Estimation 0 Main Results

Conclusion

Rationalizing Trading Frequency and Returns: Maybe Trading IS Good for You

Yosef Bonaparte¹ Russell Cooper² Mengli Sha³

¹University of Colorado Denver

²European University Institute

³Pennsylvania State University

CEPR Fifth European Workshop on Household Finance May 7, 2020 Motivation

Household Optimization

Estimation

Main Results 0000 Conclusion

Motivation

Barber and Odean (2000)

"

Our most dramatic empirical evidence supports the view that overconfidence leads to excessive trading ...households that trade frequently earn a net annualized geometric mean return of 11.4 percent, and those that trade infrequently earn 18.5 percent. These results are consistent with models where trading emanates from investor overconfidence, but are inconsistent with models where trading results from rational expectations.

- "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors,"The Journal of Finance, 2000, 3229 cites.
- Boys will be boys: Gender, overconfidence, and common stock investment" The Quarterly Journal of Economics, 2001, 4458 cites.

BO Interpretation

Motivation

Household Optimization

Estimation 0 Main Results 0000 Conclusion

Motivation

Barber and Odean (2000)

"

Our most dramatic empirical evidence supports the view that overconfidence leads to excessive trading ...households that trade frequently earn a net annualized geometric mean return of 11.4 percent, and those that trade infrequently earn 18.5 percent. These results are consistent with models where trading emanates from investor overconfidence, but are inconsistent with models where trading results from rational expectations.

- "Trading Is Hazardous to Your Wealth: The Common Stock Investment Performance of Individual Investors,"The Journal of Finance, 2000, 3229 cites.
- Boys will be boys: Gender, overconfidence, and common stock investment" The Quarterly Journal of Economics, 2001, 4458 cites.

Motivation	Household Optimization	Estimation O	Main Results	
What We Do				

Ask: Does a model of rational and irrational traders support these findings?

Motivation	Household Optimization	Estimation	Main Results
	0000000	0	0000

Ask: Does a model of rational and irrational traders support these findings?

Approach

What We Do

- Dynamic household optimization with portfolio adjustment costs
- Beliefs
 - Impose rational expectations for baseline
 - Irrationality modeled as: belief miscalibration
- Simulated Method of Moments (SMM) to match turnover rate and return moments from BO data

NЛ	01	 110	+ 1	0	n
	U.	 va	- U	UU.	

Data

- from a large discount brokerage firm
- all accounts, 78,000 households, Jan 91 Dec 96
- focus on commom stocks only (66,465 hh)
- median position: 3 stocks, \$15k
- trade (monthly): median sales/purchase: \$ 7k/6k
- median commision (monthly): \$ 106

Sampled households have open accounts before Jan 1991. Household level medians.

Motivation	Household Optimization	Estimation	Main Results
	000000	0	0000

Moments

Table: Data Moments: Our Calculation v.s. BO

case	Mean					
	t1	t2	t3	t4	t5	DR
Time Series	0.00	0.0039	0.0134	0.0291	0.1155	-0.0010
Cross Section	0.00	0.00	0.00	0.00	0.2721	-0.0009
BO	0.0010	0.0124	0.0289	0.0598	0.2149	-0.0046

This table reports data moments. Here "ti" is the turnover rate for quintile "i" and "DR" is the difference in the net return between the highest and lowest turnover rate quintiles. The row labeled BO is from Table V of BO.

Time Series: Balanced Panel

the quintiles of the time series average of the turnover rates by household.

