Empirical Analysis	Model Estimation and Counterfactuals	Appendix	References

Rural Migrants and Urban Informality: Evidence from Brazil

Clement Imbert Gabriel Ulyssea Warwick UCL

VDEV/CEPR/BREAD Webinar April 4, 2023

Motivation

Urban population in developing countries grew by 12.5% between 2015-2020; it is projected to grow by 64.7% until 2050 (UNCTAD, 2021).

These countries are also characterized by low firm growth (e.g Hsieh and Klenow, 2014), high informality, underemployment and unemployment, especially among young workers (Bandiera et al., 2021).

Will developing economies be able to generate enough good jobs to accommodate this fast growing urban workforce?

Rural-urban migration accounts for a substantial fraction of population growth in urban areas (Jedwab et al., 2017).

Dominant view (Fields, 1975; Harris and Todaro, 1970): rural migrants join the urban pool of unemployed or informal workers.

Mativation			

Motivation

Urban population in developing countries grew by 12.5% between 2015-2020; it is projected to grow by 64.7% until 2050 (UNCTAD, 2021).

These countries are also characterized by low firm growth (e.g Hsieh and Klenow, 2014), high informality, underemployment and unemployment, especially among young workers (Bandiera et al., 2021).

Will developing economies be able to generate enough good jobs to accommodate this fast growing urban workforce?

Rural-urban migration accounts for a substantial fraction of population growth in urban areas (Jedwab et al., 2017).

Dominant view (Fields, 1975; Harris and Todaro, 1970): rural migrants join the urban pool of unemployed or informal workers.

Motivation			

These countries are also characterized by low firm growth (e.g Hsieh and Klenow, 2014), high informality, underemployment and unemployment, especially among young workers (Bandiera et al., 2021).

Will developing economies be able to generate enough good jobs to accommodate this fast growing urban workforce?

Rural-urban migration accounts for a substantial fraction of population growth in urban areas (Jedwab et al., 2017).

Dominant view (Fields, 1975; Harris and Todaro, 1970): rural migrants join the urban pool of unemployed or informal workers.

Motivation			

These countries are also characterized by low firm growth (e.g Hsieh and Klenow, 2014), high informality, underemployment and unemployment, especially among young workers (Bandiera et al., 2021).

Will developing economies be able to generate enough good jobs to accommodate this fast growing urban workforce?

Rural-urban migration accounts for a substantial fraction of population growth in urban areas (Jedwab et al., 2017).

Dominant view (Fields, 1975; Harris and Todaro, 1970): rural migrants join the urban pool of unemployed or informal workers.

Motivation			

These countries are also characterized by low firm growth (e.g Hsieh and Klenow, 2014), high informality, underemployment and unemployment, especially among young workers (Bandiera et al., 2021).

Will developing economies be able to generate enough good jobs to accommodate this fast growing urban workforce?

Rural-urban migration accounts for a substantial fraction of population growth in urban areas (Jedwab et al., 2017).

Dominant view (Fields, 1975; Harris and Todaro, 1970): rural migrants join the urban pool of unemployed or informal workers.

Motivation			

These countries are also characterized by low firm growth (e.g Hsieh and Klenow, 2014), high informality, underemployment and unemployment, especially among young workers (Bandiera et al., 2021).

Will developing economies be able to generate enough good jobs to accommodate this fast growing urban workforce?

Rural-urban migration accounts for a substantial fraction of population growth in urban areas (Jedwab et al., 2017).

Dominant view (Fields, 1975; Harris and Todaro, 1970): rural migrants join the urban pool of unemployed or informal workers.

However			

Harris-Todaro-Fields framework: perfect wage rigidity in the formal sector. Unlikely to hold in the long(er) run.

Immigration often represents a sizable labor supply shock \rightarrow potentially large effects on firm dynamics, in particular via firm entry.

• Mirror image of the start-up deficit in the US (e.g. Karahan et al., 2019).

Formal and informal sectors are highly integrated – no duality

• Higher immigration can increase dynamism in the formal sector, even if immigrants are initially absorbed in the informal sector.

However			

Harris-Todaro-Fields framework: perfect wage rigidity in the formal sector. Unlikely to hold in the long(er) run.

Immigration often represents a sizable labor supply shock \rightarrow potentially large effects on firm dynamics, in particular via firm entry.

• Mirror image of the start-up deficit in the US (e.g. Karahan et al., 2019).

Formal and informal sectors are highly integrated – no duality

• Higher immigration can increase dynamism in the formal sector, even if immigrants are initially absorbed in the informal sector.

However			

Harris-Todaro-Fields framework: perfect wage rigidity in the formal sector. Unlikely to hold in the long(er) run.

Immigration often represents a sizable labor supply shock \rightarrow potentially large effects on firm dynamics, in particular via firm entry.

• Mirror image of the start-up deficit in the US (e.g. Karahan et al., 2019).

Formal and informal sectors are highly integrated - no duality

• Higher immigration can increase dynamism in the formal sector, even if immigrants are initially absorbed in the informal sector.

Informality			

Definitions:

- (i) Extensive margin: whether entrepreneurs register or not their business .
- (ii) Intensive margin: whether firms that are formally registered hire their workers with or without a formal contract.

Negative consequences of informality:

- Tax avoidance, hindering the provision of public goods.
- Misallocation of resources.
- Informal workers have no job stability, no unemployment insurance, nor employer provided social security.

Informality may also : (i) provide *de facto* flexibility to firms and workers; (ii) be a stepping-stone into the formal sector; and (iii) be an employment buffer.

This paper

Question: What are the labor market and aggregate effects of rural-urban migration in urban destinations ?

