Economic Activity in San Francisco During the 1918 Influenza Epidemic

François R. Velde

Federal Reserve Bank of Chicago (the usual disclaimer applies)

IMHOS September 2022

Motivation

- trade-offs during pandemics: slowing down transmission has economic costs
- terms of trade-off depend on endogenous response (if any)
- do past pandemics inform us about stable patterns of behavior?
- the 1918-19 influenza epidemic was the most recent large pandemic before Covid-19
- natural point of comparison to study economic impacts of policy interventions
- US offers cross-sectional variation
- start, duration, pattern (waves) of epidemic
- start and end of policy responses ("lockdowns")
- the project:
- combine data on deaths and mobility (seen as proxy for economic activity)
- estimate structural model with endogenous transmission rates
- compute counterfactuals and tradeoffs: laisser-faire, optimal policy
- this paper:
- daily data on deaths and mobility for San Francisco
- testing ground for various functional forms
- epidemic in the US
- "herald wave" in Feb-Apr 1918, barely noticed (virulent but not lethal)
- main wave begins late Aug 1918 in New England, spreads quickly
- second/third waves in some places (Dec 1918-Mar 1919), usually less severe
- another mortality peak in the winter 1919-20 (not studied)
- policies: non-pharmaceutical interventions (NPIs) at city/state level
- "social distancing"
almost all cities closed schools, churches, entertainment, large gatherings
- efforts to reduce congestion: staggered business hours in some places
- some attempts at quarantine and isolation of infected individuals, tracing (I focus on closings)
- no lockdowns as stringent as 2020-21
- reports of the epidemic on the East Coast by Sept 12
- first case in SF reported Sept 24, but Board of Health declined to order closings for a while
- closing (typical across almost all US cities)
- from Oct 18 to Nov 16
- "all places of amusement, including theaters, moving-picture theaters, concert halls, dance halls and dances in all cabarets, cafes and hotels, and all form of entertainment in any or all of them"
- lodge and fraternal meetings
- public amusement places (penny arcades, merry-go-rounds)
- private dances, halls, social gatherings
- church services
- public and private schools and kindergartens
- permit for any public meeting
- theaters closure extended to Nov 23, schools to Nov 25
- masks (much less common in US cities):
- mandatory for customer-facing workers (Oct 18)
- recommended for all (Oct 21)
- mandatory for all (Oct 25 - Nov 21)
- second wave:
- no closings, but masks mandatory for all (Jan 17-1 Feb 1, 1919)

San Francisco: data

- daily ridership on public transportation
- SF Municipal Railway: about $1 / 4$ of total ridership
- total ridership: 511,000/day in 1920 (= population of 511,300)
- daily excess deaths

San Francisco death data

- hand collected from Ancestry.com
- all deaths between 1 Sep 1918 and 15 Apr 1919, and same period in 1912-16
- compute daily excess deaths relative to 1912-16 (adjusting for population growth)
- as a check, deconvolute deaths using transfer function to infer infections (Goldstein et al., 2009)

Excess Deaths, Inferred Infections

SF Muni Revenues

SF Muni Revenues

SF Muni Revenues

- goal: jointly model the epidemic and economic activity
- elements
- agents choose work/consumption, knowing it exposes them to infection
- epidemiological model: SEIR with transmission rate determined by agents' economic activities
- Simplified version of Eichenbaum, Rebelo, and Trabandt (2021), SEIR model from Bootsma and Ferguson (2007)

Population is partitioned into S_{t} susceptibles, E exposed, I infected, and R removed:

$$
S_{t}+E_{t}+I_{t}+R_{t}=1
$$

Laws of motion:

$$
\begin{aligned}
\dot{S_{t}} & =-\lambda_{t} I_{t} S_{t} \\
\dot{E_{t}} & =\lambda_{t} S_{t} I_{t}-\alpha E_{t} \\
\dot{I_{t}} & =\alpha E_{t}-\nu I_{t} \\
\dot{R_{t}} & =\nu I_{t}
\end{aligned}
$$

Deaths:

$$
D_{t}=\mu \int_{0}^{\infty} f(s) \lambda(t-s) S(t-s) \iota(t-s) d s
$$

where the delay function $f(s)$ is the distribution of time from exposure to death.