- Cross Section: Balanced Panel the *time series average* of the quintiles computed from the cross section for each month.
- **BO**: directly taken from Barber and Odean (2000)

Def Turnover, Net Return

8.4	1.11		 · · · ·	
	OT.	IVa	\mathbf{or}	۱.
	υı		 O 1	

Estimation 0 Main Results 0000 Conclusion

Findings

- Our model with rational households
 can essentially match turnover rate and net return differential moments
 - turnover rates driven by fixed costs, idiosyncratic income shocks and return shocks
 - net return reduced by trading costs
- model fit with irrational beliefs
 - no improvement when matching model-consistent moments.
 - slight improvement only matching moments directly taken from BO(2000)

IV I	ot.	iva	tic	n

Estimation O Main Results

Conclusion

Model

<ロ > < 母 > < 臣 > < 臣 > < 臣 > 臣 の < で 7/23

$\sim +$			-
	IV		

Estimation

Main Results

Conclusion

Environment

- Infinite horizon, monthly
- Rational households: beliefs about stochastic processes are consistent with data
- 2 assets
 - stocks: stochastic return, costly to trade
 - bonds: non-stochastic return, no costs of adjustment
- All are stock market participants
 - extensive margin: adjust stock holding or not
 - intensive margin: size of adjustment
- Introduce irrational beliefs (misperceptions, advice) later

Formalities

Exogenous income and stock return processes, as well as the stock trading costs are estimated from data directly.

Return

Motivation

Household Optimization

Estimation 0 Main Results 0000 Conclusion

Costs

Consumption if adjustment:

$$c = \psi y + R^{b}b + R^{s}s - b' - s' - C(s, s') - F$$
(1)

Internal Costs:

- F is a fixed cost
- Trading Costs: C(s, s')
 - estimated from BO monthly (1991-96) household account data
 - Fixed, linear and non-linear costs Details
 - impacts net return dependence on trading volume

oth	(0±)	on

Estimation

Income Process

- 1, annual income process estimated using PSID:1968-97: AR1 (0.84,0.29)
- 2, estimate monthly income process to match annual moments
 - without unemployment shock
 - serial correlation: $\rho = 0.978$
 - std of innovation: $\sigma = 0.116$
 - with unemployment Risk
 - monthly spells calculated from Bureau of Labor Statistics data: job loss: 0.014, job finding: 0.27
 - replacement rate = 0.40
 - estimated to match annual moments given monthly job flows
 - $\blacktriangleright \ \rho = 0.996, \ \sigma = 0.084,$ conditional on employment

no income data for BO households. back

	0		

Estimation O Main Results

Conclusion

Return Process

- bonds: 1.0017 monthly (1.02 annual)
- stocks (monthly):
 - measured as S&P index monthly 1967-94, Center for Research in Security Prices (CRSP) data
 - mean return: 1.0061
 - **std**: 0.0439
 - no serial correlation

No correlation between return and income process

back

Motivation

Household Optimization

Estimation O Main Results

Conclusion

An example: Response to Income Shocks

<ロト<</th>
 ・< E ト < E ト < E り へ ? 12/23</th>

ot		

Estimation

Main Results

Conclusion

Response to Income shocks

avg. turnover = 0.0226, avg. stock = \$154.5k, avg. income = \$11.3k exogenous shocks 2.5 2 25 1.5 20 income return 0.5 0 10 20 30 40 50 60 70 Return -- income k\$

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

ot		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

<ロ > < 回 > < 画 > < 三 > < 三 > 三 の Q @ 13/23

	/ a		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

Conclusion

<ロ > < 団 > < 豆 > < 豆 > < 豆 > う Q C 13/23

ot		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

<ロ > < 団 > < 豆 > < 豆 > < 豆 > う Q C 13/23

ot		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

Conclusion

(ロ) (日) (日) (日) (日) (日) (13/23)

ot		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

Conclusion

ot		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

Conclusion

<ロト < 団 ト < 臣 ト < 臣 ト 三 · の Q · 13/23

ot		

Estimation

Main Results

Response to Income shocks

Avg. hh. income = 6k. (de) accumulation after (low) high income realization. Turnover rate depends on stock position.

