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Abstract
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1 Introduction

Macroeconomists think of a central bank’s policy rate as being determined through a

mapping from economic fundamentals to the interest rate. We consider policy announce-

ments as a tool for policymakers to communicate new information – about policymaker

preferences, beliefs over economic variables, or the path of future policy – to interact with

the public’s expectations of policy and the economy. Accordingly, we argue that we should

think of the text in policy announcements in a similar rule-based framework as numerical

policy.

This paper estimates the systematic mappings from what central bankers think about

the economy to the words of their policy announcements. We call these estimated policy

functions the monetary communication rules. We use the post-meeting statements

from the Federal Open Market Committee (FOMC) because that language is voted on by

FOMC members, just like the target federal funds rate. We represent the Federal Reserve’s

(Fed’s) language with a bag-of-words approach and we estimate the relationship between

that language and internal Fed forecasts using ridge regressions.1 For tractability, we model

these relationships separately for different forecast variables. That is, we estimate separate

“inverse” communication rules which take text as inputs to predict different internal Fed

forecasts. With this framework, we also provide a simple procedure to estimate time-varying

communication rules and to detect when the rules shift. Overall, we find that monetary

communication strategy is measurable, varies over time, and has an effect on private sector

beliefs. Beyond the monetary application, our methodology for quantifying time-varying

language mappings is tractable and flexible enough to be applied to other contexts that

want to connect text data to numerical data over time.

Our main contribution is that we provide a quantitative investigation of systematic mon-

etary communication with three key findings. First, the Fed’s exceedingly systematic com-

munication indicates that they are transparent about their policy and most macroeconomic

forecasts. That is, there is language that is highly correlated with the policy variables and

1Bag-of-words models use measures of word frequency, or the frequency of sequences of words called
n-grams, while largely abstracting from the order in which those words or sequences occur throughout the
document.
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internal forecasts. The exception is short-run headline inflation forecasts, for which we do

not find evidence of systematic communication. On the other hand, the fact that the Fed

does use systematic language with medium- and longer-run inflation forecasts, both for core

and headline, suggests that the Fed highlights the variables that they target for policy and

believe they can affect once taking into account lags in monetary policy transmission. This

transparency result speaks to the long literature studying the “inflation surprise”: the in-

centive of central banks to mislead the public with announcements to achieve its monetary

policy objectives. We conclude that this is not the case for our sample, and that the Fed’s

language is generally consistent with its beliefs.

Second, we are the first to document empirically when the Fed changes their commu-

nication rules. The largest shift occurs at the end of 2008 when the Fed lowered rates to

the zero-lower-bound. We find that this moment represents a substantial shift in how the

Fed communicated its forecasts on real, nominal, and policy variables alike. Otherwise,

communication rules for macroeconomic forecasts tend to be stable over time. Meanwhile,

communication rules for the target interest rate now and in the future exhibit shifts through-

out the sample. For instance, we detect changes in the rules when Bernanke altered forward

guidance strategy, when new chairs took over, and when COVID hit. Yet, these subsequent

changes are still much smaller adjustments to the rule compared to the 2008 financial crisis.

Third, we contextualize what changes in these communication rules mean for the way

markets respond to Fed announcements. We consider two market-response measures: high-

frequency changes in asset prices, called “monetary surprises,” and dispersion in the Survey

of Professional Forecasters (SPF). We find that changes in the communication rule are both

correlated with larger monetary surprises and with increased dispersion. This suggests that

when communication rules change, market participants are both surprised and disagree more

on how to interpret the new communication.

Our measurement strategy has three main advantages: objectivity, flexibility, and tractabil-

ity. First, we let the connection between words and economic variables of interest be de-

termined econometrically. Conventional methods for text analysis in economics, including

narrative and dictionary approaches,2 are valuable for settings with specialized language.

2Narrative approaches involve researchers assigning labels directly to text to create a measure of the text.
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However, they are not easily standardized as the measure of the text is dependent on the

coder’s interpretation of the text or their priors on the meanings of particular words. Im-

plicitly these methods impose a priori structure on the text measure which may not be

consistent with patterns in the data. But, when we can link observables to text, as is the

case in our setting, then we can let the correlations with observables guide how meaning is

ascribed to words. For example, we say particular words are indicative of higher economic

growth because those words are correlated with higher growth forecasts and not because we

assume it. In this sense, we argue the objectivity of our approach comes from allowing the

data to guide our language model instead of using the researcher’s potentially subjective

interpretation of words.

Second, using a regression model allows us to flexibly capture both direct and indirect

associations between text and other variables. For instance, our approach nonparametrically

associates language about high economic growth with forecasts of higher inflation because the

Fed often references increased economic activity in announcements when they have higher

inflation expectations. That is, we are not restricted to phrases that explicitly mention

“inflation” to learn about inflation forecasts. On the other hand, a dictionary approach

would require the researcher to identify a list of words that directly map to a concept of

interest, such as inflation, and are limited only to direct references based on the list of key

words. Thus we see this flexibility as another advantage.

Finally, although these first two points would hold for any supervised, machine learning

approach with text, our method also has the added benefit of being tractable. This has

implications for our analysis of monetary communication and for others studying systematic

communication. Our time-varying analysis requires adjusting the sample throughout esti-

mation. This is not feasible with frontier models - like Bert or ChatGPT - which are trained

on huge datasets that incorporate information from a variety of different time periods in

a black-box fashion. Fine-tuning these models can help adapt general language models for

cross-section analysis, but this does not side-step the issue for time series analysis where

the timing of training data matters. Furthermore, current state-of-the-art large language

Dictionary methods are where researchers assign labels to words by creating keyword lists. Then they count
how often words from the dictionary list occur in their text to create measures. Section 8 compares our
baseline to a dictionary approach.
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models are predominately trained on English text and therefore are not implementable for

researchers with specialized language, such as non-English text or settings with unique vo-

cabulary. Overall, a penalized regression strategy can be trained on a much smaller sample,

and therefore can be estimated from scratch allowing the researcher full control over sample

restrictions and parameter estimation.

The methods in this paper can be used more broadly in any environment where re-

searchers are interested in quantifying systematic language related to quantitative measures.

Using the language-ridge regression allows the researcher to test for correlations between

language and other variables. For example, it can be used to analyze text-based survey

responses, to identify political affiliation based on speeches,3 or to test for research lan-

guage that increases the chance of acceptance into a top journal. Again, our methodology

can also be applied to non-English communication, making it promising for applications in

international and development economics as well.

There are also many opportunities for time-varying applications in economics. For in-

stance, one could extend Baker et al. (2016) and Kalamara et al. (2022) by identifying when

newspapers change their coverage of macroeconomic variables or economic policy. Or, one

could build on Hassan et al. (2019) and Liang et al. (2022) by testing when companies

change their communication strategies for their earnings calls.4 Our framework for thinking

of communication as an estimable policy function opens up a new area of research where

economists may measure communication rules and document their changes over time in a

variety of settings.

1.1 Related Literature

This paper sets out to measure systematic communication policy. In this effort, it touches

base with a number of literatures that do related, but distinct things. The first is the growing

literature that uses text analysis methods to study monetary policy. Existing works in this

space use text to quantify policy shocks and surprises (Acosta, 2023; Aruoba and Drechsel,

3One could think of an exercise similar to Gentzkow and Shapiro (2010) but with the less structural ridge
or Lasso regression design instead of their probability language model.

