Statistic p-Value, $\bar{k} = 7$.** For reference we indicate Citigroup.
Figure: Distribution of Differences in BIC Values Across Firms. We use \(-BIC/2 = \ln L - k \ln(n)/2\), and we compute differences as MSMD(7) - ACD(1,1). We show a histogram. For reference we indicate Citigroup.
Figure: Distribution of Differences in Forecast RMSE Across Firms. We compute differences MSMD(7) - ACD(1,1). For reference we indicate Citigroup.
Roadmap

- Empirical regularities in inter-trade durations ✓
- The MSMD model ✓
- Empirics ✓
Future Directions

- Additional model assessment
- Current data (using ultra-accurate time stamps)
- Panel of trading months.
 Structural change?