Conclusion

<ロト < 課 ト < 注 ト < 注 ト 三 の < で 13/23

	0		

Estimation 0 Main Results

<ロ > < 回 > < 三 > < 三 > < 三 > 三 の Q @ 14/23

Conclusion

Intuition

- Trading patterns reflect both income shocks and adjustment costs, as well as return shocks
- large trades from tail shocks plus "pent up" adjustment
- turnover rates also reflect financial wealth
- net returns are lower when trading volume is high

Irrational Agents Approach

Households optimize but

- allow alternative beliefs about exogenous processes
- believe "signal" about future returns
- "Overconfidence" is not clear in BO papers

Procedure

- specify where beliefs differ: (i) income, (ii) returns, (iii) advice
- Estimate Parameters
- Simulation based on actual not perceived processes
- Compare to baseline estimates and fit

Details

Motivation

Household Optimization

Estimation

Main Results 0000 Conclusion

Approach: SMM

$$J = \min_{(\Theta)} \left(M^s(\Theta) - M^d \right)' W \left(M^s(\Theta) - M^d \right).$$
 (2)

W is the identity matrix.¹

Parameters:

- discount factor: β
- Preferences: $u(c) = \frac{c^{1-\gamma}}{1-\gamma}$
- Adjustment Costs: (ψ, F) , 2 cases

ΝЛ				

Estimation 0 Main Results

Conclusion

Main Results

<ロト < 回 ト < 臣 ト < 臣 ト 三 の へ C 17/23

		2		
	v			

Estimation 0 Main Results

Conclusion

Results: Key Points

Time Series and Cross Section

- match turnover and net return moments with rational agents
- fit better with Unemployment Risk (UR)
- irrational agents do not improve fit
- robustness exercise
- BO Moments
 - expand turnover moments to include portfolio rebalancing
 - rational agents match turnover and net return moments
 - slight improvement with irrational beliefs about unemployment risk or volatility of the return process
 - consumption loss from irrationality is small

Our hh v.s. BO hh

Motivation

Household Optimization

E

Estimation

Main Results

Conclusion

Time Series: Moments

Data	and	Model	Moments:	Time	Series

case	t1	t2	t3	t4	t5	DR
Data	0	0.0039	0.0134	0.0291	0.1155	-0.0010
			Rat	ional		
No UR	0.0065	0.0113	0.0168	0.0247	0.1151	-0.0017
UR	0.0065	0.0104	0.0157	0.0242	0.1159	-0.0018
			Irra	tional		
δ	0.0065	0.0113	0.0168	0.0247	0.1151	-0.0017
σ_R	0.0065	0.0115	0.0174	0.0262	0.1076	-0.0018
$ ho_R$	0.0065	0.0113	0.0168	0.0248	0.1152	-0.0017
μ_R	0.0066	0.0113	0.0174	0.0266	0.1137	-0.0026
good news	0.0065	0.0113	0.0168	0.0247	0.1151	-0.0017
bad news	0.0063	0.0112	0.0171	0.0259	0.1160	-0.0017

This table reports data and simulated moments by household averages over time. The panel is balanced. "ti" is the turnover rate for quintile "i" and "DR" is the difference in the net return between the highest and lowest turnover rate quintiles.

$^{\circ t}$			
	1.		

Estimation

Conclusion

Time Series: Parameter Estimates

Table: Parameter Estimates: Time Series

case	β	γ	ψ	IR Parm	DP	J
			Ra	ational		
No UR	0.9876	2.1659	0.9868			1.3e-04
UR	0.9892	2.2552	0.9803			1.2e-04
	Irrational					
δ	0.9876	2.1659	0.9867	0.0149	0.0140	1.3e-04
σ_R	0.9876	2.1658	0.9868	0.0439	0.0439	1.3e-04
$ ho_R$	0.9876	2.1659	0.9868	0.0004	0	1.3e-04
μ_R	0.9883	2.2407	0.9854	1.0057	1.0061	1.3e-04
good news	0.9876	2.1659	0.9868	0.0000	0	1.3e-04
bad news	0.9877	2.1670	0.9864	0.0000	0	1.2e-04

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is the fraction of income remaining after portfolio adjustment. For the irrational cases, "IR Parm" is the estimated beliefs and "DP" is the parameter from the data. J is the difference between model moments and data moments as described in equation (2).