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - (i) Local labor markets: \uparrow formality, \downarrow informality and \downarrow wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: \uparrow formal firms, \uparrow jobs, \uparrow entry and \uparrow exit.
- Develop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

This paper			

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - (i) Local labor markets: \uparrow formality, \downarrow informality and \downarrow wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: ↑ formal firms, ↑jobs, ↑entry and ↑exit.
- Develop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

This paper			

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - Local labor markets: ↑ formality, ↓ informality and ↓ wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: \uparrow formal firms, \uparrow jobs, \uparrow entry and \uparrow exit.
- Develop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

This paper			

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - Local labor markets: ↑ formality, ↓ informality and ↓ wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: \uparrow formal firms, \uparrow jobs, \uparrow entry and \uparrow exit.
- Oevelop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

This paper			

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - Local labor markets: ↑ formality, ↓ informality and ↓ wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: \uparrow formal firms, \uparrow jobs, \uparrow entry and \uparrow exit.
- Oevelop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

			References
This paper			

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - Local labor markets: ↑ formality, ↓ informality and ↓ wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: \uparrow formal firms, \uparrow jobs, \uparrow entry and \uparrow exit.
- Oevelop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

This paper			

- Shift-share IV design to identify the causal effects of immigration at destination in Brazil:
 - Local labor markets: ↑ formality, ↓ informality and ↓ wages (formal and informal); no effects on non-employment
 - (ii) Formal firms' dynamics: \uparrow formal firms, \uparrow jobs, \uparrow entry and \uparrow exit.
- Oevelop a model of firms dynamics with both margins of informality and heterogeneous growth profiles across firms.
- Estimate the model + counterfactuals: equilibrium effects of migration at destination with more/less enforcement, with/without formal wage rigidity.

Contributions

Rural-urban migration and urban labor markets: theory (Fields, 1975; Harris and Todaro, 1970) and evidence (e.g. Corbi et al., 2021; Kleemans and Magruder, 2018).

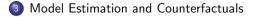
• We show that rural-urban migration can lead to lower informality.

Labor market frictions in developing countries (e.g Abebe et al., 2021; Alfonsi et al., 2020; Carranza et al., 2022; Donovan et al., 2020; Franklin, 2018).

• We show that labor supply shocks can create formal jobs in equilibrium.

Population growth and firm dynamics in the US (Karahan et al., 2019; Pugsley and Sahin, 2019).

• Our findings are the mirror image + new model of formal and informal firm dynamics + first empirical evidence in a developing country context.


Immigration and firms: developed (e.g. Dustmann and Glitz, 2015; Kerr et al., 2015; Lewis, 2011; Peri, 2012) and developing countries (Albert et al., 2021; Imbert et al., 2022)

• We focus on aggregate effects, the role of informality and firm dynamics.

Outline			

Empirical Analysis

Empirical Analysis			
Outline			

Empirical Analysis

3 Model Estimation and Counterfactuals

Empirical Analysis •0000	Model	Model Estimation and Counterfactuals	Final remarks	Appendix	References
Data source	es				

- Migration and Labor Market Outcomes: Decennial Population Census, 1991-2010 Demo. Census Desc. Stats
 - Migrants = in their current location ≤ 10 years; we use the accumulated immigration rate 2000-2010.
 - Focus migration to urban areas (88% of all migration), and cross-state borders (40% of migration to urban areas).
- Firms:
 - Matched employer-employee, admin data set from the Ministry of Labour \rightarrow universe of formal firms and workers (RAIS) \blacktriangleright RAIS
 - Matched employer-employee, survey data on small (up to 5 employees) formal and informal firms (ECINF)
- Push Shocks:
 - International Agricultural Commodity Price Shocks \times crop shares at the municipality level (in 1980).
 - $\bullet\,$ Alternatively: SPEI drought index $\times\,$ growing season by crop $\times\,$ crop shares.

Shocks-Construction Shocks-Maps

Empirical Analysis 0●000			
E			

Empirical Design

$$\Delta y_d = \beta_0 + \beta_1 M i g_d + \beta_2' X_d + u_d$$

where

- $\Delta y_d = y_{d,2010} y_{d,2000}$ (Dem. Census) or $y_{d,2011-12} y_{d,1999-00}$ (RAIS)
- $Mig_d = \sum_o \sum_{t=2001}^{2010} \frac{Mig_{o,d,t}}{Pop_{d,2000}};$
- X_d : share of male, young and high skill (completed HS) in 2000.

Instrument: $Z_d = \sum_{o} \underbrace{\lambda_{o,d}}_{\text{shares shift}} \underbrace{s_o}_{\text{shares shift}}$

▶ First Stage

To study the dynamics of effects (firms only):

 $y_{d,t} - y_{d,1999-00} = \gamma_{0,t} + \gamma_{1,t} M i g_d + \gamma_{2,t} X_d + \varepsilon_{r,t},$

for $t = 1997 - 98, 2011 - 12, \dots, 2017 - 18$.

Effects of Immigration on Workers

	Wa	age employn	nent	Log monthly wage		
	Overall (1)	Formal (2)	Informal (3)	Overall (4)	Formal (5)	Informal (6)
Panel A: OLS	0.037	0.105	-0.068	0.062	0.031	0.034
Immigration	(0.019)	(0.023)	(0.014)	(0.076)	(0.068)	(0.092)
Panel B: IV-Price	0.102	0.397	-0.294	—1.575	-2.149	-1.864
Immigration	(0.101)	(0.147)	(0.099)	(0.568)	(0.667)	(0.726)
F Statistic (IV)	16.87	16.87	16.87	16.87	16.87	16.87
Baseline Mean	0.332	0.229	0.103	_	_	_
Observations	3548	3548	3548	3548	3548	3548

• 1p.p. $\uparrow\uparrow$ in $Mig_d(14.5\% SD) \rightarrow \uparrow\uparrow$ 0.4 p.p. in share of formal workers (avg. employment share of 19%) $\approx 2.1\%$ increase.

Effects of Immigration on Workers

	Wa	age employn	nent	Log monthly wage		
	Overall (1)	Formal (2)	Informal (3)	Overall (4)	Formal (5)	Informal (6)
Panel A: OLS	0.037	0.105	-0.068	0.062	0.031	0.034
Immigration	(0.019)	(0.023)	(0.014)	(0.076)	(0.068)	(0.092)
Panel B: IV-Price	0.102	0.397	-0.294	—1.575	—2.149	-1.864
Immigration	(0.101)	(0.147)	(0.099)	(0.568)	(0.667)	(0.726)
F Statistic (IV)	16.87	16.87	16.87	16.87	16.87	16.87
Baseline Mean	0.332	0.229	0.103	_	_	_
Observations	3548	3548	3548	3548	3548	3548

• Formalization effect driven by workers moving from informal to formal jobs; if anything, a slight increase in total wage employment.