Infections:

$$
-\left(S_{t+1}-S_{t}\right)=\lambda_{t} S_{t} I_{t}=\pi_{1}\left(S_{t} c_{t}^{s}\right)\left(\phi I_{t} c_{t}^{i}\right)+\pi_{2}\left(S_{t} n_{t}^{s}\right)\left(\phi I_{t} n_{t}^{i}\right)+\pi_{3} S_{t} I_{t}
$$

- Agent understands that working/consuming exposes him
- True probability of not being infected:

$$
1-\left[\phi\left(\pi_{1} w^{2}+\pi_{2}\right) n_{t}^{i} n_{t}+\pi_{3}\right] I_{t}
$$

is affine function of agent's choice n_{t}

- Perceived probability assumed to have same functional form:

$$
a_{t}-b_{t} n_{t}
$$

with a_{t}, b_{t} functions of the epidemic's state

Agent's problem

$$
\begin{aligned}
\max _{n_{t}, c_{t}} & \left(a_{t}-b_{t} n_{t}\right) W+\frac{c_{t}^{1-\sigma}}{1-\sigma}-v \frac{n_{t}^{1+\epsilon}}{1+\epsilon} \\
\text { s.t. } & c_{t}=w n_{t}
\end{aligned}
$$

- FOC leads to c_{t}, n_{t} as functions of b_{t}
- $\sigma=1, \epsilon=1$:

$$
\begin{aligned}
\frac{n}{n^{*}} & =\sqrt{1+\alpha_{t}^{2}}-\alpha_{t} \\
\alpha_{t} & =\frac{1}{2} W n^{*} b_{t}
\end{aligned}
$$

$$
\begin{aligned}
y^{*}-y_{t} & =1-\left(S_{t}+E_{t}+\phi I_{t}\right)\left(\sqrt{1+\alpha_{t}^{2}}-\alpha_{t}\right) \\
\frac{\lambda_{t}}{\lambda_{0}} & =\left(\frac{n_{t}}{n^{*}}\right)^{2}=1+2 \alpha_{t}^{2}-2 \alpha_{t} \sqrt{1+\alpha_{t}^{2}} \\
\alpha_{t} & =\frac{1}{2} W n^{*} b_{t}
\end{aligned}
$$

- transmission λ_{t} is the square of agent's choice n_{t}
- agent's choice n_{t} function of a statistic of the epidemic α_{t}
- b_{t} so far unspecified (agent's perception of marginal risk from working)
- imposing rational expectations leads to

$$
\begin{aligned}
\alpha_{t} & =\frac{1}{2} \frac{\kappa l_{t}}{\sqrt{1+\kappa I_{t}}} \\
\frac{n}{n^{*}} & =\frac{1}{\sqrt{1+\kappa I_{t}}} \\
\frac{\lambda_{t}}{\lambda_{0}} & =\frac{1}{1+\kappa I_{t}}
\end{aligned}
$$

with $\kappa=W \lambda_{0}$

IS REH reasonable?

- REH delivers a nice closed-form solution
- estimable parameter κ has structural interpretation
- but is it reasonable?
did agents know the model? previous pandemic 1889-90, SIR model published in 1927
- quality of the contemporaneous information set?

Reported Cases, Inferred Infections, Reported Deaths

Reported Cases, Inferred Infections, Reported Deaths

Reported Deaths and Excess Deaths

Ad-hockery

- epidemiologists have used ad-hoc parametrizations of λ_{t}
- Bootsma and Ferguson (2007) use same functional form as REH:

$$
\lambda_{t}=\frac{1}{1+\kappa f(t)}
$$

where $f(t)$ a function of current and past deaths

- $f(t)=\int_{0}^{T} D(t-s) d s($ Hill $)$
- $\dot{f}(t)=D_{t}+(1-\tau) f(t)(\mathrm{Alt})$
- this effectively assumes:

$$
b_{t}=\frac{f(t)}{\sqrt{1+W n^{*} f(t)}}
$$

- alternative: specify $b_{t}=\kappa f(t), \lambda_{t}$ as predicted by model (model)
- lockdown parameters: start date, end date, intensity p_{c}
- how do they affect the transmission rate?
- Bootsma and Ferguson (2007): multiplicative $\hat{\lambda}_{t}=\left(1-p_{c}\right) \lambda_{t}$ (effectively same as Eichenbaum, Rebelo, and Trabandt 2021)
- alternative: lockdown as upper bound on economic activity (Min)

$$
\frac{n_{t}}{n^{*}}=\min \left\{\bar{n}_{t}, \sqrt{1+\alpha_{t}^{2}}-\alpha_{t}\right\}
$$

- Data: deaths D_{t}, activity y_{t} (proxied by ridership), dates of interventions
- α and ν calibrated (ϕ calibrated at 0.7 for now)
- given parameters $\theta=\left(\mu, R_{0}, \kappa, \tau, p_{c}\right)$, model predicts deaths \hat{D} and activity \hat{y}
- MCMC estimation, using a Poisson LL for deaths and Gaussian LL for activity

$$
\mathcal{L}(D, y, \theta) \propto \sum_{t} \log \left(\hat{D}_{t}(\theta)\right) D_{t}-\hat{D}_{t}(\theta)-\frac{\left(y_{t}-\hat{y}_{t}(\theta)\right)^{2}}{2 \sigma}-\frac{\log (\sigma)}{2}
$$