Cross Section Moments Cross Section Parms

	- V		

Estimation

Main Results

Conclusion

BO: Moments

Fable:	Data	and	Model	Moments:	BO
--------	------	-----	-------	----------	----

case	t1	t2	t3	t4	t5	DR
Data	0.0019	0.0124	0.0289	0.0598	0.2149	-0.0046
		Ratio	nal: Time	e Series,ba	alanced	
No UR	0.0129	0.0248	0.0364	0.0496	0.2148	-0.0032
UR	0.0047	0.0184	0.0311	0.0454	0.2128	-0.0028
		h	rrational:	Time Ser	ries	
$\tilde{\delta}$	0.0085	0.0211	0.0328	0.0568	0.2160	-0.0042
$ ilde{\sigma}_R$	0.0079	0.0225	0.0334	0.0557	0.2136	-0.0028

This table reports data and simulated moments. "ti" is the turnover rate for quintile "i" and "DR" is the difference in the net return between the highest and lowest turnover rate quintiles.

Full Table Our hh v.s. BO hh

(ロ) (日) (日) (日) (日) (日) (1/23)

Motivation

Household Optimization

Estimation

Main Results

Conclusion

BO: Parameter Estimates

Table: Parameter Estimates: BO

case	β	γ	ψ	Γ	IR Parm	DP	J
		Ra	tional: T	ime S	Series, Bala	inced	
No UR	0.9830	1.7351	0.9947	na	na	na	4.36e-04
UR	0.9767	1.6029	0.9917	na	na	na	2.62e-04
			Irratior	nal: T	ime Series		
$\tilde{\delta}$	0.9828	1.4122	0.9951	na	0.0368	0.0140	1.44e-04
$\tilde{\sigma}_R$	0.9832	1.5123	0.9898	na	0.0958	0.0439	1.80e-04

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is the fraction of income remaining after portfolio adjustment. J is the difference between model moments and data moments as described in equation (2).

Full Table Economic Significance of Irrationality

Motivation	Household Optimization	Estimation
	000000	0

Conclusions

- BO attributes the data pattern to overconfidence: we don't concur
- take challenges to models of rational agents very seriously and to the data
- models with rational agents can match the turnover moments and net return differentials emphasized in BO
- introducing various forms of irrationality does NOT improve the fit of the model with model-consistent moments;
- some form of irrationality slightly improves the fit when matching expanded moments from BO, small economic significance

Model 00000 Cost

Moments

Identification

More Results

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Appendix

Model	
00000	

Cost

Moments

Identificatio

More Results

Formalities

Extensive Margin

 $v(\Omega) = \max\{v^a(\Omega), v^n(\Omega)\}$

for all $\Omega = (y, b, s, R^s)$. Intensive Margin

Adjust:

$$\begin{aligned} v^a(\Omega) &= \max_{b' \geq 0, s' \geq 0} u(c) + \beta E_{\Omega' \mid \Omega} v(\Omega') \\ t. \\ c &= \psi y + R^b b + R^s s - b' - s' - C(s,s') - F. \end{aligned}$$

No Adjust:

s.

s

$$v^{n}(\Omega) = \max_{b' \ge 0} u(c) + \beta E_{\Omega' \mid \Omega} v(\Omega')$$

t.