Composition

Empirical Analysis 000●0			

Effects on Firms

	# firms (1)	Entry (2)	Exit (3)	Nb jobs (4)	Firm wage (5)
Panel A: OLS					
Immigration	1.344 (0.109)	0.746 (0.263)	0.864 (0.434)	1.071 (0.269)	0.370 (0.101)
Panel B: IV - Price					
Immigration	2.395	7.205	6.563	2.178	-3.403
	(0.615)	(2.402)	(3.118)	(0.843)	(1.147)
F Statistic (IV)	16.87	16.87	16.87	16.87	16.87
Observations	3548	3548	3548	3548	3548

1p.p. ↑↑ in Mig_d → ↑↑ 2.4% in the number of firms, 2.2% in the number of formal jobs and ↓↓ 3.4% in wages.

Empirical Analysis 000●0			

Effects on Firms

	# firms (1)	Entry (2)	Exit (3)	Nb jobs (4)	Firm wage (5)
Panel A: OLS					
Immigration	1.344 (0.109)	0.746 (0.263)	0.864 (0.434)	1.071 (0.269)	0.370 (0.101)
Panel B: IV - Price					
Immigration	2.395	7.205	6.563	2.178	-3.403
	(0.615)	(2.402)	(3.118)	(0.843)	(1.147)
F Statistic (IV)	16.87	16.87	16.87	16.87	16.87
Observations	3548	3548	3548	3548	3548

• There is greater churn, effect on entry is slightly higher.

Empirical Analysis	Model	Model Estimation and Counterfactuals	Final remarks	Appendix	References
Robustness					

- Pre-trends: dynamic effects + Include lagged changes in outcomes as a control
- Potential confounders: Control for population, industry shares and log GDP per capita at baseline + driving distance to capital
- Persistence of migration (the shares): Control for lagged migration rates • Results
- Demand Channel: Control for local price shocks and shocks to neighboring regions weighted by distance.
- Capital Channel: Control for exposure through bank network.
- Drought push shock
- Estimate all results using Borusyak, Hull and Jaravel (2021)

Empirical Analysis	Model		
Outline			

Empirical Analysis

3 Model Estimation and Counterfactuals

	Model ●O		
Model: Ove	rview		

- Continuum of firms indexed by their individual productivity, θ .
- All firms have the same technology, use labor as their only input, operate in the same industry, produce a homogeneous good and are price takers.
- Tradeoffs are driven by regulations and enforcement:
 - Informal firms: lower entry costs and no regulatory costs (e.g. taxes); but cost of operation is increasing in firm's size.
 - Formal firms: face all regulatory costs, but constant marginal costs; can evade labor regulations by hiring informal workers.
- Endogenous exit + exogenous death shock (different across sectors).
- No aggregate shocks, homogeneous labor, and labor supply is fixed.

Key feature: Firms' productivity process

- Dynamics are driven by the evolution of firms' productivity.
- Firms differ in terms of their current productivity, θ_{jt} , and their long-run productivity $\nu \sim H$, which is observed before entry occurs.
- The expected value of entry depends on ν : $E\left[V_s\left(\theta, w\right) \middle| \nu\right]$, s = i, f.
- After entry in either sector occurs, the productivity process is given by:

$$\begin{split} &\ln \theta_{j,1} &= \ \ln \nu_j + \ln \epsilon_{j,1} \\ &\ln \theta_{j,t} &= \ \rho_s \ln \theta_{j,t-1} + (1-\rho_s) \ln \nu_j + \ln \epsilon_{j,t}, \ t \geq 2 \end{split}$$

where j indexes firms, s = i, f denotes the sector, and $\ln \epsilon \sim \ln \mathcal{N}(0, \sigma_s^2)$.

	Model Estimation and Counterfactuals		
Outline			

Empirical Analysis

3 Model Estimation and Counterfactuals

Empirical Analysis	Model Estimation and Counterfactuals		

Estimation and counterfactuals

Estimation:

- We use a two-step Simulated Method of Moments (SMM) procedure.
 - First step: System GMM and panel data for productivity process parameter + statutory values of taxes.
 - Second step: 12 remaining parameter estimated using SMM

Counterfactuals:

- Immigration: once and for all 10% labor supply shock + increase in consumption (\approx 80th percentile immigration rate).
- Immigration + Harris-Todaro-Fields: formal wages perfectly rigid.
- Immigration + enforcement: government intensifies enforcement.

	Model Estimation and Counterfactuals		References
	0000		

Aggregate effects of a labor supply shock

Once-and-for-all increase in labor supply of 10% (\approx 80th percentile immigration rate).

Baseline Economy	Labor Supply Shock (LSS)
0.291	0.277
0.696	0.682
1.000	0.971
1.000	1.064
1.000	0.994
1.000	1.059
1.000	1.072
	Economy 0.291 0.696 1.000 1.000 1.000 1.000

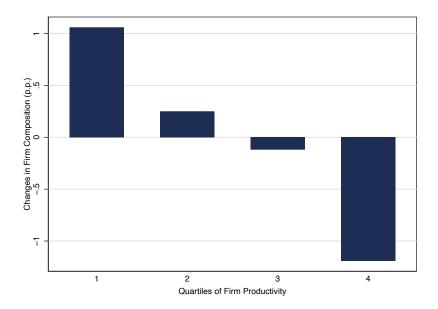
	Model Estimation and Counterfactuals		References
	0000		

Aggregate effects of a labor supply shock

Once-and-for-all increase in labor supply of 10% (\approx 80th percentile immigration rate).

