Carbon pricing and stress discounting

Frederic Cherbonnier* & Aude Pommeret**

*Sciences-Po Toulouse & Toulouse School of Economics **IREGE-USMB, RSB and France Stratégie

CEPR/EAERE Webinar on climate policy

April 2023

イロト イヨト イヨト

Carbon Value and Cost Benefit Analysis

Risk-adjusted social discount rate Stress-discounting : basic example without climate risk Stress-discounting with climate risk

Roadmap

Carbon Value and Cost Benefit Analysis

< ロ > < 同 > < 回 > < 回 >

CO2 emission and Cost-Benefit analysis

Net Present Value of future costs and benefits, taking into account project's impact on CO2 emission ?

Basic example : an investment today that modifies future CO2 emission by a volume Δ_t at times t>0

 $\rightarrow \Delta_t > 0$ for a new highway inducing more pollution

 $\rightarrow \Delta_t < 0$ for a new renewable energy production unit instead of a fossil-fuel based one

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CO2 emission and Cost-Benefit analysis

Net Present Value of future costs and benefits, taking into account project's impact on CO2 emission ?

Basic example : an investment today that modifies future CO2 emission by a volume Δ_t at times t>0

 $\rightarrow \Delta_t > 0$ for a new highway inducing more pollution

 $\rightarrow \Delta_t < 0$ for a new renewable energy production unit instead of a fossil-fuel based one

We consider here only projects with marginal impacts on consumption.

Let's assume 1 ton of CO2 emitted at time T as a negative (marginal) impact MD_t^T on consumption at time $t \ge T$ ($MD_t^T = 0$ for t < T).

Marginal impact on the utility of the representative consumer at time t:

$$u(C_t + MD_t^T) \simeq u(C_t) + u'(C_t) \times MD_t^T$$

イロト 不得 トイヨト イヨト 二日

CO2 emission and Cost-Benefit analysis

Net Present Value of future costs and benefits, taking into account project's impact on CO2 emission ?

Basic example : an investment today that modifies future CO2 emission by a volume Δ_t at times t>0

 $ightarrow \Delta_t > 0$ for a new highway inducing more pollution

 $\rightarrow \Delta_t < 0$ for a new renewable energy production unit instead of a fossil-fuel based one

We consider here only projects with marginal impacts on consumption.

For a simple project reducing emissions by Δ at time T ($\Delta_t = \Delta$ for t = T and 0 otherwise),

CO2 impact on project's
$$NPV_0 = \frac{E[\sum_{t=0}^{\infty} e^{-\delta t} u'(C_t) \times \Delta \times MD_t^T]}{u'(C_0)}$$

When $\Delta = 1tCO2$ and T = 0, this is today's social cost of carbon.

イロト 不得 トイヨト イヨト 二日

CO2 emission and Cost-Benefit analysis

Public administrations choose an official social cost of carbon SCC_t (inclusion)

= monetary equivalent at t of damages induced by 1tCO2 emitted at t

... and an official "social discount rate" r_t (cf. next slides) in order to get the NPV impact: Jump back

CO2 impact on project's
$$\mathsf{NPV} = \sum_{t=0}^{\infty} e^{-r_t} SCC_t \times \Delta_t$$
 (1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CO2 emission and Cost-Benefit analysis

Public administrations choose an official social cost of carbon SCC_t (ink) = monetary equivalent at t of damages induced by 1tCO2 emitted at t

... and an official "social discount rate" r_t (cf. next slides) in order to get the NPV impact: Jump back

CO2 impact on project's NPV =
$$\sum_{t=0}^{\infty} e^{-r_t} SCC_t \times \Delta_t$$
 (1)

but SCC_t and r_t often not the result of mutually consistent evaluations: Illustration: what is the optimal speed of CO2 emissions reduction ?

- France (2019): Political decision on a carbon budget $\Rightarrow \tilde{g} > 10\%$ and $r = 3.2\% \Rightarrow$ procrastination
- US (2022): Joint evaluation of the two parameters $\Rightarrow \tilde{g} \simeq 1.2\%$ and r between 1.5% and 2.5% \Rightarrow action brought forward

Even when the two parameters are consistently defined, the formula 1 is not correct when Δ_t is uncertain !

