Finance and (Wealth) Inequality

Alberto Bisin NYU [& J. Benhabib, S. Zhu, M. Luo, R. Fernholz]

イロト 人間 とくほ とくほ とう

CEPR Household Finance Seminar CEPR-TFI Online Webinar: Finance and Inequality April 14th, 2021

3

Three issues driving my thoughts on wealth inequality

(Centered on the role of returns on wealth;)

- Inequality in earnings cannot be the (whole) thing (with J. Benhabib, M. Luo, S. Zhu)
- Non-stationary dynamics are not as hard as you (may) think (with J. Benhabib, M. Luo)
- Long-run persistence, instead, does not come easy (with J. Benhabib, R. Fernholz)

All published papers available at https://wp.nyu.edu/albertobisin/wealth-inequality/; some of the research discussed is in progress.

イロト イポト イヨト 一日

Earnings and wealth inequality - theory

• Suppose consumption (hence savings) is linear in wealth, $c_{t+1} = \psi w_t + \chi_{t+1}$, and assume ψ , $\chi_{t+1} \ge 0$. For these economies,

$$w_{t+1} = (r_{t+1} - \psi) w_t + (y_{t+1} - \chi_{t+1}).$$
(1)

• Equation (1) defines a *Kesten process* if i) (*r*_t, *y*_t) are independent and *i.i.d* over time; and if ii) it satisfies:

$$y > 0$$
, $0 < E(r_t) - \psi < 1$, and $prob(r_t - \psi > 1) > 0$,

for any $t \ge 0$. These assumptions guarantee, respectively, that earnings act as a reflecting barrier in the wealth process and that wealth is contracting on average, while expanding with positive probability.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - わんの

Earnings and wealth inequality - theory

Theorem (Grey 1994). Suppose $(r_t - \psi)$ and $(y_t - \chi_t)$ are both random variables, independent of w_t . Suppose the accumulation equation (1) defines a *Kesten process* and $(y_t - \chi_t)$ has a thick right-tailed with tail-index $\beta > 0$. Then,

- If E ((r_t − ψ)^β) < 1, and E ((r_t − ψ)^γ) < ∞ for some γ > β, under some regularity assumptions, the right-tail of the stationary distribution of wealth will be β.
- If instead $E((r_t \psi)^{\gamma}) = 1$ for $\gamma < \beta$, then the right-tail index of the stationary distribution of wealth will be $\alpha = \gamma$.

The right-tail index of the wealth distribution is either γ (from the stochastic properties of returns) or β (the right-tail of earnings): It is never the case that the tail index of earnings could amplify the right-tail index of the wealth distribution.

・ロ・・ 日・・ 山・・ 日・ ・ 日・

Earnings and wealth inequality - theory

Microfoundations: asymptotic linearity

- The microfoundation of the accumulation equation (1) requires adding idiosyncratic returns to Aiyagari- Bewley economies (the workhorse heterogeneous agents' economies in macro); furthermore,
- Grey's Theorem is based on Kesten's and it requires linearity of the accumulation equation (1)
- Both problems can be solved: with or without idiosyncratic returns to wealth (entrepreneurial investment risk)
 - Indeed in Aiyagari- Bewley economies accumulation is not linear: the consumption function is concave in wealth
 - But consumption and hence the accumulatiuon equation is asymptotically linear in wealth
 - And an extension of Kesten's Theorem due to Mirek gives the characterization of the tail

イロン イボン イヨン イヨン 三日

Earnings and wealth inequality - some evidence

Wealth-tail thicker generally than earnings-tail (as measured by Gini-indexes)

FIGURE 1. EARNINGS AND WEALTH GINI

Sources: Wealth: Davies et al. (2011). Earnings: (Krueger et al. 2010).

э

Earnings and wealth inequality - some evidence

Stochastic returns needed for the stationary wealth-tail of a macroeconomic model of life-cycle consumption and savings to match the one in SCF data

	Wealth distribution							
Percentile	0-20	20-40	40-60	60-80	80–90	90-95	95–99	99-100
Wealth share (data) Wealth share (model)	-0.002	0.001	0.045	0.112	0.120	0.111	0.267	0.336
1. Baseline	0.049	0.077	0.111	0.110	0.110	0.076	0.142	0.325
2. Constant r	0.055	0.087	0.129	0.184	0.128	0.116	0.148	0.153
Constant w	0.002	0.008	0.057	0.191	0.171	0.126	0.186	0.259
4. $\mu = 2$	0.069	0.111	0.160	0.230	0.159	0.106	0.119	0.046
	Social mobility							
Percentile	0-20	20-40	40-60	60-80	80-100			
Transition diagonal (data) Transition diagonal (model)	0.349	0.197	0.201	0.210	0.340			
1. Baseline	0.349	0.197	0.201	0.210	0.340			
2. Constant r	0.258	0.265	0.271	0.244	0.418			
3. Constant w	0.564	0.579	0.489	0.430	0.438			
4. $\mu = 2$	0.258	0.271	0.242	0.250	0.360			

TABLE 15—MODEL FIT: COUNTERFACTUALS

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Non-stationary wealth dynamics

- Consider fitting the implied dynamics of the wealth distribution of a macroeconomic model of life-cycle consumption and savings to SCF data from 1962 (initial condition) until 2019
 - never imposing stationarity
 - importing earnings form data and a stochastic process for effective tax rates whose realizations match data (allowing for agents' expectations not to perfectly forecast realizations)

Figure 4: Effective average tax rates

Notes: The left panel is data. The right panel is simulated results.