Baseline Economy	Labor Supply Shock (LSS)
0.291	0.277
0.696	0.682
1.000	0.971
1.000	1.064
1.000	0.994
1.000	1.059
1.000	1.072
	Economy 0.291 0.696 1.000 1.000 1.000 1.000

	Model Estimation and Counterfactuals		References
	0000		


Aggregate effects of a labor supply shock

Once-and-for-all increase in labor supply of 10% (\approx 80th percentile immigration rate).

	Baseline Economy	Labor Supply Shock (LSS)	
% Informal Workers	0.291	0.277	
% Informal Firms	0.696	0.682	
Wages	1.000	0.971	
Mass of formal firms	1.000	1.064	
Avg. firm productivity	1.000	0.994	
Output	1.000	1.059	
Tax Revenues	1.000	1.072	

	Model Estimation and Counterfactuals		
	00000		

Changes in firm composition: formal sector

	Model Estimation and Counterfactuals		
	00000		

Harris-Todaro-Fields Scenario: Wage rigidity in the formal sector

	Baseline Economy	Labor Supply Shock (LSS)	LSS + Formal Wage Rigidity
% Informal Workers	0.291	0.277	0.432
% Informal Firms	0.696	0.682	0.783
Wages Formal Informal	$1.000 \\ 1.000 \\ 1.000$	0.971 _ _	_ 1.000 0.847
Mass of formal firms	1.000	1.064	0.949
Avg. firm productivity	1.000	0.994	0.882
Output	1.000	1.059	1.047
Tax Revenues	1.000	1.072	0.917

	Model Estimation and Counterfactuals		
	00000		

Harris-Todaro-Fields Scenario: Wage rigidity in the formal sector

	Baseline Economy	Labor Supply Shock (LSS)	LSS + Formal Wage Rigidity
% Informal Workers	0.291	0.277	0.432
% Informal Firms	0.696	0.682	0.783
Wages	1.000	0.971	_
Formal Informal	1.000 1.000	Ē	1.000 0.847
Mass of formal firms	1.000	1.064	0.949
Avg. firm productivity	1.000	0.994	0.882
Output	1.000	1.059	1.047
Tax Revenues	1.000	1.072	0.917

	Model Estimation and Counterfactuals		
	00000		

Harris-Todaro-Fields Scenario: Wage rigidity in the formal sector

	Baseline Economy	Labor Supply Shock (LSS)	LSS + Formal Wage Rigidity
% Informal Workers	0.291	0.277	0.432
% Informal Firms	0.696	0.682	0.783
Wages Formal Informal	1.000 1.000 1.000	0.971 _ _	_ 1.000 0.847
Mass of formal firms	1.000	1.064	0.949
Avg. firm productivity	1.000	0.994	0.882
Output	1.000	1.059	1.047
Tax Revenues	1.000	1.072	0.917

00000		Model Estimation and Counterfactuals		
		00000		<u> </u>

Aggregate effects with stricter enforcement

	Baseline Economy	Labor Supply Shock (LSS)	LSS + Enforcement
Labor Informality	0.293	0.277	0.1805
Firms Informality	0.701	0.682	0.204
Wages	1.000	0.971	0.978
Avg. firm productivity	1.000	0.994	1.025
Output	1.000	1.059	1.083
Taxes	1.000	1.072	1.296

00000		Model Estimation and Counterfactuals		
		00000		<u> </u>

Aggregate effects with stricter enforcement

	Baseline Economy	Labor Supply Shock (LSS)	LSS + Enforcement
Labor Informality	0.293	0.277	0.1805
Firms Informality	0.701	0.682	0.204
Wages	1.000	0.971	0.978
Avg. firm productivity	1.000	0.994	1.025
Output	1.000	1.059	1.083
Taxes	1.000	1.072	1.296

Empirical Analysis		Final remarks	
Outline			

Empirical Analysis

3 Model Estimation and Counterfactuals

		Final remarks	
Final remarks	5		

- Immigration leads to a decrease in wages, and an increase in entry of formal firms, number of formal firms, jobs and formality share at destination.
- These contrast with the common narrative that rural-urban migration increases informality or under-employment in developing country cities.
- Instead, they suggest that developing countries might experience demographic dividends in general, and in particular from internal migration.
- However, empirical results and counterfactuals indicate that these gains do not accrue to the most productive firms \rightarrow output per worker falls.
- Increasing enforcement could lead to higher dividends from immigration, but at the expense of a potentially large displacement of informal firms.
- The typical Harris-Todaro-Fields result arises with downward wage rigidity in the formal sector: higher informality + lower output gains.

		Appendix	

SUPPORT SLIDES

Model: Set Up

• Continuum of firms indexed by their individual productivity, θ . Formal and informal firms have the same technology and use labor as their only input:

 $f(\ell) = \theta q(\ell), \ q' > 0, q'' < 0$

- Formal and informal firms operate in the same industry, produce an homogeneous good and are price takers.
- Incumbents pay a per-period fixed cost to operate, \overline{c}_s , s = i, f. Entrants pay a cost of entry into both sectors: $c_f^e > c_i^e$.
- In addition to endogenous exit, firms in both sectors face a death shock every period, denoted by δ_s .
- No industry-wide shocks + continuum of firms \rightarrow all aggregate vars. are deterministic.
- Labor supply is fixed.

Incumbents: Profit functions

• Informal firms:

$$\Pi_{i}(\theta, w) = \max_{\ell} \left\{ \theta q(\ell) - \tau_{i}(\ell) w \right\}$$

Incumbents: Profit functions

• Informal firms:

$$\Pi_{i}(\theta, w) = \max_{\ell} \left\{ \theta q(\ell) - \tau_{i}(\ell) w \right\}$$

where $\tau'_{i}, \tau''_{i} > 0$ and $\tau_{i}(0) = 0$.