- for each value of θ, epidemic simulated (step: 0.1 day)
- note: starting date of epidemic must be solved for as well

Estimates without ridership data

model (LL)	$\begin{gathered} \mu \\ (\%) \end{gathered}$	R_{0}	κ	$\begin{gathered} \tau \\ (\%) \end{gathered}$	T_{m}	p_{C}	deaths (\%)
Hill	1.22	2.25	320.1		17	0.41	5
9211.3	[1.17,1.27]	[2.24,2.27]	[284,357]		[16.2,18.3]	[0.39, 0.43]	[3,7]
Hillalt	1.17	2.42	638.5	1		0.42	2
9208.7	[1.13,1.21]	[2.41,2.43]	[563,719]	[0.93,1.10]		[0.40,0.43]	[-1,4]
Hillmin	1.22	2.39	369.3		22	0.61	9
9233.8	[1.18,1.27]	[2.38,2.4]	[333,406]		[21.3,23.1]	[0.61,0.62]	[7,10]
HillaltMin	1.15	2.66	660.8	0.76		0.66	7
9221.9	[1.1,1.19]	[2.65,2.67]	[586,741]	[0.69,0.83]		[0.65,0.67]	[5,9]
HillAltinf	1.10	2.86	213.3	0.4		0.46	-2
9186.5	[1.06,1.14]	[2.83,2.88]	[187,241]	[0.36,0.44]		[0.44, 0.49]	[-4,1]
HillAltInfMin	1.08	2.99	223.9	0.39		0.70	-2
9187.1	[1.04,1.12]	[2.97,3.01]	[196,253]	[0.34,0.44]		[0.69,0.71]	[-4,2]
Power	1.22	2.20	259.7		16	0.40	1
9203.2	[1.17,1.27]	[2.19,2.22]	[231,289]		[15.3,17.5]	[0.38,0.42]	[-2,4]
PowerAlt	1.18	2.36	515.0	1		0.39	-4
9203.9	[1.13,1.22]	[2.34,2.37]	[456,577]	[0.96,1.15]		[0.37,0.42]	$[-6,-1]$
PowerAltMin	1.15	2.65	533.7	0.73		0.66	3
9226.1	[1.1,1.19]	[2.64,2.67]	[477,594]	[0.67,0.80]		[0.65, 0.66]	[-0,5]
Exp	1.22	2.20	259.8		16	0.40	1
9203.2	[1.17,1.27]	[2.19,2.22]	[232,289$]$		[15.3,17.5]	[0.38,0.42]	[-2,4]
ExpAlt	1.18	2.36	515.3	1		0.39	-4
9203.9	[1.13,1.22]	[2.34,2.37]	[456,577]	[0.96,1.15]		[0.37,0.42]	[-6,-1]
ExpAltMin	1.15	2.65	534.0	0.73		0.66	3
9226.1	[1.1,1.19]	[2.64,2.67]	[478,593]	[0.67,0.80]		[0.65,0.66]	[-0,5]
model	1.22	2.20	261.3		17	0.40	1
9203.9	[1.18,1.27]	[2.19,2.22]	[233,291]		[15.4,17.6]	[0.38,0.42]	[-1,4]
modelAlt	1.18	2.36	519.2	1		0.39	-4
9204.6	[1.13,1.22]	[2.34,2.37]	[460,582]	[0.96,1.14]		[0.37,0.42]	[-6,-1]
model Min	1.22	2.39	312.0		21	0.61	5
9235.3	[1.17,1.26]	[2.37,2.4]	[285,340]		[20.5,22.4]	[0.60,0.62]	[3,7]
modelAltMin	1.15	2.65	537.9	0.73		0.66	3
9225.9	[1.1,1.19]	[2.64,2.67]	[481,598]	[0.67,0.80]		[0.65, 0.66]	[1,6]