4These papers focus on measurement and prediction tasks. See Gentzkow et al. (2019) for a summary of
related prediction exercises with text data.
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2023; Doh et al., 2022; Gorodnichenko et al., 2023; Handlan, 2020b; Hansen and McMahon,

2016; Romer and Romer, 2004), to measure transparency and preferences of central banks

(Doh et al., 2022; Hansen et al., 2018; Romelli and Bennani, 2021; Shapiro and Wilson, 2021),

to understand how the public responds (Calomiris et al., 2022; Campbell et al., 2012; Gardner

et al., 2021; Gnan et al., 2022; Handlan, 2020a; Husted et al., 2020; Lunsford, 2020; Lüdering

and Tillmann, 2020), or to think about how policymakers craft their policy statements

(Ashwin, 2021; Byrne et al., 2021; Cieslak et al., 2021; Ehrmann and Fratzscher, 2005, 2007;

Ericsson, 2017; Stekler and Symington, 2016). Our work most closely relates to those in the

last category, as we are estimating a policy function for the Fed’s communication in their

post-meeting statements. So far, most papers in this literature either rely on dictionary

approaches – using lists of positive/negative words to create sentiment measures – or on

embedding approaches – using machine learning techniques that are relatively more difficult

to interpret and are not time-varying. Overall, our contribution to this vast literature is to

use a minimal set of assumptions on the form of communication so that we can measure how

the information set of the Fed relates to their announcements directly from textual data in

an objective, flexible, and tractable way.

A second literature explores empirical methods for textual data to estimate time-varying

relationships. Regularized regressions, also called penalized regressions, are valuable tools

for estimation where there are overfitting concerns. This class of regressions, including Lasso

(Tibshirani, 1996), ridge (Hoerl and Kennard, 1970), and elastic-net regressions (Zou and

Hastie, 2005), impose a trade-off between within-sample fit and generalizability by penaliz-

ing coefficient size. For applications to text data, Gentzkow et al. (2019) provide a general

discussion of text-penalized regressions. Nevertheless, when considering time-varying pa-

rameters, even for numerical data, there is the additional consideration about how we allow

those parameters to evolve (Goulet Coulombe, 2023; Kapetanios and Zikes, 2018). Currently,

most applications of regularized regressions with text are forecasting or prediction exercises.

For example, Kalamara et al. (2022) forecast macroeconomic variables using newspaper text,

and Liang et al. (2022) use a sliding-window penalized regression to predict returns from

earnings call text. In our setting, we leverage the time-varying function to study when the

mapping from text to numerical variables shifts. This is more in line with the literature on
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break detection, going back to Chow (1960) and Brown et al. (1975). Our application brings

this idea to time-varying regressions with text data.

The third and last literature studies public communication more broadly in monetary

economics. A set of theory papers in this large literature explore the value of public commu-

nication (Amador and Weill, 2010; Angeletos and La’O, 2013; Angeletos and Pavan, 2007;

Basu et al., 1990; Gáti, 2023; Morris and Shin, 2002; Ou et al., 2022). The common thread

in this group is to investigate the properties of optimal signals or signal structures, or to pos-

tulate a communication structure and derive optimal parameter values given the structure.

Another set of papers uses DSGE, SVAR or purely empirical frameworks to look at how the

private sector responds to public information. Here, public information is conceptualized

either as news shocks (Barsky and Sims, 2011; Beaudry and Portier, 2006), as monetary

policy announcements and surprises (Bauer et al., 2023; Bauer and Swanson, 2023a,b; Bu

et al., 2019; Gertler and Karadi, 2015; Gürkaynak et al., 2005; Jarociński and Karadi, 2020;

Kuttner, 2001; Lewis et al., 2020; McQueen and Roley, 1993; Nakamura and Steinsson, 2018;

Piazzesi, 2005; Swanson and Jayawickrema, 2023), or as information treatments in random-

ized control trials (Coibion et al., 2022). Generally, the strategy for measuring information

provision is to impose structure on belief formation and signalling and then use responses of

other variables to back out communication effects. We instead impose minimal structure in

order to measure systematic communication directly from announcement text.

The paper is structured as follows. Section 2 presents a simple framework that forms the

backbone of our estimation strategy. Section 3 provides an overview of the data and the data

cleaning. Section 4 spells out the estimation strategy in detail, while Section 5 estimates the

Fed’s communication rule under the assumption that the Fed kept their communication rule

unchanged over time. Section 6 performs the estimation allowing that communication rules

were time-varying, and presents our indicator for shifts in the communication rule. Section 8

performs robustness checks, and Section 9 concludes.
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2 A Model of Communication Rules

In this section, we lay out a simple model of monetary communication rules that guides

our empirical work. We use the terms “communication rule” and “communication policy

function” interchangeably to capture the notion of an empirical association between the Fed’s

beliefs and their word use. In this paper, this is not a structural object, as the first step

is to measure the empirical regularity directly. Future research can investigate structural

communication rules.

We assume that the central bank (the Fed) communicates about the economy in the

following way. Upon seeing data on various economic variables, the Fed forms expectations

of these economic variables and their own policy decisions. The set of variables the Fed

makes expectations over is Y , and a variable in the set is called y ∈ Y . Throughout the

paper we will also use y to index parameters pertaining to variable y. Some y represent

contemporaneous policy decisions at time t, and others represent forecasts up to k quarters

in the future. To simplify notation, we will use yt to denote both the contemporaneous

policy variables as well as the Fed’s expectations of various macro variables, letting the

index t stand for the time of the expectation.5

Given their expectations about the economy and policy, the Fed then sends the private

sector a message, mt ∈ M , about their forecasts. M is the general message space. In this

formulation, the message mt corresponds to an FOMC statement at a meeting t.6 We think

of the message as containing separate, but potentially overlapping information about the

various variables in Y .

Assumption 1 Messages are made of sub-messages for each variable y ∈ Y .

mt =
⋃
y∈Y

my
t . (1)

5For example, in our dataset, some y are contemporaneous policy variables such as the current target fed
funds rate, while others are forecasts k quarters ahead, such as forecasts for inflation next quarter (k = 1)
or next year (k = 4).

6An alternative would be to think of the individual tokens (words or sequences of words) of the statement
as separate messages. Conceptually this is inconsistent with our idea that combinations of words are needed
to convey information. Accordingly, we follow the majority of the central bank communication literature in
conceiving of the full FOMC statement as a single message.
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The sub-message my
t is the information in the statement that corresponds directly or

indirectly with the Fed’s belief over variable y ∈ Y at time t. The overall message is the

union of sub-messages in that information about one element of Y may be informative about

other elements. That is, the messages may be overlapping and need not be disjoint. For

example, information about Fed forecasts of unemployment may have information on what

the target interest rate may be in the future.

Following standard practice in text analysis, a “token” is the unit of analysis within

text. Tokens can be individual words or sequences of several words. In our baseline, we

use overlapping sequences of four words, called quadgrams or 4-grams, as our tokens. Then,

we assume that each sub-message is a linear combination of tokens, w, as formalized in the

following assumption.

Assumption 2 Sub-message on variable y as combination of tokens.

my
t =

∑
j

βy
jwj,t. (2)

The novelty of our paper is to entertain the idea that there may be a systematic mapping

between the Fed’s expectations of economic variables, y, and the message it sends, my
t . That

is, we are treating the message itself like an “interest rate rule.” This mapping is what we

refer to as the communication rule and we estimate its parameters, βy
j , in Section 4. To

obtain a relation that we can take to the data, we make the following assumption.

Assumption 3 The Federal Reserve is mean truthtelling.