$$c = y + R^b b - b$$
$$s' = R^s s.$$

- イロト イロト イヨト イヨト - ヨー つくぐ

lodel	Cost	Mo
0000		

Identification

More Results

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Policy Functions

Ν

- Extensive: $Z(\Omega) \in \{0,1\}$, indicates adjustment
- Intensive: $(b(\Omega), s(\Omega))$
- Large Turnover due to:
 - adjustment costs
 - large income shocks
 - stock return shocks
 - wealth effects from return on stocks
 - return paid to stock account
- Decision rules depend on
 - For the trading costs, $C(s,s^\prime)$, impact measured net return
 - conditional beliefs, $E_{\Omega'|\Omega}$
- Solved at monthly frequency

Model
00000

Cost

Moments

Identificatio

More Results

Types of Irrationality

- Beliefs about Income
 - Variance: σ
 - Unemployment Risk: δ
- Beliefs about the Return Process
 - Persistence of Stock Returns: $\tilde{\rho}$
 - Mean of Stock Return: μ_R
 - Variance σ_R
- Signals
 - stock broker provides "inside information": optimism or pessimism
 - assumed to be believed
 - large response in portfolio composition and savings

back Noisy Advice

Model

Cost

Moments

Identification

More Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Noisy Advice

- common story about brokers inducing excessive turnover with large trading costs
- introduce signal z about future stock return
 - optimism: high return with probability one
 - pessimism: low return with probability one
 - has no predictive power but trusted by household
 - stimate probability of signal, p

back

Model

Cost

Moments

Identification

More Results

・ロト・日本・日本・日本・日本・日本

Revised Model

$$v(\Omega,z) = \max\{v^a(\Omega,z),v^n(\Omega,z)\}$$
 for all $(\Omega,z).$

$$v^a(\Omega,z) = \max_{b' \ge 0, s' \ge 0} u(c) + \beta E_{\Omega'|\Omega,z} \int_z v(\Omega',z') dG(z)$$
 s.t.

$$c = \psi y + R^{b}b + R^{s}s - b' - s' - C(s, s') - F.$$

$$v^n(\Omega, z) = \max_{b' \ge 0} u(c) + \beta E_{\Omega'|\Omega, z} \int_z v(\Omega', z') dG(z)$$
s.t.

$$c = y + R^b b - b'$$
$$s' = R^s s.$$

back

M	0	d	el	
0	0	0		0

Cost

Moments

Identification

More Results

・ロト・日本・日本・日本・日本・今日や

Trading Costs

Model: $(s_{-1} \text{ is value of current stock holdings})$

Buy:
$$C^{b}(s_{-1},s) = \nu_{0}^{b} + \nu_{1}^{b}(s-s_{-1}) + \nu_{2}^{b}(s-s_{-1})^{2}$$

Sell: $C^{s}(s_{-1},s) = \nu_{0}^{s} + \nu_{1}^{s}(s_{-1}-s) + \nu_{2}^{s}(s-s_{-1})^{2}$.

Table:	Estimated	Trading	Costs
--------	-----------	---------	-------

Parameter	Buying	Selling
Constant $ u_0^i$	56.10	61.44
	(0.05)	(0.061)
Linear $ u_1^i$	0.0012	0.0014
Quadratic $ u_2^i$	$(1.63e-06) -1.01e^{-10}$	$(1.93e-06) - 1.28e^{-10}$
	(2.88e-13)	(9.26e-13)
Adj. R^2	0.251	0.359
Number of Observations	1,746,403	1,329,394

Лο	d	el		
00	0	0	0	

Cost

Moments

Identification

More Results

Moments

- Turnover Moments
 - Turnover Rates

$$T_{i,t} \equiv |(\frac{s_{i,t} - s_{i,t-1}R_t^s}{s_{i,t-1}R_t^s})|.$$
(3)

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

Net Return for agent i

$$R_{i,t}^{n} = \frac{s_{i,t-1}R_{t}^{s} - C(s_{i,t} - s_{i,t-1}R_{t}^{s})}{s_{i,t-1}}.$$
(4)

Study difference in Rⁿ_{i,t} by quintile of turnover rate.
 time series vs cross sectional approaches

Model

Cost

Moments

Identification

More Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Identification at Baseline Moments