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Roadmap

1 Carbon Value and Cost Benefit Analysis

2 Risk-adjusted social discount rate

3 Stress-discounting : basic example without climate risk

4 Stress-discounting with climate risk

4 日 2 4 周 2 4 月 2 4 月

Social value of a marginal investment project

Classical approach used to compute the net present value of a project yielding net benefits B_t at time t: discount the expected benefit :

$$PV = \sum_{t=0}^{+\infty} E\left[B_t\right] e^{-r_t t}$$

As seen before, when the project has marginal impacts on consumption, this should be also

$$PV = \frac{1}{u'(C_0)} \sum_{t=0}^{+\infty} e^{-\delta t} E\left[B_t u'(C_t)\right]$$

Thus, the social discount rate to be used is

$$r_t = \delta - t^{-1} \log \left(\frac{E\left[B_t u'(C_t)\right]}{u'(C_0)EB_t} \right)$$

The social discount rate

n

The risk-free rate is given, under specific assumptions*, by the extended Ramsey rule:

$$r_{f} = \underbrace{\delta + \gamma \mu}_{\text{time preference and wealth effect}} - \underbrace{0.5\gamma^{2}\sigma^{2}}_{\text{precautionary effect}}$$
* constant relative risk aversion γ , consumption follows a geometric brownian notion with trend μ and volatility σ)

イロト イボト イヨト イヨト

The social discount rate

m

The risk-free rate is given, under specific assumptions*, by the extended Ramsey rule:

$$r_{f} = \underbrace{\delta + \gamma \mu}_{\text{time preference and wealth effect}} - \underbrace{0.5\gamma^{2}\sigma^{2}}_{\text{precautionary effect}}$$
(* constant relative risk aversion γ , consumption follows a geometric browniar motion with trend μ and volatility σ)

The risk premium. Consumption-based asset pricing model by Rubinstein (1976), Lucas (1978) and Breeden (1979):

$$\mathbf{r} = \mathbf{r}_{\mathbf{f}} + \beta \times \phi$$

- ϕ : systematic risk premium
- β: consumption beta, defined as the elasticity of the net social benefit of the project to a change in aggregate consumption

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Interpreting β

- $\beta >> 0$ means that the project gains value in times of growth, and helps to reinforce macroeconomic risk (transportation).
- $\beta < 0$ means that the project has an insurance value (hospitals, nuclear wastes deep repository) \rightarrow high value when everything goes wrong.
- Consider a motorway project
 - Economic benefits have a positive income elasticity
 - Negative externalities are proportional to both the road traffic and the marginal carbon damage ("Climate β ")

イロト イボト イヨト イヨト

Interpreting β

- $\beta >> 0$ means that the project gains value in times of growth, and helps to reinforce macroeconomic risk (transportation).
- $\beta < 0$ means that the project has an insurance value (hospitals, nuclear wastes deep repository) \rightarrow high value when everything goes wrong.
- Consider a motorway project
 - Economic benefits have a positive income elasticity
 - Negative externalities are proportional to both the road traffic and the marginal carbon damage ("Climate β ")
- β is complex to set.
 - UK (2021) : r = 3.5%
 - France (Guesnerie 2021): r = 1, 2% + β * 2% = 3, 2% until 2070.
 In the absence of existing sectorial estimations, β is supposed equal to 1.

Roadmap

Carbon Value and Cost Benefit Analysis

2 Risk-adjusted social discount rate

3 Stress-discounting : basic example without climate risk

4 Stress-discounting with climate risk

イロト イポト イラト イラト

Methodology (1)

 \rightarrow Cherbonnier F., Gollier C. and Pommeret A. (2023), "Stress Discounting", mimeo.

Basic principle of asset valuation:

- An asset's value is equal to the expectation of its contingent NPV over the multiple states of nature that characterize this asset;
- For each state of nature, one just need to use the Ramsey rule to discount the flow of net benefits under certainty;
- This approach gives the exact value if one takes into account all possible states of nature.

Claim: a good approximation can be obtained by reducing the uncertainty to a few discrete numbers of state of nature

Methodology (2)

 \rightarrow As an illustration, we consider the most simple way to do that, with only two states of nature : a "business as usual" scenario and a "stressed scenario" (Barro type catastrophe).

$$PV = (1 - \pi) \sum_{t=1}^{T} e^{-r^{b}t} B_{t}^{b} + \pi \Delta \sum_{t=1}^{T} e^{-r^{s}t} B_{t}^{s}$$

 B_t^b and B_t^s are all future gross flows associated with the project and occurring between t = 1 and t = T in the BAU scenario and the stress scenario, respectively.