We assume that the Fed chooses my
t such that on average

my
t = yt. (3)

for each variable y ∈ Y .

The interpretation is that the Fed selects the message that corresponds to their expec-

tation on average. In other words, the Fed has a goal of transparency. Observationally, we

think that this is a reasonable assumption given the recent push in central banking towards
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openness. Over time, the Fed has increased transparency by releasing internal meeting ma-

terials, minutes, and meeting transcripts. These materials, while informative about the inner

workings of the FOMC, are released on a lag. The Fed has also increased transparency for

policy by increasing the modes of communication on policy meeting days. Policy statements

occur after every FOMC meeting since 1999, the Summary of Economic Projections (SEP)

is released after every other FOMC meeting since 2007, and post-meeting press conferences

now occur after every FOMC meeting.

We now use this simple model to guide our quantification of the Fed’s communication

rules. We derive our estimating equations from Equation 2 and Equation 3. These equations

imply a relationship between Fed expectations and the words of the form

yt =
∑
j

βy
jwj,t, (4)

which one can think of as an “inverse” communication rule. For tractability, we estimate

the unknowns weights βy by regressing data on the Fed’s expectations of various economic

variables on measures of tokens from FOMC statements. The predictive relationship given

by the estimates β̂y
j is our notion of a communication rule. In Section 4 we will spell out the

regression specification in more detail after introducing our data in Section 3.

3 Data

For the empirical analysis we use a variety of data from the Federal Reserve Bank System.

We focus on FOMC post-meeting statements as monetary communication for this paper. We

also work with data on Federal Reserve forecasts of macroeconomic variables: unemployment,

inflation (headline and core), and output growth. The remaining variables we work with are

the target federal funds rate, the 10-year Treasury less the federal funds rate, the shadow

rate, and the total assets of the Federal Reserve. The remainder of the section provides a

more detailed discussion of the data.

For our text data, each FOMC statement is downloaded from the Federal Reserve Board’s

website and the text is extracted and cleaned to remove any URLs, the release time, and
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the FOMC member voting records. We use a bag-of-words approach to represent the text

of the FOMC statements. This means that we are looking at the counts of different words

or sequences of words, which we call tokens or n-grams. The main specification of the paper

uses term-frequency-inverse-document-frequency (TFIDF) weighted counts of tokens.7 This

weighting scheme downweights the more frequent tokens across the corpus that may be

too common to be informative. The other cleaning of the text includes the removal of

numbers, punctuation, and stop words - that is, words that are so common that they are not

informative about variation in information across documents in the sample such as “the” or

“a”. We also combine common multi-word concepts into a single term, e.g. “funds rate”

becomes “fundrate”, “basis point” becomes “bp”, and “Federal Open Market Committee”

becomes “fomc”. The full lists and processing procedure is available in Appendix B.

For the baseline model, we represent tokens as sequences of four words, called quadgrams

or 4-grams. A major advantage of a bag-of-words approach is that in abstracting from token

order, it reduces the amount of information we need to keep track of in measuring text.

That is, we only keep track of occurrences of tokens rather than a more complex measure of

word order and joint occurrences. However, to capture a sense of context we look at tokens

that are longer sequences of words. That is, when phrases of four words in a row are used

repeatedly in association with particular expectations of the central bank, we see this as

evidence of systematic communication. The reason we use quadgrams instead of uni-, bi-,

tri-, or quint-grams is that we found sequences of four words to have enough context within

each observation without being so specific that they did not commonly occur throughout

statements in our sample. In Appendix C we conduct robustness to how we represent text

by changing the size of n-grams, the text-weighting schemes, and other cleaning procedures

which do not alter the qualitative results of the paper.

We can then represent each FOMC statement as a vector of quadgram counts, as stated

in Equation 2. The length of the vector is the number of unique tokens across all FOMC

statements in the sample, also known as the vocabulary, plus one to account for the constant

7We implement the baseline TFIDF technique from sklearn package in python with 4-grams. Term-
frequency (TF) is the number of times token is used in the current document, divided by the total number
of tokens in the document. For inverse-document-frequency (IDF), we divide by the fraction of documents
in the corpus that contain the token.
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term in the regression. As part of our processing, we drop tokens that occur in less than 5%

of statements to remove outlier tokens that are used too infrequently to measure correlations

with economic variables. This removes tokens that are used in fewer than 10 statements,

which covers just over one year of FOMC statements. In robustness exercises in Appendix C,

we vary this threshold, and our results still go through if we remove no tokens or if we remove

tokens that occur in fewer than 10% of statements. In dropping extremely infrequent tokens

we are able to better focus on systematic communication. With this vector representation

of text, we can look at how quadgram usage correlates with macroeconomic variables.

For forecasts of macroeconomic variables at each FOMC meeting, we use the Tealbook

Data Sets (formerly the Greenbook Data Sets) from the Federal Reserve Bank of Philadel-

phia’s website. These forecasts and all information in the Tealbooks are released to the

public with a five-year lag. The forecasts made each meeting by the staff at the Federal

Reserve are quarterly forecasts for macroeconomic variables up to nine quarters in the fu-

ture, but not for policy variables. We work with forecasts for real output growth, inflation,

and unemployment.8 For each, we use the forecasts for next quarter and for next year to

compare short-run and medium-run expectations, respectively. Although these forecasts are

constructed by the Federal Reserve staff and not the FOMC members themselves, we think

about the communication strategy of the Fed as being one at the institutional level and thus

use these forecasts as the Fed’s expectations.

In addition to the forecast variables, we also look at realized policy variables of the Fed.

We start with the target fed funds rate from the Federal Reserve Bank of St. Louis’s FRED

website.9 We also work with a range of variables capturing different aspects of Fed policy,

such as the realized fed funds rate a year from now, the shadow policy rate, longer maturity

treasuries, and the Fed’s total assets. We source data on the shadow rate from Wu and Xia

(2020). This allows us to pick up on additional language variation during the zero-lower-

bound periods following the Great Recession and the coronavirus pandemic. Additionally,

we work with 10-year Treasury less the federal funds rate to capture language that may be

correlated with longer run expectations about interest rates. The total assets of the Fed

8Output growth and inflation are annualized quarter-on-quarter growth rates. For inflation, we work with
change in headline and core CPI.

9For periods when the Federal Reserve has a target range, we look at the midpoint of the range.
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capture the asset-purchasing behavior of the Fed associated with quantitative easing and

other large scale asset purchasing (LSAP) policy decisions. This measure allows us to test

for communication rules related to this newer policy instrument.

4 Estimating Monetary Communication Rules

To estimate the communication rules, we use a ridge regression with the tokens of text

from the FOMC statements as inputs and macroeconomic variables as the output of different

specifications:

yt = βh,y
0 +

∑
j

βh,y
j wj,t + εt (5)

where wj,t represents the term-frequency-inverse-document-frequency (TFIDF) weighted count

of quadgram j from FOMC statement at meeting t, y represents the policy or forecast vari-

able, and h is the estimation window.

To allow for potentially time-varying communication rules, we estimate the regression

parameters for different time windows h that are either expanding or rolling. For the fixed

communication rules, we assume there is one time window that includes the whole sample.

The parameters βh,y are the ridge regression coefficients:

β̂
h,y

= argmin
β

∑
t

(yt −
∑
j

βh,y
j wj,t)

2 + αh,y,∗
∑
j

(βh,y
j )2 (6)

where αh,y,∗ is the optimal penalty parameter. More precisely, for a given window h and a

given output variable y, we estimate the penalty parameter αh,y,∗ and vector of coefficients

β̂
h,y

using a two-step estimation procedure.