Table: Elasticity of Moments to Parameter Values: Baseline

parm.	t1	t2	t3	t4	t5	DR
β	95.31	45.25	11.96	-14.43	-77.97	-95.39
γ	3.95	7.32	17.46	18.01	4.44	3.57
ψ	6.12	9.36	17.61	18.94	-20.27	21.11

This table reports the elasticity of moments with respect to parameters for the baseline model, based upon a 1 % increase.

back

Mo	de	
00	oc	0

Cost

Moments

Identificatio

More Results

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Cross Section: Moments

Table: Data and Model Moments: Cross Section

case	t1	t2	t3	t4	t5	DR				
Data	0.0000	0.0000	0.0000	0.0000	0.2721	-0.0009				
		Rational								
No UR	0.0000	0.0000	0.0000	0.0000	0.2723	-0.0017				
UR	0.0000	0.0000	0.0000	0.0015	0.2723	-0.0015				
	Irrational									
$ ho_R$	0.0000	0.0000	0.0000	0.0000	0.2724	-0.0016				

This table reports data and simulated moments. "ti" is the turnover rate for quintile "i" and "DR" is the difference in the net return between the highest and lowest turnover rate quintiles.

back

Model	Cost	Moments	Identification	More Results
00000				0000000

Cross Section: Parameter Estimates

Table: Parameter Estimates: Cross Section

case	β	γ	ψ	IR	DP	J		
		onal						
No UR	0.9795	1.0666	0.9729	na	na	6.30e-07		
UR	0.9727	1.1050	0.9531	na	na	3.57e-07		
	Irrational							
$ ho_R$	0.9790	1.0487	0.9626	0.0004	0	6.03e-07		

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is the fraction of income remaining after portfolio adjustment. For the irrational cases, "IR Parm" is the estimated beliefs and "DP" is the parameter from the data. J is the difference between model moments and data moments as described in equation (2).

back

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Model 00000	Cost	Moments	Identification	More Results
Robustness				

- Low Trading Costs: 10% of est. values
- No reinvestment if no adjustment: stock gains into bond account if no adjustment
- Fixed cost of adjustment instead of income loss

Finding

The model with rational agents is able to reproduce both the return differential and righ turnover rates

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Results Back

Ν	lo	d	el	
0			0	0

Cost

Moments

Identification

Robustness Results

Table: Parameter Estimates: Robustness

case	β	γ	ψ	J
Baseline	0.9876	2.1659	0.9868	1.3e-04
Low Cost	0.9876	2.1635	0.9868	2.0e-04
No Reinvestment	0.9881	2.3782	0.8716	3.0e-04
F	0.9854	2.8566	0.0469	1.2e-04

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is the fraction of income remaining after portfolio adjustment. J is the difference between model moments and data moments as described in equation (2). The row labeled Baseline is the baseline estimation with no unemployment risk.

case	t1	t2	t3	t4	t5	DR
Data	0	0.0039	0.0134	0.0291	0.1155	-0.0010
Baseline	0.0065	0.0113	0.0168	0.0247	0.1151	-0.0017
Low Cost	0.0073	0.0127	0.0201	0.0297	0.1101	-0.0070
No Reinvestment	0.0102	0.0156	0.0191	0.0250	0.1152	-0.0009
F	0.0064	0.0110	0.0168	0.0253	0.1145	-0.0013

Table: Data and Model Moments: Robustness

This table reports data and simulated moments by household averages over time. The panel is balanced. "ti" is the turnover rate for quintile "i" and "DR" is the difference in the net return between the highest and lowest turnover rate quintiles. The row labeled Baseline is the baseline estimation with no unemployment risk.