Estimates with ridership data

model (LL)	$\begin{gathered} \mu \\ (\%) \end{gathered}$	R_{0}	κ	$\begin{gathered} \tau \\ (\%) \end{gathered}$	T_{m}	p_{C}	deaths (\%)
Hill	1.21	2.26	312.4		17	0.41	6
9581.6	[1.17,1.26]	[2.24,2.27]	[277,349]		[16.0,18.1]	[0.39,0.43]	[4,8]
HillAlt	1.16	2.42	635.0	1		0.41	2
9580.2	[1.12,1.21]	[2.41,2.44]	[558,716]	[0.96, 1.13]		[0.39, 0.43]	[-1,4]
HillMin	1.21	2.39	355.3		22	0.61	9
9603.9	[1.17,1.26]	[2.38,2.4]	[320,392]		[21.1,22.9]	[0.60,0.62]	[8,10]
HillAltMin	1.15	2.59	630.7	0.81		0.65	6
9585.8	[1.1,1.19]	[$2.58,2.61$]	[556,710]	[0.74,0.88]		[0.64,0.66]	[4,8]
HillAltinf	1.09	2.78	202.7	0.44		0.45	-2
9552.4	[1.05,1.13]	[2.76,2.8]	[177,229]	[0.39,0.48]		[0.43, 0.47]	[-4,1]
HillAltlnfMin	1.09	2.81	208.0	0.45		0.67	-3
9548.4	[1.05,1.12]	[2.79,2.83]	[179,238]	[0.39,0.50]		[0.67,0.68]	[-5,0]
Power	1.21	2.21	253.9		16	0.40	1
9572.7	[1.17,1.26]	[2.19,2.22]	[226,283]		[15.1,17.3]	[0.38,0.42]	[-1,4]
PowerAlt	1.17	2.36	513.6	1.1		0.39	-4
9575.8	[1.13,1.21]	[2.34,2.37]	[454,577]	[0.98,1.18]		[0.37,0.41]	[-6,-1]
PowerAltMin	1.15	2.59	522.3	0.78		0.64	1
9591.4	[1.11,1.19]	[2.57,2.6]	[465,582]	[0.72,0.85]		[0.64,0.65]	[-2,4]
Exp	1.21	2.21	253.9		16	0.40	1
9572.8	[1.17,1.26]	[2.19,2.22]	[225,284]		[15.1,17.3]	[0.38,0.42]	[-1,4]
ExpAlt	1.17	2.36	512.9	1.1		0.39	-4
9575.8	[1.13,1.21]	[2.34,2.37]	[453,577]	[0.98,1.18]		[0.37,0.41]	[-6,-1]
ExpAltMin	1.15	2.59	521.8	0.78		0.64	1
9591.4	[1.11,1.19]	[$2.57,2.6$]	[465,582]	[0.72,0.85]		[0.64,0.65]	[-2,4]
model	1.21	2.21	256.3		16	0.40	2
9573.6	[1.17,1.26]	[2.19,2.22]	[228,286]		[15.2,17.4]	[0.38,0.42]	[-1,4]
modelAlt	1.17	2.36	517.9	1.1		0.39	-3
9576.5	[1.13,1.21]	[2.35,2.37]	[457,583]	[0.98,1.17]		[0.37,0.41]	[-6,-1]
model Min	1.21	2.39	302.7		21	0.60	6
9606.5	[1.16,1.25]	[2.38,2.4]	[276,331]		[20.4,22.3]	[0.60,0.61]	[4,7]
modelAltMin	1.15	2.59	524.9	0.78		0.64	2
9591.1	[1.11,1.19]	[2.57,2.6]	[468,586]	[0.72,0.85]		[0.64,0.65]	[-1,5]

Deaths, predicted and actual (best model)

Ridership, predicted and actual (best model)

Pareto Frontier

Policies along the frontier

Policies along the frontier

Optimal policy

- they could have done better
- actual policy was within the frontier
- which point would have been chosen depends on relative weights on deaths and utils/labor
- under REH, value of life can be inferred from estimated κ
- not clear under ad-hoc behavioral responses
- could be calibrated
- gains in terms of deaths would have been modest but positive and (for most weights) worthwhile
- why did they co what they did?
- they knew little (and knew it)
- no realistic hope of a vaccine
- no SIR model! (Kermack and McKendrick, 1927)
- perceived tradeoffs, "ICU constraint"

William A. Evans, recent president of the American Public Health Association (Chicago Tribune Oct. 6, 1918):

Influenza will sweep over the country as it did in 1891 and as it has always done. We cannot escape it, but we can spread the cases over several weeks instead of having them all lump together as they usually come when the epidemic attacks men in barracks. If the epidemic can be spread out to a moderate extent our hospitals' nurses and physicians can handle the situation.

- ridership data validates epidemiological model
- behavioral response deviates markedly from REH
- lockdown saved some lives, but not many
- some room for better policy
- earlier but shorter intervention
- longer but weaker intervention
- optimum probably closer to the former
- (tentative) masks were effective (and costless)
- same model on cross-sectional data:
some $\kappa-\tau$ indeterminacy: revisit functional form?
- R_{0} goes up with time: adjust the seed