The first step in our estimation is to find the optimal penalty term, αh,y,∗. This is

the regularization parameter that best controls, in an out-of-sample accuracy sense, for

potential overfitting of the regression. We find αh,y,∗ using stratified, k-fold cross validation.

The data is split into five subsets (or folds) such that each has a similar representation of

statements associated with rate changes and Fed chair. For example, each of the five folds
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has a similar number of observations associated with rate hikes under Bernanke. We perform

cross validation where one of the folds is used as a validation set and the other four folds

are used to estimate the βh,y coefficients for a given α penalty term. We fit different βh,y

as we go over a grid of candidate α parameters and calculate the prediction error on the

validation set using the mean square error between the fitted values and the actual output

variable. We then repeat this procedure four more times such that each of the folds is the

validation set once. The αh,y,∗ is the α associated with the lowest average out-of-sample mean

squared error, where the average is taken across the five different cross validation splits, for

macroeconomic variable y and window h. Given the optimal penalty parameter αh,y,∗, the

second step is to estimate the vector of coefficients β̂
h,y

by minimizing the expression on the

right-hand-side of Equation 6.

We estimate different regressions for each macroeconomic output variable y. This makes

the assumption that the communication rules that map expectations of particular macroeco-

nomic variables to words can be separately measured from the rules for other macroeconomic

variables, even if their information content interacts, as spelled out in Equation 2. This is a

strong assumption that we make in order to simplify the estimation procedure and get a first

pass notion of communication rules in the data. In future work, we will relax the assumption

to allow for joint communication rules.

5 Fixed Communication Rules

We first consider a case where the Federal Reserve has the same communication rule

over our entire sample for each macroeconomic variable. This means that there is a single,

stable mapping from expectations over macroeconomic variables and policy to words. Since

we have just under 750 regressors, instead of showing the regression coefficients, we plot the

fitted values from our regressions.10 In other words, for each y variable, we plot the realized

value in black against the fitted value in red. The fitted value, ŷh, is constructed as the

10In Appendix E, we show the tokens with the 15 largest positive and 15 largest negative coefficients for all
the y variables. These are the tokens that are most predictive of higher and lower values of each y variable.
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vector of estimated coefficients times the regressor for window h:

ŷht =
∑
j

β̂h,y
j wj,t. (7)

Figure 1 shows the fitted values for the policy variables, while Figure 2 and Figure 3

depict them for the forecast variables. The first observation is that the red dashed lines

lie almost completely on top of the black ones for all the policy variables. In other words,

we find a very good fit for the target fed funds rate, the change in the target rate, the

one-year-ahead target rate, the shadow rate, the spread between the 10-year Treasury and

the fed funds rate, and the total assets of the Fed. The interpretation of this is that Fed

communication regarding these variables is extremely systematic. Taking the one-year-ahead

target rate as an example, if one knows the communication rule (has access to the β̂h,y
j from

our estimation), then reading the FOMC statement at a particular time allows one to back

out next year’s target rate almost perfectly from the wording of the statement.

When considering Figure 1, it is important to remember that we have removed all num-

bers from the FOMC statements. Thus the predictive power of the FOMC statements does

not come from numerical information, but just from the information content of the Fed’s

words alone. This means that the Fed chooses their words extremely consistently; move-

ments in the policy variables up or down are consistently associated with the same sets of

words. In other words, the Fed’s communication is very transparent.

When it comes to the Fed’s expectations in Figure 2 and Figure 3, the picture remains

largely the same. The fit is excellent for one-quarter-ahead and one-year-ahead unemploy-

ment expectations, real GDP growth expectations, and one-year-ahead inflation expectations

of the Fed. That is, the Fed communicates just as transparently about their expectations

as it does about their policy variables. This transparency allows one to infer the Fed staff

forecasts in real time, even though the Tealbooks are only published with a five-year lag.

The only variable where the fit completely deteriorates is the one-quarter-ahead headline

inflation expectation of the Fed. This means that the Fed’s word-use does not systematically

vary with their short-run headline inflation expectations. The fact that the fit improves again

for core, and recovers completely for the one-year-ahead inflation expectation of both core
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Figure 1: Fixed Communication Rules for Monetary Policy

(a) Target Federal Funds Rate (b) Change in Target Rate

(c) Target Rate, Next Year (d) Shadow Rate

(e) 10-year Treasury Minus Federal Funds Rate (f) Federal Reserve Total Assets

Note: The red dashed lines are the fitted value from communication rules for the corresponding policy and

macroeconomic variables, assuming the communication rule is stable or fixed over the entire sample. The

target federal funds rate is the midpoint of the target rate when a range is stated as policy. The Target Rate,

Next Year is the realized target federal funds rate one year in the future. This acts as a proxy measure for

communication about forward guidance. The Shadow Rate is as constructed by Wu and Xia (2020).
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Figure 2: Fixed Communication Rules for Real Macroeconomic Forecasts

(a) Unemployment, Next Quarter (b) Unemployment, Next Year

(c) Real GDP Growth, Next Quarter (d) Real GDP Growth, Next Year

Note: The red dashed lines are the fitted value from communication rules for the corresponding forecasts

of macroeconomic variables from the Tealbooks, assuming the communication rule is stable or fixed over

the entire sample of May 1999 - May 2022. Real GDP growth is the quarter-over-quarter growth rate in

annualized percentage points. The next quarter forecasts are the Federal Reserve forecasts for next quarter

and the next year forecasts are the forecasts for four quarters into the future.
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Figure 3: Fixed Communication Rules for Nominal Macroeconomic Forecasts

(a) Inflation, Next Quarter (b) Inflation, Next Year

(c) Core Inflation, Next Quarter (d) Core Inflation, Next Year

Note: The red dashed lines are the fitted value from communication rules for the corresponding forecasts

of macroeconomic variables from the Tealbooks, assuming the communication rule is stable or fixed over

the entire sample from May 1999 - May 2022. Inflation is measured as the quarter-over-quarter growth in

headline and core CPI in annualized percentage points. The next quarter forecasts are the Federal Reserve

forecasts for next quarter and the next year forecasts are the forecasts for four quarters into the future.
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and headline suggests that the Fed’s word choice more closely reflects the less volatile notion

of core inflation, as well as their longer-run expectations. One way to understand this result

is to recall that policymakers often assume that they have less control over volatile food

and energy prices, and that monetary policy operates with lags. Additionally, the Fed’s

mandate is formulated in terms long-run inflation. Thus it is not surprising the Fed does

not systematically talk about objects outside of its control, like short-run headline inflation.

Nevertheless, we still see these results as indicating that the Fed communicates very sys-

tematically about their policy and expectations. The Fed’s communication exhibits trans-

parency to a degree that far exceeds what our mean truthtelling assumption of Equation 3

requires, namely that the Fed should reveal their beliefs on average. We see this as evidence

that the Fed employs communication as a policy tool, systematically picking their words to

provide information about their policy and expectations.

6 Time-Varying Communication Rules

The previous section showed evidence for highly systematic Fed communication when

looking at the whole sample cross-sectionally. However, the relationship between Fed expec-

tations, policy, and their word-use is not necessarily fixed. In fact, we find evidence that

the communication rule changes over time and we provide a simple indicator to track the

changes in this mapping over time.