Incumbents: Profit functions

• Formal firms:
$$\Pi_f(\theta, w) = \max_{\ell} \{(1 - \tau_y) \theta q(\ell) - C(\ell)\}$$

where

$$C(\ell) = \begin{cases} \tau_{fi}(\ell) w, & \ell \leq \tilde{\ell} \\ \\ \tau_{fi}(\tilde{\ell})w + (1 + \tau_w) w \left(\ell - \tilde{\ell}\right), & \ell > \tilde{\ell} \end{cases}$$

• Formal firms:
$$\Pi_f(\theta, w) = \max_{\ell} \{ (1 - \tau_y) \, \theta q(\ell) - C(\ell) \}$$

where

$$C(\ell) = \begin{cases} \tau_{fi}(\ell) w, & \ell \leq \tilde{\ell} \\ \\ \tau_{fi}(\tilde{\ell})w + (1 + \tau_w) w \left(\ell - \tilde{\ell}\right), & \ell > \tilde{\ell} \end{cases}$$

and

$$\begin{split} \tau'_{fi},\tau''_{fi} &> 0 \text{ and } \tau_{fi}(0) = 0.\\ \\ \tilde{\ell} \text{ is such that } \tau'_{fi}(\tilde{\ell}) &= 1+\tau_w. \end{split}$$

		Appendix	References
Dynamics			

- Dynamics are driven by the evolution of firms' idiosyncratic productivity, θ .
- Firms differ in terms of their current productivity, θ_{jt} , and their long-run productivity $\nu \sim H$, which is observed before entry occurs and drawn from:

$$H\left(\nu \ge x\right) = \begin{cases} \left(\frac{\nu_0}{x}\right)^{\xi} & \text{for } x \ge \nu_0\\ 1 & \text{for } x < \nu_0 \end{cases}$$

• After entry in either sector occurs, the productivity process is given by:

$$\ln \theta_{j,1} = \ln \nu_j + \ln \epsilon_{j,1} \ln \theta_{j,t} = \rho_s \ln \theta_{j,t-1} + (1-\rho_s) \ln \nu_j + \ln \epsilon_{j,t}, \ t \ge 2$$

where j indexes firms, s = i, f denotes the sector, and $\ln \epsilon \sim \ln \mathcal{N}(0, \sigma_s^2)$.

• This structure implies that firms' first productivity draw – given by $\theta_1 = \nu \epsilon_1$ – has a Pareto-Lognormal distribution.

Empirical Analysis Model Model Estimation and Counterfactuals Final remarks Appendix References

- Formal firms cannot become informal. Informal firms can pay the difference between formal and informal entry costs, $\tilde{c}^e = c_f^e c_i^e$, and formalize.
- The value functions of formal and informal *incumbents*, respectively:

$$V_{f}(\theta, w) = \pi_{f}(\theta, w) + (1 - \delta_{f}) \beta \max \left\{ 0, E_{\nu} \left[V_{f}(\theta', w) | \theta \right] \right\}$$

$$V_{i}(\theta, w) = \pi_{i}(\theta, w) + \beta \max \left\{ 0, (1 - \delta_{i}) E_{\nu} \left[V_{i}(\theta', w) | \theta \right], (1 - \delta_{f}) E_{\nu} \left[V_{f}(\theta', w) | \theta \right] - \tilde{c}^{e} \right\}$$

where β is the discount factor, δ_s the exogenous exit.

• Exit decisions and informal-to-formal transitions follow cutoff rules:

$$E_{\nu} \left[V_s \left(\theta', w \right) \left| \underline{\theta}_s \right] = 0, \ s = i, f$$
$$E_{\nu} \left[V_f \left(\theta', w \right) - V_i \left(\theta', w \right) \left| \overline{\theta}_i \right] = \tilde{c}^e$$

		Appendix	
Entry			

- Entrants in both sectors must pay a fixed cost of entry, denoted by $c^e_s, \ s=f,i.$
- These parameters will be estimated, but we expect that $c_f^e > c_i^e$.
- The expected value of entry for a firm with long-run productivity ν : $E\left[V_s\left(\theta,w\right) \middle| \nu\right].$
- Entry is characterized by the following threshold rule:

$$E\left[V_{i}\left(\theta,w\right)\left|\underline{\nu}_{i}\right] = c_{i}^{e}$$
$$E\left[V_{f}\left(\theta,w\right)-V_{i}\left(\theta,w\right)\left|\underline{\nu}_{f}\right] = c_{f}^{e}-c_{i}^{e}$$

where $\underline{\nu}_s$ characterizes the last firm to enter sector s = i, f.

- Migration and Labor Market Outcomes
 - ◊ Unit of analysis: Brazilian municipalities
 - ◊ Data source: Decennial Population Census, 1991-2010
 - ◊ Definitions:
 - We restrict the sample to 15-64 years old.
 - Migrants = those who came to their current location ≤ 10 years.
 - We compute the accumulated immigration rate between 2000 and 2010 and obtain a squared migration matrix between 3,658 municipalities.
 - Focus on flows to urban areas (88% of all migration), and across state borders (40% of migration to urban areas).
 - We define formal workers as private sector employees with a formal contract, and informal ones are those without a formal contract. ••••

Formal firms' outcomes

◊ Data source: Relação Anual de Informações Sociais (RAIS)

- Matched employer-employee, admin data set from the Ministry of Labour in Brazil \rightarrow universe of formal firms and workers.
- Moments at the municipality level: (i) entry and exit; (ii)avg. firm size (as # employees); (iii)total number of establishments and formal workers; and (iv) the firm-level average wage.

▶ Back

Push Shocks: Crop Prices and Climate

Price shocks:

- Source: World Bank Commodity Price Data (The Pink Sheet) 1972-2020.
- 12 Crops: bananas, cocoa, coffee, cotton, maize, orange, rice, soybeans, sugar, tobacco, wheat and wood.
- Crop×month-level price shock, ε_{cm} : residual from AR(1) process.
- Municipality×year level shock: sum of crop-level shocks weighted by the share of each crop in value of production in 1980 Agricultural Census, π_{oc} .

$$s_o^{prices} = \sum_m \sum_c \left(\pi_{oc} \times \varepsilon_{cm} \right)$$

			1
• M			

Push Shocks: Crop Prices and Climate

Drought shock:

- Source: SPEI (Standardized Precipitation-Evapotranspiration Index), geo-localised measures of water balance linked to rainfall and temperature (Vicente-Serrano et al., 2010).
- Municipality×month-level shock, D_{om} : indicator for a drought if SPEI < 0.
- Municipality×year-level shock: sum of month-level shock weighted by the share of agricultural production, π_{oc} , that is in its growing season, g_{ocm} (1980 Agricultural Census).