Model	
0000	0

Cost

Moment

Identification

More Results

BO: Moments

Table: Data and Model Moments: BO

case	t1	t2	t3	t4	t5	DR	exit rate	
Data	0.0019	0.0124	0.0289	0.0598	0.2149	-0.0046	0.0120	
			Rational:	Time Ser	ries,balano	ced		
No UR	0.0129	0.0248	0.0364	0.0496	0.2148	-0.0032	na	
UR	0.0047	0.0184	0.0311	0.0454	0.2128	-0.0028	na	
		R	ational: 7	Time Serie	es,unbalaı	nced		
No UR	0.0061	0.0105	0.0157	0.0249	0.2176	-0.0060	0.0010	
UR	0.0048	0.0083	0.0143	0.0220	0.2133	-0.0079	0.0005	
			Ratio	nal: Cross	Section			
No UR	0.0022	0.0112	0.0268	0.0609	0.2126	-0.0049	na	
UR	0.0000	0.0022	0.0161	0.0401	0.2120	-0.0052	na	
	Irrational: Time Series							
$\tilde{\delta}$	0.0085	0.0211	0.0328	0.0568	0.2160	-0.0042	na	
$\tilde{\sigma}_R$	0.0079	0.0225	0.0334	0.0557	0.2136	-0.0028	na	

This table reports data and simulated moments. "ti" is the turnover rate for quintile "i" and "DR" is the difference in the net return between the highest and lowest turnover rate quintiles.

Model 00000 Cost

Moment

Identification

More Results

BO: Parameter Estimates

Table: Parameter Estimates: BO

case	β	γ	ψ	Γ	IR Parm	Parm	J	
	Rational: Time Series, Balanced							
No UR	0.9830	1.7351	0.9947	na	na	na	4.36e-04	
UR	0.9767	1.6029	0.9917	na	na	na	2.62e-04	
	Rational: Time Series, Unbalanced							
No UR	0.9886	2.5459	0.9683	0.0612	na	na	0.0015	
UR	0.9927	1.3656	0.9987	0.0120	na	na	0.0018	
	Rational: Cross-Section							
No UR	0.9469	2.0056	0.9996	na	na	na	1.26e-05	
UR	0.9797	1.5313	0.9986	na	na	na	6.67e-04	
	Irrational: Time Series							
$\tilde{\delta}$	0.9828	1.4122	0.9951	na	0.0368	0.0140	1.44e-04	
$\tilde{\sigma}_R$	0.9832	1.5123	0.9898	na	0.0958	0.0439	1.80e-04	

This table reports estimated parameters for the various cases: β is the discount factor, γ is relative risk aversion and ψ is the fraction of income remaining after portfolio adjustment. J is the difference between model moments and data moments as described in equation (2).

Model	Cost	Moments	Identification	More Results
00000				00000000

Economic Significance of Irrationality

the compensating differential given to rational agents if they used the irrational decision rules: is calculated by solving for χ that satisfies

$$\sum_{t=1}^{60} \beta^{t-1} U(\mathbf{\chi} CR_{i,t}) + \beta^{60} \mathbb{E}_{y',R'|y,R} V(S')$$
$$= \sum_{t=1}^{60} \beta^{t-1} U(CIR_{i,t}) + \beta^{60} \mathbb{E}_{y',R'|y,R} V(S')$$

where $U(\cdot)$: the utility function for the rational agent, \mathbb{E} : rational expectation, V(S'): the value function of the rational agent in state S'.

 $\chi \approx 99.4\%$: A rational agent needs 0.6% consumption compensation to behave like irrational: this is about \$36 or less than the fixed cost of a single trade. back

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Model	Cost	Moments	Identification	More Results
00000				0000000

To Be Clear: Not Literally BO Household

only bonds and stocks: no stock turnover

- construct moments to measure portfolio adjustment
- ignore stock rebalancing in baseline
- add moments with rebalancing as robustness
- trading costs from estimates
- no choice between direct and indirect holdings
- no data on income process for their households

Moments from the BO panel data

our moments: recalculate model consistent moments using time series (baseline) and cross section approaches from BO data with and without exit

Back BO moments