In this section we therefore consider the possibility that the coefficients β of the commu-

nication rule are only fixed within subsets of the data but can vary over time. We reintroduce

the superscript h to denote windows of length H, and estimate (βh,y, αh,y) separately for each

window. In our baseline, we estimate regressions over an expanding window.11 Our initial

window includes scheduled FOMC meetings over 8 years, providing us with 64 observations.

Each expanded window adds one more FOMC meeting into the sample, and we repeat the

estimation procedure described in Section 4. This provides us with coefficients on quadgrams

11We also examine rolling windows in Section H.5 of the online appendix. Qualitatively, we find similar
dates for communication rule shifts. However, with the rolling window it is more difficult to attribute
changes in the estimated rules to the addition of new meetings to the in-sample window or the dropping of
old meetings. Accordingly, we focus on the expanding window as our main specification.
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that vary from one meeting to the next as we expand the window incrementally.

To detect changes in the estimated model over windows, we look at the differences in the

fitted values between sequential windows. Recall the notation of ŷh as the fitted value from

the ridge regression estimated on window h for macroeconomic variable y. The correlation

between ŷh and ŷh−1 captures the similarity of communication rules estimated on window

h versus h − 1. We look at one less the correlation as our indicator of changes in the

communication rule.

Shift Indicatorh,h−1,y ≡ 1− Corr
(
ŷh, ŷh−1

)
(8)

This way, our indicator takes on the value of zero if the correlation between the fitted values

is perfect, and, by contrast, a value of one means that there is such a dramatic change that

there is no correlation whatsoever. Thus, an uptick in the indicator suggests that a change

in the communication rule occurred.

For clarity, we provide confidence intervals and normalize the shift indicator. We estimate

bootstrapped confidence intervals for the shift indicator by re-sampling 2500 times for each

variable and window h at the 95% confidence level. This gives us a sense that the spikes in the

indicator are statistically significant. To compare indicators across variables, we normalize

each indicator to a scale of zero to one.12 We produce graphs without normalization in

Section H.2.

The meetings with shifts in the communication rule are different from meetings that just

change the words in the statement. Changes in words from one FOMC statement to the next

meeting’s statement can reflect changes in the state of the economy and still have the same

mapping from information to words; that is, the same communication rule. However, when

we measure changes in the communication rule, this states that the relationship between

word-use and economic variables - such as our policy variables and macroeconomic forecasts

- has changed. So there could be a situation where the language from one meeting to the

next does not change much, but if there are big shifts in internal forecasts then this would

show up as a change in the communication rule. In this sense, we isolate a sufficient statistic

12To account for the confidence intervals (sb, su) we use the following to normalize the shift indicator:
snh = [sh −min(sb)]/[max(su)−min(sb)].
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for measuring changes in the communication policy function.

Figure 4 depicts our indicator for the Fed’s policy variables, while Figure 5 and Figure 6

show the indicator for the Fed forecasts. At the end of 2008, all communication rules

dramatically changed due to the incorporation of new policy language surrounding LSAPs

and the ZLB. The communication rules for forecasts of real GDP growth and unemployment

also change dramatically at this point with a shift indicator that is at least three times larger

than in any other period in our sample. The other side of this result is that communication

from the FOMC on these variables otherwise is very stable. We can see that as the shift

indicator remains very low at meetings besides the end of 2008. The remaining variables –

the target federal funds rate, the target rate one year in the future, and the Fed’s total assets

– also have a large spike at the December 2008 meeting, but they exhibit greater variation

in the shift indicator which suggests additional changes in the communication rules.

When looking at how the FOMC communicates about their policy tools, the largest

changes are leading up to or following periods at the ZLB. Section H.1 zooms in on the

changes to the communication rules throughout the onset of the Great Recession. September

2007 was the first target rate cut in a series of rate cuts that eventually led to the zero lower

bound at the end of 2008. This meeting signalled a shift in language with lower rates due

to the nature of the forthcoming recession and housing market crash. We also see a spike in

December 2015, likely associated with the eventual lift-off from the ZLB. The communication

rule shifted here as a result of forward guidance communicating raising rates, not because

the economy was overheating, but as a way to “return to normal.” Then other rule shifts

occur in 2020 due to new language about the pandemic, the ZLB, and how they relate to

ongoing policy decisions.

Besides the ZLB, we also see spikes in 2014 and 2018 when Janet Yellen and Jerome

Powell, respectively, became the new Fed chair. This indicates that the communication

rule, the mapping from information of the Fed to the language in the policy statements,

seems to be influenced by the chair. In Appendix G, we estimate communication rules

for Greenspan, Bernanke, and Yellen based on the statements and variables when they were

chair. Interestingly, we find that Bernanke’s communication rules are the most similar to the

full-sample fixed communication rule fitted values despite much of his tenure being during
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Figure 4: Shifts in Communication Rules for Monetary Policy

(a) Target Federal Funds Rate (b) Change in Target Rate

(c) Target Rate, Next Year (d) Shadow Rate

(e) 10-year Treasury Minus Federal Funds Rate (f) Federal Reserve Total Assets

Note: The shift indicator is one minus the correlation between the fitted values from communication rules

estimated on expanding windows ending with meeting t and meeting t − 1. The higher this indicator, the

more the communication rule changed from meeting t− 1 to t. 95% confidence intervals are plotted around

the shift indicator point estimates. We scale plots to have a minimum of zero and maximum of one for

comparison across variables. Non-scaled figures are in Appendix H.
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Figure 5: Shift in Communication Rules for Real Macroeconomic Forecasts

(a) Unemployment, Next Quarter (b) Unemployment, Next Year

(c) Real GDP Growth, Next Quarter (d) Real GDP Growth, Next Year

Note: The shift indicator is one minus the correlation between the fitted values from communication rules

estimated on expanding windows ending with meeting t and meeting t − 1. The higher this indicator, the

more the communication rule changed from meeting t− 1 to t. 95% confidence intervals are plotted around

the shift indicator point estimates. We scale plots to have a minimum of zero and maximum of one for

comparison across variables. Non-scaled figures are in Appendix H.

the ZLB.

We also find empirical evidence of changes in the forward guidance strategy that aligns

with qualitative analysis of shifts. Ben Bernanke describes the change in forward guidance

strategy under his tenure as Fed chair and the changes in strategy align with shifts in the

forward guidance communication rule (Bernanke, 2020). First, the spikes in 2009 are picking

up changes in the relationship between policy and statement language as forward guidance

was increasingly used to interact with public expectations during the Great Recession at the

ZLB. There is a subsequent spike in 2011 when the guidance strategy changed from being

relatively imprecise – or “qualitative” as Bernanke calls it – to more explicit guidance that
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Figure 6: Shift in Communication Rules for Nominal Macroeconomic Forecasts

(a) Inflation, Next Quarter (b) Inflation, Next Year

(c) Core Inflation, Next Quarter (d) Core Inflation, Next Year

Note: The shift indicator is one minus the correlation between the fitted values from communication rules

estimated on expanding windows ending with meeting t and meeting t − 1. The higher this indicator, the

more the communication rule changed from meeting t− 1 to t. 95% confidence intervals are plotted around

the shift indicator point estimates. We scale plots to have a minimum of zero and maximum of one for

comparison across variables. Non-scaled figures are in Appendix H.

linked lift-off to specific dates around mid-2013. Once this period of commitment to the

ZLB ended in 2013, we also see another shift to the forward guidance communication rule

towards conditional statements around lift-off from the ZLB. Overall, we see that the shifts

in the communication rule come from a combination of changes in the economy and changes

in Fed priorities.