- Calibration left to the evaluator
- For benchmarking purposes, we propose one in the paper that is consistent with the main characteristics of the yield curve

Benchmark comparisons: PV

The benchmark is provided by the complex discounting method that corresponds to the project analysts' view of the world: Martin's cumulants method (REStud 2013)

Figure: Present values obtained using different methods for a benefit at t = 15 years equal to c_t^{β}

< ロ > < 同 > < 三 > < 三 >

Roadmap

Carbon Value and Cost Benefit Analysis

- 2 Risk-adjusted social discount rate
- 3 Stress-discounting : basic example without climate risk
- 4 Stress-discounting with climate risk

イロト イポト イラト イラト

Stress-discounting when climate matters

Need to consider two sources of uncertainty : climate and growth Methodology:

イロト イボト イヨト イヨト

3

Stress-discounting when climate matters

Need to consider two sources of uncertainty : climate and growth Methodology:

• First step = choose a description of the economy (illustrative)

 \rightarrow DICE slightly modified and enriched with the two main sources of uncertainty identified by Dietz et al. 2018 : climate sensitivity and total factor productivity

Second step = 4 scenarios (good or bad news on economy & climate)

 \rightarrow For each scenario (with certain growth and given climate sensitivity), compute social discount rate (Ramsey rule) and social cost of carbon

• Third step = check method's efficiency

 \rightarrow Benchmark of the present value of the social cost of carbon : Stress discounting method vs. Montecarlo simulations

イロト 不得 トイヨト イヨト 三日

Choice of four scenarios

 \rightarrow Climate sensitivity : either 2.6 $^{\circ}\text{C}$ or 5.7 $^{\circ}\text{C}$

 \rightarrow Economic growth : g=3.6% or 43% drop of GDP followed by g=-0.1% We assume an initial drop of 43% in the bad economic scenario. The remaining parameters are chosen such that bad (resp. good) scenarios correspond to the mean of the 8% worst cases (resp. 92% best cases).

イロト イヨト イヨト

э

Illustration of the insurance value of a mitigation project

We consider a mitigation project that prevents the emission of 1 tCO2 each year during 50 years

STRESS DISCOUNTING			
	probability	Present value	contribution
No negative shocks	84,64%	335	283
climate shock	7,36%	932	69
eco shock	7,36%	7322	539
both shocks	0,64%	31361	201
stress		1091	
BENCHMARK (Montecarlo Simulations)			
Exact value		1080	

 \rightarrow Illustrates the insurance value of mitigation projects : about 75% of the project's value comes from catastrophic scenarios.

 \rightarrow Biggest contribution from the economic shock (future generations will be very poor)

 \rightarrow The contribution from the very low probability scenario (both catastrophic events) is very significant

Benchmark

Figure: Present expected value of C_t^{β} tCO2 at *t* with $\beta = 0$ (left) or 1 (right) \rightarrow Stress discounting gives in both case a relatively good approximation of the estimation based on Montecarlo simulations

 \rightarrow When $\beta = 1$, using equation 1 to discount the social cost of carbon with the (non-risk adjusted) social discount rate strongly overestimates carbon value on long horizon (ink)

Thanks

<ロ> <同> <同> <同> <同> < 同>

æ

Frederic Cherbonnier* & Aude Pommeret** Carbon pricing and stress discounting 19/20

CO2 emission and Cost-Benefit analysis

The SSC_t reflects expected damages, and takes into account expected marginal utility at time *t*. It is a shadow price, given by

$$SCC_t = rac{E[\Sigma_{ au=t}^{\infty}e^{-\delta(au-t)}u'(C_{ au})MD_{ au}^t]}{E[u'(C_t)]}$$

The expected damages at time 0 is

$$\frac{E[\Sigma_{\tau=t}^{\infty}e^{-\delta\tau}u'(C_{\tau})MD_{\tau}^{t}]}{u'(C_{0})}$$

so that the SSC_t must be discounted at the risk-free discounting rate

$$r_t = \delta - t^{-1} \log \left(\frac{E\left[u'(C_t)\right]}{u'(C_0)} \right)$$

Jump back

イロト イヨト イヨト