$$s_o^{drought} = \sum_m \sum_c \left(\pi_{oc} \times g_{ocm} \times D_{om} \right)$$

Empirical Analysis		Appendix	References

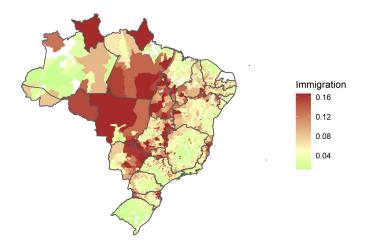
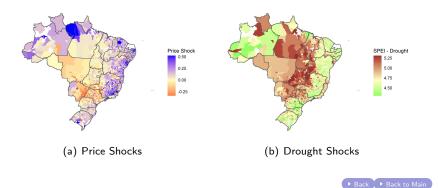

		2010				2000			
	Mean	SD	Med.	Ν	Mean	SD	Med.	Ν	
Population	24,380	141,257	4,890	3,548	18,064	167, 356	3,743	3,453	
% High Skill	0.253	0.079	0.241	3,548	0.172	0.062	0.171	3,453	
Out-mig.	0.319	0.249	0.281	3,548	0.254	0.173	0.213	3,453	
Out-mig. S-to-S	0.112	0.155	0.074	3,548	0.095	0.104	0.059	3,453	
% Formal	0.194	0.120	0.165	3,548	0.138	0.118	0.106	3,453	
% Informal	0.150	0.064	0.146	3,548	0.074	0.042	0.068	3,453	
% non-employed	0.446	0.091	0.438	3,548	0.432	0.072	0.426	3,453	
Formal wage	4.356	1.466	4.094	3,548	3.181	1.373	3.006	3,453	
Informal wage	2.753	1.013	2.493	3,548	2.328	1.146	2.069	3,453	

Table 1: Descriptive Stats - Census

Notes: Weighted by the population at the destination municipality in the previous census; we compute the share of formal and informal as a proportion of total hours worked.

▶ Back

Immigration, 2000-2010



Notes: Computed using the Decennial Population Census. Darker areas denote higher immigration rates.

35/24

		Appendix	References

Figure 1: Migration Push Shocks

		Appendix	
First Stage			

	Immig	ration
	(1)	(2)
Price	-0.024 (0.003)	
Drought		0.016 (0.003)
Observations	3548	3548

→ Back

Composition effects at destination

IV-Price			
Dep. var. (share of):	Female	Low Skill	Young
	(1)	(2)	(3)
Immigration	-0.083 (0.030)	0.029 (0.210)	0.257 (0.058)
Baseline Mean Observations	0.483 3,548	0.720 3,548	0.128 3,548

▶ Back

Final remark

Appendix

References

Labor Market Effects by Skill

		High-Skilled V	Vorkers		Vorkers	
	Formal	Informal	Non-employed	Formal	Informal	Non-employed
	(1)	(2)	(3)	(4)	(5)	(6)
Panel A: OLS	0.052	-0.045	-0.01	0.153	-0.063	-0.072
Immigration	(0.026)	(0.014)	(0.016)	(0.024)	(0.013)	(0.018)
Panel B: IV-Price	0.372	-0.239	0.018	0.329	-0.284	0.096
Immigration	(0.171)	(0.103)	(0.135)	(0.108)	(0.094)	(0.122)
Observations	3548	3548	3548	3548	3548	3548

▶ Back

		Appendix	

Wage Effects by Skill

	High-Skill	ed Workers	Low-Skilled Workers		
	Formal wage (1)	Informal wage (2)	Formal wage (3)	Informal wage (4)	
Panel A: OLS					
Immigration	-0.066	-0.174	0.094	0.19	
-	(80.0)	(0.157)	(0.105)	(0.087)	
Panel B: IV-Price					
Immigration	-1.202	-0.475	-2.023	-2.059	
	(0.448)	(0.654)	(0.73)	(0.907)	
Observations	3527	3514	3546	3548	

► Back

Share of migrants by firm ownership

Share of Migrants:	Self-emp.	Firm Owner	Small Firm Owner	Big Firm Owner
	(1)	(2)	(3)	(4)
Immigration	-0.257	0.173	0.160	-0.062
	(0.195)	(0.288)	(0.330)	(0.459)
Observations	3,547	3,076	2,969	2,061
Note:			*p<0.1; **p	o<0.05; ***p<0.01

▶ Back

		Appendix	

Sectoral composition

Industries:	Service (1)	Construction (2)	Manufacturing (3)	Other Sectors (4)
		Panel A: Shares of	of Firms	
Immigration	0.232 (0.149)	0.174 (0.052)	-0.310 (0.135)	-0.097 (0.134)
Baseline Mean	0.738	0.033	0.111	0.118
		Panel B: Shares	of Jobs	
Immigration	0.364 (0.394)	-0.111 (0.107)	-0.339 (0.253)	0.085 (0.402)
Baseline Mean	0.465	0.041	0.185	0.309
Observations	3548	3548	3548	3548

Back

≤ 5 (1)	6 to 10 (2)	11 to 20 (3)	21 to 50 (4)	>50 (5)
F	Panel A: Shar	es of Firms		
0.358 (0.135)	-0.165 (0.067)	-0.119 (0.047)	-0.079 (0.040)	0.005 (0.034)
0.706	0.131	0.078	0.048	0.036
	Panel B: Sha	res of Jobs		
0.049 (0.093)	-0.065 (0.061)	-0.134 (0.071)	-0.088 (0.101)	0.237 (0.254)
0.129	0.079	0.086	0.112	0.594
3548	3548	3548	3548	3548
	(1) 0.358 (0.135) 0.706 0.049 (0.093) 0.129	(1) (2) Panel A: Shar 0.358 -0.165 (0.135) (0.067) 0.706 0.131 Panel B: Shar 0.049 -0.065 (0.093) (0.061) 0.129 0.079	(1) (2) (3) Panel A: Shares of Firms 0.358 -0.165 -0.119 (0.135) (0.067) (0.047) 0.706 0.131 0.078 Panel B: Shares of Jobs 0.049 -0.065 -0.134 (0.093) (0.061) (0.071) 0.129 0.079 0.086	(1) (2) (3) (4) Panel A: Shares of Firms 0.358 -0.165 -0.119 -0.079 (0.135) (0.067) (0.047) (0.040) 0.706 0.131 0.078 0.048 Panel B: Shares of Jobs 0.049 -0.065 -0.134 (0.093) (0.061) (0.071) (0.101) 0.129 0.079 0.086 0.112

Dynamic effects

Effects on the composition of firms

We compute firm-level average wages and remove year and region fixed effects.

