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Disclaimer

The views expressed do not necessarily re�ect the position of the Federal Reserve
Bank of New York, the Federal Reserve System, or the Swiss National Bank.
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Winners and Losers
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Convex quadratic: “extreme” x lose, others gain
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Two groups: “blue” borrowers lose due to high variance
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Sources of Unequal E�ects

- Previous example could arise from

y = P(x) + #,

where P is nonlinear and g does not matter for y .
) Winners/losers arise from additional �exibility of new technology.
E�ects across g depend on functional form of new technology, and the di�erences
in distribution of characteristics

- Alternative:
y = b · x + g · g + #,

i.e. true relationship is linear, but g predictive of default.
) E�ects of new technology arise due to “triangulating” g
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Triangulation
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- No linear correlation between x and g ! linear model simply recovers average
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Triangulation
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- Blue borrowers more likely to have extreme x ! nonlinear model penalizes.
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US Mortgage Data
HMDA

- Application date, applicant income,
loan type, size, purpose,

- race, ethnicity, gender

McDash (Black Knight)

- Underwriting, contract and
performance: e.g. FICO, LTV, interest
rate, default status

Linked Dataset

- 9.4m mortgage loans from 2009-2013
- Portfolio and GSE loans, < $1m
- Default: 90+ days delinquent within 3
years of origination
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Unequal E�ects of New Technology: Population
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Flexibility versus Triangulation
Decomposition of model improvements:
1. Add race as an explanatory variable to Logit
2. Allow use of ML technology to the model with race

(i.e. ”add” nonlinear functions / interactions of x as explanatory variables)

Race Technology

ROC-AUC 5.88 94.12
Precision 7.90 92.10
R2 2.04 97.96

) Improved performance mostly due to �exibility, not triangulation

NB: Order of decomposition matters; but our qualitative conclusion is robust
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Conclusion

Improvements in statistical technology creates
- Greater predictive power and gains for producers
- Increased disparity in outcomes for consumers

Framework for unequal e�ects: Flexibility and Triangulation

Empirical assessment in the US mortgage market
- Unequal e�ects along racial lines
- Appear to be driven by �exibility
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