Figure 6 and Figure 5 show the shifts in communication rules for the Tealbook macroeco-

nomic forecasts. The way the FOMC communicates about next-quarter forecasts of macroe-

conomic variables – unemployment, output growth, and inflation – is fairly stable except for

the change in communication at the beginning of the Great Recession. However, the shift
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indicator for forecasts of macroeconomic variables one year in the future suggest changes

that match up with changes to forward guidance strategy.

Nevertheless, we find that the shift indicators for the different forecast and policy vari-

ables are positively correlated with each other. In the appendix, Table H.14 shows the

pairwise correlation coefficients for the shift indicators. In particular we see large correla-

tions across the board with the shift indicator for the Target Fed Funds Rate communication

rule. Accordingly, in the next section we use this shift indicator for regressions with various

metrics of market expectations.

7 Implications of Communication Rules

What does the finding of systematic communication rules that change over time mean for

economics? Can we say something about how markets respond to systematic communication,

or to changes in the communication rule? In this section, we provide broad guidance on these

questions, recognizing that a full model is beyond the scope of this paper. We see this section

as an initial step for future research on systematic communication and its effects.

7.1 Private Sector Surprise and Disagreement

We look at two ways market participants can incorporate shifts in systematic communi-

cation into their beliefs. One is to test whether shifts in communication rules are correlated

with asset-based measures of monetary surprises. The other is to examine cross-sectional

dispersion in professional forecasts of various economic variables. This can help us glean how

communication may interact with a commonly used proxy for monetary policy shocks and

whether market participants disagree more when the Fed implements a new communication

rule.

In this section, we focus on changes to one communication rule, the one associated with

the target federal funds rate. This allows us to use a longer sample period because we are

not limited by the publication lag of the Tealbook. Furthermore, by using the same shift

indicator we are more easily able to compare the coefficients for different monetary surprise

measures and for different macroeconomic forecasts from the SPF.
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We begin with our investigation of the relationship between shifts in the communication

rule and monetary surprises. A monetary surprise is the change in the price of assets,

particularly fed funds futures, in a short window around an FOMC announcement. Assuming

prices incorporate all available information, then if policy changes unexpectedly then it

should show up as a change in prices. Under further assumptions that expectations are the

same for the Fed and markets, then this surprise is a monetary shock.

What this means for our paper is nuanced: is a change in the communication rule a

shock? We think it depends. If markets are not aware of a change, then it can show up as a

monetary surprise. However, if the central bank clearly communicates when communication

rules change, then shifts in communication rules should not correlate with monetary policy

shocks.

We consider five popular high-frequency monetary surprise series: the policy news shock

from Nakamura and Steinsson (2018) (henceforth NS), the target factor and the path factor

from Gürkaynak et al. (2005) (henceforth GSS), relying on the updated versions of these

series from Acosta (2023) that extend throughout our sample. We also use the monetary

surprise series from Bu et al. (2019) (henceforth BRW) and Bauer and Swanson (2023a)

(henceforth BS). We are interested in seeing whether shifts in our measured communication

rules correlate with monetary surprises. Because our shift indicator measures magnitude

of change without direction, we look at the absolute value of the high-frequency monetary

surprises with a log transformation. Our sample is monthly and ranges from May 2007 to

May 2022, where we again drop the last observation of 2008 and the first of 2009 to avoid

an episode in which heightened economic uncertainty was likely due to the outbreak of the

financial crisis.

Specifically, we estimate the following regression for each of the different surprise series:

|Monetary Surprise|t = γ0 + γ1Shift Indicatort + τt + ηt (9)

where t is the FOMC-meeting frequency, τt is yearly fixed effects, and the shift indicator

represents changes in the communication rule for the target federal funds rate.

As Table 1 shows, we find a positive correlation between the magnitude of monetary
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Table 1: Monetary Surprises and Communication Rule Shifts

BRW Shock NS Shock GSS Target GSS Path BS Shock

Shift Indicator 0.079* 0.078* 0.105* 0.085** 0.068

(0.046) (0.045) (0.054) (0.038) (0.045)

Year FE Yes Yes Yes Yes Yes

N 107 118 118 118 100

R2 0.157 0.345 0.244 0.357 0.282

Note: This table summarizes estimation of Equation 9. Updated versions of the target factor and path factor
from Gürkaynak et al. (2005) and the policy news shock from Nakamura and Steinsson (2018) are created
by Acosta (2023). The sample is 5/2007 through 5/2022, but we drop 12/2008-1/2009. Standard errors are
reported in parentheses. Statistical significance is indicated with ***=1% level, **=5% level, and *=10%
level. We include year fixed effects.

surprises and shifts in the communication rule. There are two possible interpretations of

the positive correlation. One possibility is that monetary surprises capture information

effects. A change in the communication rule changes the transmission of information and thus

affects surprises. Another possibility is that both monetary surprises and communication-

rule shifts are responding to true interest rate shocks. Of course, it is possible that these two

explanations hold at the same time. Disentangling these channels would require a structural

model, which we leave for future work.

For the second exercise, we investigate how changes in communication rules affect dis-

agreement among professional forecasters. From the Survey of Professional Forecasters

(SPF), we use the dispersion of forecaster responses for various economic variables indexed

by y. The y-variables are inflation (CPI, headline and core), RGDP growth, employment,

and housing starts, all of which are represented as quarter-over-quarter growth in annual-

ized percentage points. Dispersion is measured as the difference between the 75th percentile

response and the 25th percentile response. Forecasters submit their expectations for the

previously mentioned variables at five different horizons k, ranging from the current quarter

expectation (k=0) to expectations four quarters into the future (k=4).

Because the SPF is collected quarterly, we convert our shift indicators to a quarterly

frequency. We do this by summing over FOMC meetings within the same quarter. We also

apply a log transformation.
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We estimate the following specification:

Dispersiony,k
q = γy,k

0 + γy,k
1 Shift Indicatorq + γy,k

2 |Monetary Surprise|q (10)

+ γy,k
3 (Shift Indicatorq × |Monetary Surprise|q)

+ γy,k
4 Dispersiony,k

q−1 + τq + ηy,kq

where q indicates the quarter the survey was conducted, y indexes different macroeconomic

variables at the horizon of k quarters into the future, and τq are year fixed effects. Our

sample ranges from 2007-Q2 to 2022-Q2, where we drop the last quarter of 2008 and the

first quarter of 2009.

The effect of a shift in the communication rule, holding all else fixed is summarized in

Table 2, where we highlight γy,k
1 . There is a positive correlation between the communication

rule shifts and disagreement among professional forecasters. We interpret this as professional

forecasters reading the same announcement with a wider range of interpretations after a

shift in the communication rule. Alternatively, we think that when there is no change in

the communication rule then forecasters have had time to learn how the Fed uses language.

Thus, a shift in the communication rule may require time to learn “Fedspeak.”