We compute the quartiles of firms' residual average wage distribution at baseline (1996-1999).

The effects on composition across quartiles:

	Danal A	Shares of I					
	Panel A:	Snares of I	-irms				
	Q1	Q2	Q3	Q4			
Immigration	-0.407 (0.617)	2.664 (0.958)	1.153 (1.223)	-3.410 (1.439)			
Panel B: Shares of Jobs							
	Q1	Q2	Q3	Q4			
Immigration	-0.159 (0.304)	0.922 (0.427)	1.052 (0.721)	-1.814(1.046)			
Observations	3548	3548	3548	3548			

Effects by firm quartile

	Nb firms (1)	Entry rate (2)	Exit rate (3)	Nb jobs (4)	Firm wage (5)
Panel A: IV-P	rice - Q1				
Immigration	2.877 (0.783)	8.075 (1.985)	5.462 (1.870)	2.603 (1.631)	-2.243 (1.080)
Observations	3548	3548	3548	3548	3443
Panel B: IV-F	rice - Q2				
Immigration	5.726	13.255	12.295	0.454	-3.795
	(1.625)	(3.484)	(3.353)	(1.546)	(1.506)
Observations	3548	3548	3548	3548	3509
Panel C: IV-P	rice - Q3				
Immigration	0.805	5.608	4.241	3.733	-2.920
	(1.170)	(2.387)	(2.454)	(2.341)	(1.376)
Observations	3548	3548	3548	3548	3356
Panel D: IV-F	Price - Q4				
Immigration	0.511	3.506	1.490	0.414	-4.061
-	(0.967)	(2.003)	(2.387)	(2.431)	(1.392)
Observations	3548	3548	3548	3548	3425

Appendix

Results with drought shock

	Nb firms	Entry rate	Exit rate	Nb jobs	Firm wage
	(1)	(2)	(3)	(4)	(5)
IV - Drought	1.634	1.944	1.925	2.037	-0.756
Immigration	(0.307)	(1.122)	(1.774)	(0.626)	(0.557)
F Statistic (IV)	18.05	18.05	18.05	18.05	18.05
Observations	3548	3548	3548	3548	3548

▶ Back

Robustness: Control for Omitted Variables

	Nb firms (1)	Entry	Exit	Nb jobs	Firm wage
	(1)	(2)	(3)	(4)	(5)
Panel A: Cont	trolling for Ou	tcome Lag			
Immigration	2.439	7.412	3.838	2.045	-3.410
	(0.593)	(1.991)	(0.933)	(0.792)	(1.153)
Panel B: Cont	trolling for Pop	oulation Lag			
Immigration	2.435	7.345	5.916	2.089	-2.984
-	(0.646)	(2.086)	(2.065)	(0.882)	(1.020)
Panel C: Cont	trolling for Imr	nigration Lag			
Immigration	5.303	29.224	20.135	6.163	-15.124
	(3.212)	(13.644)	(10.284)	(4.112)	(8.432)
Panel D: Con	trolling for log	(GDP) Lag			
Immigration	2.486	8.472	6.908	2.263	-2.887
-	(0.683)	(2.443)	(2.476)	(0.907)	(0.971)
Panel E: IV-P	rice - Controll	ing for Industi	ries Lag		
Immigration	1.945	6.595	5.167	2.155	-2.549
0	(0.531)	(1.851)	(1.860)	(0.811)	(0.932)
Observations	3548	3548	3548	3548	3548

		Appendix	

Robustness: Control for Alternative Channels

	Nb firms (1)	Entry rate (2)	Exit rate (3)	Nb jobs (4)	Firm wage (5)
Pane	el A: Controll	ing for Local ar	nd Neighborho	ood Price Sh	ocks
Immigration	2.217 (0.539)	4.041 (1.649)	2.795 (2.221)	2.239 (0.746)	-4.067 (1.212)
Observations	3538	3538	3538	3538	3538
Panel B: Controlling for Capital Reallocation					
Immigration	2.455 (0.685)	6.702 (2.571)	5.560 (3.379)	2.515 (0.928)	-3.414 (1.298)
Observations	2630	2630	2630	2630	2630
Panel C: Excluding Firms That Produce Agricultural Goods					
Immigration	2.807 (0.642)	6.805 (2.353)	6.382 (3.123)	2.381 (0.873)	-3.779 (1.222)
Observations	3548	3548	3548	3548	3548

		Appendix	

Model's parameters

Parameter	Description	Source	Value	SE
First Step				
τ_w	Payroll Tax	Statutory values	0.375	_
$ au_y$	Revenue Tax	Statutory values	0.293	-
ρ	Productivity Process: Persistence Parameter	GMM Estimation	0.92	-
ν_0	Pareto's Location Parameter	Calibrated	7.3	_
γ_f	Per-period fixed cost of operation (Formal)	Calibrated	0.7	_

Second Step

φ_f Intensive margin: $\tau_f = \left(1 + \frac{\ell}{\varphi_f}\right)\ell$ SMM Estimation 6.450	
φ_i Extensive margin: $\tau_i = \left(1 + \frac{\ell}{\varphi_i}\right) \ell$ SMM Estimation 5.42	0.303
δ_i Informal death shock SMM Estimation 0.14	0.015
δ_f Formal death shock SMM Estimation 0.066	0.011
γ_i Informal, per-period fixed cost of operation $~$ SMM Estimation $~0.350$	0.161
ξ Pareto shape parameter SMM Estimation 3.80	0.092
$c_f^{e^{\dagger}}$ Formal sector's entry cost SMM Estimation 7,40	3,383
$c_i^{e\dagger}$ Informal sector's entry cost SMM Estimation 2,800	598
α Span-of-control SMM Estimation 0.64	0.218
σ_i Informal productivity process: SD SMM Estimation 0.14	0.053
σ_f Formal productivity process: SD SMM Estimation 0.14	0.032
ρ_i Informal productivity process: persistence SMM Estimation 0.93	0.091

 † Estimates and SD expressed in R\$ of 2003.