Non-stationary wealth dynamics

Figure 5: Wealth distribution moments comparison

Long-run persistence

- Evidence on long-run dynastic wealth-rank correlation:
 - high persistence of wealth across five generations using data on rare surnames in England and Wales between 1858 and 2012 (Clark, 2014; Clark and Cummins, 2015)
 - significant positive wealth elasticities as well as occupational persistence for families in Florence between 1427 and 2011 (Barone and Mocetti, 2016)
 - large grandparent-child correlations (Stuhler, 2012; Braun and Stuhler, 2018)

イロト イポト イヨト 一日

Long-run persistence

"Approximate" the microfounded wealth dynamics

$$w_i(t+1) = \lambda(r_{i,t})w_i(t) + \beta(r_{i,t}, y_{i,t})$$
(2)

• with the rank-based wealth dynamics

$$d\log w_i(t) = \alpha_{\rho_t(i)} dt + \sigma_{\rho_t(i)} dB_i(t), \qquad (3)$$

where $\rho_t(i)$ denote the wealth-rank of household *i* at time *t*, so that $\rho_t(i) < \rho_t(j)$ if and only if $w_i(t) > w_j(t)$ or $w_i(t) = w_j(t)$ and i < j

 and with the rank-based wealth dynamics with permanent heterogeneity

$$d\log w_i(t) = \left(\gamma_i + \hat{\alpha}_{\rho_t(i)}\right) dt + \sigma_{\rho_t(i)} dB_i(t), \tag{4}$$

イロト イポト イヨト 一日

Long-run persistence - simulations

	Data	Approximated	Perman. Heterog.
		Rank-Based	Rank-Based
		Model	Model
Wealth Distribution			
Top 1%	33.6%	31.9%	34.0%
Top 1-5%	26.7%	17.1%	16.6%
Top 5-10%	11.1%	9.5%	9.2%
Top 10-20%	12.0%	11.2%	10.8%
Top 20-40%	11.2%	13.1%	12.7 %
Top 40-60%	4.5%	8.3%	8.1%
Bottom 40%	-0.1%	8.9%	8.5%
Wealth-Rank Correlations			
Parent-Child Rank Coeff.	0.191	0.229	0.255
Grandparent-Child Rank Coeff.	0.116	0.018	0.077
Long-Run Persistence Coeff.	0.105	0.000	0.100

Table 2: Upper part: Average wealth shares from 1,000 simulations of the different models - data from the Survey of Consumer Finances. Lower part: Average coefficients from regressions of child rank on parent rank and grandparent rank from 1,000 simulations of the different models - data from Danish wealth holdings for three generations in Boserup et al. (2014). Average coefficient from regressions of household rank in generation t on household rank in generation t - 23 (585 years) from 1,000 simulations of the different models - data from estimates of very long-run (585 years) dynastic wealth holdings in Florence, Italy, in Barone and Mocetti (2016).

Alberto Bisin & various co-authors

Finance and (Wealth) Inequality

Long-run persistence - simulations

		Auto-Correlated	Perman. Heterog.
	Data	Returns Model	Rank-Based
		$(\theta = 0.95)$	Model
Wealth Distribution			
Top 1%	33.6%	31.5%	34.0%
Top 1-5%	26.7%	20.6%	16.6%
Top 5-10%	11.1%	12.3%	9.2%
Top 10-20%	12.0%	13.5%	10.8%
Top 20-40%	11.2%	12.8%	12.7%
Top 40-60%	4.5%	5.8%	8.1%
Bottom 40%	-0.1%	3.5%	8.5%
Wealth-Rank Correlations			-
Parent-Child Rank Coeff.	0.191	0.407	0.255
Grandparent-Child Rank Coeff.	0.116	0.044	0.077
Long-Run Persistence Coeff.	0.105	0.041	0.100

Table 4: See the notes to Table 2.

э

< ロ > < 四 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Long-run persistence - simulations

Why persistent types and not return correlation?

Slow decay

• High variance: the coefficient from a regression of child return rank on parent return rank, averaged across 1,000 simulations, is equal to 0.08 for the permanently heterogeneous model and is equal to 0.95 for the auto-correlated returns model (it is .16 in Norway's data in Fagereng et al., 2021).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Conclusions

Interesting times ahead - with new data and conceptual costructs

- on inequality measures: but see Catherine, Miller, and Sarin (2020); Kuhn, Schularick, Steins (2019); Larrimore, Burkhauser, Auten and Armour (2017)
- on returns (from entrepreneurship, dependence on wealth, revenue diversion): but see Bach, Calvet, and Sodini (2020), Fagereng, Guiso, Malacrino, and Pistaferri (2020), Fagereng, Mogstad, and Ronning (2020); Benhabib and Hager (2021);
- on long-run persistence cultural and institutional factors Bourdieu (1984, 1998), Acemoglu and Robinson (2008); Bisin and Verdier (2010)

イロン イボン イヨン イヨン 三日