If there is no change in the communication rule, then a larger monetary surprise is

associated with larger SPF dispersion. Because we find a correlation between shifts and

surprises in Table 1, we also consider an interaction term in this specification. We find that

when there is both a change in the communication rule and a monetary surprise, the effect on

dispersion is slightly less than the sum of their separate effects. Nevertheless, a simultaneous

monetary surprise and communication rule shift still has a larger effect on dispersion than

only one or the other. We see this as further evidence of two separate policy instruments,

communication and interest rates, affecting private sector beliefs jointly.13

13This finding is related to the headline result in Bauer et al. (2023): forecasters respond to changes in
the interest rate rule. But we introduce the additional dimension of communication as an additional policy
instrument.
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Table 2: SPF Dispersion and Communication Rule Shifts

Horizon, k

(0) (1) (2) (3) (4)

RGDP growth 0.219*** 0.259*** 0.161*** 0.13*** 0.124***

(0.055) (0.058) (0.042) (0.037) (0.042)

Employment 0.292*** 0.262*** 0.201*** 0.145** 0.195***

(0.083) (0.071) (0.058) (0.066) (0.053)

CPI 0.15** 0.06 0.12*** 0.122*** 0.06*

(0.065) (0.04) (0.033) (0.031) (0.033)

Core CPI 0.113** 0.054 0.105*** 0.067* 0.072**

(0.047) (0.045) (0.035) (0.037) (0.035)

Housing 0.091* 0.218*** 0.175*** 0.181*** 0.19***

(0.046) (0.071) (0.057) (0.052) (0.058)

Note: This table reports coefficients γy,k
1 from regressions in Equation 10, assuming that the monetary

surprise measure is close to zero. The first column lists the y-variables, and the top row shows the horizon,
k, of the SPF forecast dispersion. Data has been log transformed. Standard errors are reported in parentheses.
Statistical significance is indicated with ***=1% level, **=5% level, and *=10% level. Full regression output
tables are available in Appendix I.

7.2 Towards a Model of Systematic Communication

In this section we outline in broad terms what the finding of systematic and time-varying

communication rules means for modeling communication. We hope this can be a starting

point for future research that seeks to study the nature and effects of systematic communi-

cation policies.

Economic models have long recognized the need to model information provision once

we depart from the assumption of complete, freely available information. But models of

communication games and signalling in macroeconomics and microeconomics tend to look

at communication through the lens of shocks. Instead, the evidence in this paper suggests

that communication is a systematic procedure. Instead of thinking about the communication

process as shocks, then, this invites conceptualizing communication as an equation.

In this sense, there is a clear parallel to Taylor (1993)’s original description of monetary

policy. Taylor (1993) started out by estimating a relationship between the Fed’s policy

interest rate and economic variables to characterize how the Fed was conducting monetary
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policy. This estimated relationship - the Taylor rule - has subsequently been included in

the policy block of DSGE models to close the model and to analyze monetary policy in a

general equilibrium interplay with firms, households and other model agents. In a similar

vein, we envision incorporating an equation describing communication policy into a DSGE.

This would allow one to explore the structural effects of changing the parameters of the

communication rule on market expectations and economic outcomes, as well as to work

toward a theory of optimal monetary communication rules. We see our contribution here

as laying out a first step in that research agenda, which is to conceptualize and to measure

monetary communication rules.

8 Robustness

We conduct many robustness exercises to validate the results from the paper. In this

section, we discuss selected exercises, delegating the rest to the appendix.14 The first tests

the degree of overfitting for text data in ridge regressions. The second compares our method

for estimating communication rules with alternative text analysis methods, like a dictionary

approach or a generative large-language model.

8.1 Shuffled Timing of Communication

One may be concerned that the large number of regressors in our communication rule

estimation – from the fact that each quadgram enters as its own variable – may make

it possible to fit any body of text to predict the output variables of interest. We test

this hypothesis by shuffling the dates of FOMC meeting statements so that the the output

variable is no longer from the same FOMC meeting as the quadgram input variables. For

simplicity, assume that there is one window.

We estimate optimal penalty weights and coefficients in the same manner as in the fixed

14We consider robustness for different representations of text in Appendix B, for penalty parameter se-
lection in Appendix D and different specifications for estimating time-varying communication rules in Ap-
pendix H.
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communication rule framework, but where the timing is shuffled:

β̂
y
= argmin

β

∑
t

(yt −
∑
j

βy
jwj,g(t))

2 + αy,∗
∑
j

(βy
j )

2 (11)

where g(t) is the date of a random FOMC meeting such that g(t) ̸= t. If the fitted values

from this shuffled exercise are of similar quality as those from Section 5, then that would

be evidence that our text analysis approach would produce high in-sample fit mechanically

from having many regressors. However, as seen on Figure 7, we find that the shuffled

exercise produces fitted values that are poor fits with very high penalty parameters. The

optimal penalty parameters in this exercise want to be as large as possible, which pushes

the fitted-values towards the mean. This indicates that the correlations we estimate are

not just spurious. In other words, this provides evidence that the estimated communication

rules are indeed indicative of highly systematic Fed communication. Figures for the shuffled

communication rules for our other variables are in Appendix F.

8.2 Alternative Text Analysis Methods

We compare our method for measuring communication rules with other popular meth-

ods for text analysis in economics: a custom dictionary approach and a frontier generative

language model (ChatGPT/GPT-3.5). These other methods provide different ways of mea-

suring variation in the FOMC statement text that we can then relate to the Fed’s forecasts

and policy decisions. As before, we still discuss robustness in the context of a fixed com-

munication rule. Overall, we find that our approach of penalized regression with quadgrams

provides the ideal balance of simplicity and flexibility.

8.2.1 Dictionary Approach

Dictionary methods are currently the most popular strategy for text analysis in economics

research. The method involves using a list or multiple lists of words that are associated with

a value. For example, we could have an “uncertainty” dictionary that is a list of words

indicative of uncertainty. To produce a text-based measure, the researcher then counts the

occurrences of words or the number of sentences with key words from their dictionary in the
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Figure 7: Shuffled Communication Rules

(a) Target Federal Funds Rate (b) Change in Target Rate

(c) Federal Reserve Total Assets (d) Unemployment, Next Quarter

(e) Real GDP Growth, Next Quarter (f) Inflation, Next Quarter

Note: The red dashed lines are the fitted value from shuffled communication rules for the corresponding

policy and macroeconomic variables, assuming the communication rule is stable over the entire sample and

the statement text is randomly assigned to a different date. That is, we have shuffled our observations.

The target federal funds rate is the midpoint of the target rate when a range is stated as policy. Real GDP

growth is the quarter-over-quarter growth rate in annualized percentage points. Inflation is measured as the

quarter-over-quarter growth in headline CPI in annualized percentage points.
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text.

For this comparison exercise, we create two types of word lists – words indicative of

macroeconomic variables and words indicative of value or direction. We then count sentences

with occurrences of words on the lists to create text-based measures of whether macroeco-

nomic variables are increasing or decreasing. For each sentence in an FOMC statement, we

first assign it a topic based on the presence of words from the “unemployment” list, “in-

flation” list, “economic growth” list, “policy rate” list, and “assets” list.15 Then we tally

the number of “increasing” words less the number of “decreasing” words that occur in a

10-word neighborhood around a topic word. We use “increasing” and “decreasing” but the

words in the lists also cover high level values and low level values, respectively. Finally, we

also account for negation handling; if “not” shows up before an increasing word, then it is

counted as a decreasing word.16

Figure 8 shows the dictionary implied measures from the FOMC statements. We can

think of the dictionary approach as a restricted version of our approach. In both, there

are coefficients associated with words to indicate higher and lower output variables. But

rather than estimating coefficients to uncover how words relate to that output variable, the

dictionary method requires the researcher to assign coefficient values manually – plus one

for increasing words and minus one for decreasing words. Understandably, the dictionary

method has a worse fit compared to the fixed communication rule.