Appendix

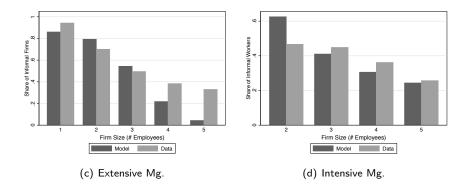
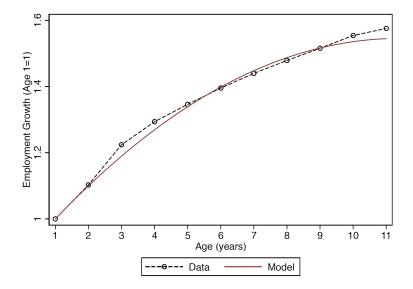
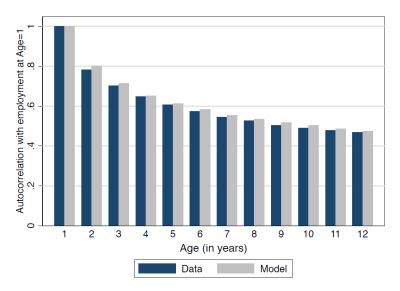

Model Fit (1/4): Targeted moments

Table 1: Model Fit – Targeted moments


	Model	Data
Share Informal workers	0.305	0.298
Share Informal Firms	0.704	0.696
Informal Firms Size Distribution ≤ 2 employees ≤ 5 employees	0.929 1.000	0.957 0.998
Formal Firms Size Distribution ≤ 5 employees 6 to 10 11 to 20 21 to 50 > 50	0.694 0.134 0.092 0.056 0.024	0.697 0.144 0.083 0.048 0.028

Notes: Data moments computed using the RAIS, $\ensuremath{\mathsf{ECINF}}$ and $\ensuremath{\mathsf{PNAD}}$ data sets.


Model Fit (2/4): Extensive and intensive margins of informality

Model Fit (3/4): Firm Growth – Formal Sector

Model Fit (4/4): Autocorrelations – Formal Sector

Back

- References
- Abebe, G., A. S. Caria, M. Fafchamps, P. Falco, S. Franklin, and S. Quinn (2021). Anonymity or distance? job search and labour market exclusion in a growing african city. *The Review of Economic Studies* 88(3), 1279–1310.
- Albert, C., P. Bustos, and J. Ponticelli (2021, June). The Effects of Climate Change on Labor and Capital Reallocation. CEPR Discussion Papers 16312, C.E.P.R. Discussion Papers.
- Alfonsi, L., O. Bandiera, V. Bassi, R. Burgess, I. Rasul, M. Sulaiman, and A. Vitali (2020). Tackling youth unemployment: Evidence from a labor market experiment in uganda. *Econometrica* 88(6), 2369–2414.
- Carranza, E., R. Garlick, K. Orkin, and N. Rankin (2022, November). Job search and hiring with limited information about workseekers' skills. *American Economic Review 112*(11), 3547–83.
- Corbi, R., T. Ferraz, and R. Narita (2021). Internal migration and labor market adjustments in the presence of nonwage compensation. Manuscript.
- Donovan, K., W. J. Lu, and T. Schoellman (2020, March). Labor Market Dynamics and Development. Staff Report 596.
- Dustmann, C. and A. Glitz (2015). How Do Industries and Firms Respond to Changes in Local Labor Supply? *Journal of Labor Economics* 33(3), 711 750.

- Fields, G. S. (1975). Rural-urban migration, urban unemployment and underemployment, and job-search activity in ldcs. *Journal of development economics* 2(2), 165–187.
- Franklin, S. (2018, September). Location, Search Costs and Youth Unemployment: Experimental Evidence from Transport Subsidies. *Economic Journal 128*(614), 2353–2379.
- Harris, J. R. and M. P. Todaro (1970). Migration, unemployment and development: A two-sector analysis. *The American Economic Review* 60(1), pp. 126–142.
- Imbert, C., M. Seror, Y. Zhang, and Y. Zylberberg (2022, June). Migrants and firms: Evidence from china. *American Economic Review 112*(6), 1885–1914.
- Karahan, F., B. Pugsley, and A. Şahin (2019). Demographic origins of the startup deficit. Technical report, National Bureau of Economic Research.
- Kerr, S. P., W. R. Kerr, and W. F. Lincoln (2015). Skilled Immigration and the Employment Structures of US Firms. *Journal of Labor Economics 33*(S1), S147 – S186.
- Kleemans, M. and J. Magruder (2018, August). Labour Market Responses To Immigration: Evidence From Internal Migration Driven By Weather Shocks. *Economic Journal 128*(613), 2032–2065.

- References
- Lewis, E. (2011). Immigration, Skill Mix, and Capital Skill Complementarity. *The Quarterly Journal of Economics* 126(2), 1029–1069.
- Mitaritonna, C., G. Orefice, and G. Peri (2017). Immigrants and firms' outcomes: Evidence from france. *European Economic Review 96*, 62–82.
- Peri, G. (2012, February). The Effect Of Immigration On Productivity: Evidence From U.S. States. *The Review of Economics and Statistics* 94(1), 348–358.
- Pugsley, B. and A. Sahin (2019). Grown-up business cycles. *The Review of Financial Studies 32*(3), 1102–1147.
- Vicente-Serrano, S. M., S. Beguería, and J. I. López-Moreno (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. *Journal of climate* 23(7), 1696–1718.