The dictionary approach is also not able to distinguish between different forecast hori-

zons. Although the language in the FOMC statements does contain temporal information,

it is not specific enough to build a dictionary of “next quarter” and “next year” words

that would effectively capture those forecasts.17 Accordingly, Figure 8 plots both the next

quarter and next year macroeconomic forecasts on the same plot for each variable with dif-

15The FOMC sometimes uses long sentences joined with conjunctions that can make this neighborhood
approach difficult. Thus, we also do this exercise when looking at sub-sentence phrases and the dictionary
measures are fairly similar. We provide this additional specification in the appendix.

16We also apply this for the unemployment measure. That is, when an increasing word occurs near
“employment” then this is counted as a decreasing word for unemployment.

17Byrne et al. (2021) have created an algorithm to measure the temporal dimension of central bank com-
munication. The approach sorts information from text into backward-looking or forward-looking categories.
Although they incorporate numerical date references from the text into their measure, it is still a reality of
central bank communication that they use words that do not always explicitly distinguish between different
horizons into the future.
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Figure 8: Dictionary-Based Communication Rules

(a) Target Federal Funds Rate (b) Change in Target Rate

(c) Federal Reserve Total Assets (d) Unemployment

(e) Real GDP Growth (f) Inflation

Note: The purple line is the dictionary-based measure of the policy variable or macroeconomic forecast. The

list of increasing and decreasing words are in the appendix. We do not have a horizon distinction here because

it is not feasible to distinguish between next quarter and next year with the dictionary method. Implicitly, by

using a fixed dictionary we assume the communication rule is stable over the entire sample. However, we are

limited in our measure of direction to occurrences of increasing/decreasing words near our variable-relevant

words.
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ferent horizons.18 Indeed, we see that the dictionary approach cannot distinguish between,

for example, unemployment next quarter or next year. Instead, our regularized regression

strategy is flexible enough to work with any numerical output variable, so we can separately

estimate the relationship between variables at different horizons and the words in the policy

statements.

Another drawback from the dictionary approach is that the researcher only identifies

direct discussions of macroeconomic variables where specific topic words are present. For

example, the dictionary approach would not connect discussion of increased concerns over

inflation to the FOMC’s expectations for higher interest rates. A major advantage of the

ridge regression with text data is that we allow patterns in the data to indicate word meanings

and associations. In fact, the word lists from estimating the communication rule with our

proposed methodology (Appendix E) show that language associated with higher interest

rates includes discussions of inflation.

8.2.2 ChatGPT Approach

On the other extreme, we ask a generative large language model – specifically, GPT-3.5-

Turbo which is the foundation of the current version of ChatGPT (hereafter called GPT) –

to back out Fed forecasts from FOMC statements by asking it to guess an exact number.

With GPT, the researcher needs to make a prompt which asks a question and possibly

provides select examples to guide the text generation. We implement a few-shot learning

strategy where we include three examples of statements and their corresponding policy or

macroeconomic forecast variable in our code prompt.

The general phrasing of our prompt asks,

“Based on the following FOMC statement, what is your best guess of the <measure>

the Federal Reserve thinks the <variable> will be <horizon>? FOMC statement:

<statement>”

where <measure> refers to the units of our variable, <variable> refers to the variable name,

18For a parallel reason, we are not able to create word lists indicative of shadow rates or 10-year treasury
rates separately from the federal funds rate. Accordingly, we do not plot dictionary based measures for those
variables.
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<horizon> indicates whether the variable refers to current, next quarter, or next year, and

the final entry, <statement>, is for the actual statement itself. The full prompt and descrip-

tion is in Appendix J. With limited training examples, GPT is able to leverage similarities

in the text to make predictions.

However, three clear problems arise when using GPT to estimate communication rules:

replicability, missing values, and the inability to capture timing. Figure 9 plots the GPT

fitted values from repeated prompt submissions. Despite the same prompts, the model pro-

duces slightly different responses. This result in variation is useful for a model trying to

produce human sounding text, but it is less useful for predicting the same number consis-

tently.

Second, there is a much higher percentage of statements where it says there is insufficient

information to provide a numerical prediction. This leads to many missing values in the

GPT communication rules. To address these first two problems, we recommend researchers

use an average of responses from multiple GPT submissions for regression, classification,

or imputation tasks. This approach could then be similar to a researcher averaging over

responses from human coders assigning labels to text data.

Figure 9: ChatGPT Communication Rule for Unemployment

Note: This plots the predicted values from GPT-3.5. We run the prompt multiple times to produce the

multiple GPT-3.5 predictions. Even with the same prompt and temperature set to zero, we get different

responses. Additionally note that there are many missing values where GPT-3.5 does not provide a number.

35



Figure 10: Timing and ChatGPT Communication Rules

(a) Target Federal Funds Rate (b) Target Rate, Next Year

Note: This plots the predicted values from GPT-3.5. The red, dashed line is the prediction for FOMC

statements with numbers, and the violet line is the prediction for FOMC statements with numbers removed.

With numbers, provides almost identical predictions for the current target rate and the target rate in a year.

This indicates the GPT-3.5 model is over weighting the request for information on the target federal funds

rate and ignoring the request for different horizons. Without numbers, the fit is much worse.

Another problem is that GPT struggles with distinguishing between different timing or

horizons of variables. In Figure 10a, we can see that when GPT is able to provide a response

it is correlated with the actual values for the target policy rate. However, in Figure 10b

GPT predictions for the target rate next year are the same as those for the current target

rate. Unlike for the ridge regressions, for this example we did not remove numbers from the

FOMC statements before analysis. It is from those numbers that GPT is able to provide

accurate predictions for the current target rate, as shown with the red, dashed line. After

removing numbers, the GPT prediction (violet line) is very inaccurate for this variable as

well.

There are two high-level reasons for this lower accuracy. First, we are technically using

a generative model for a task where we do not need to generate text. This introduces

a mismatch between the model’s objective and that of the researcher. Second, GPT is

currently limited in how much “training” it can receive in the prompt. Even though it is

a strength that GPT is able to keep track of conversations and learn from past text, the
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memory is still limited. Ultimately, this is evidence of the importance of training and fine-

tuning language models specific for the research task and research domain. While some

frontier models, like GPT, are powerful, they are not the best tool for every job.

Finally, a disadvantage shared by both of these alternative approaches relative to our own

is that there is no time-varying counterpart. Therefore, they are not able to detect changes

in communication rules. The dictionary method requires the researcher to pre-specify word

meaning prior to analysis and thus implicitly assumes a fixed meaning for words. In other

contexts, this may be a desirable feature, but fixing the meaning of words a priori makes

it impossible to detect changes in communication rules. A model like GPT is unable to

capture a time-varying communication rule for a different reason. Large generative models,

like GPT-3.5 and ChatGPT, are implicitly trained on language from over a large span of

time that we cannot specify or restrict. That is, language from news and policy statements

may be used to train the language model even though they would be ”out-of-sample” given

a specified window for estimating the model. For all the reasons stated above, we find that

our approach strikes the right balance between simplicity and flexibility.

9 Conclusion

Is there a systematic way that the Fed maps their expectations of macroeconomic vari-

ables into FOMC statements? To answer this question, we propose a simple procedure based

on text analysis and regularized regression to estimate systematic monetary communication

rules. We first estimate such rules under the assumption that the Fed has a fixed commu-

nication rule for the full sample, and then we reestimate communication rules for various

subsamples with a sufficient statistic to detect shifts in the communication rules over time.

Two main results emerge. First, while the language contained in the FOMC statements

allows one to back out the Fed’s expectation on real variables and most nominal variables

very well, it does not provide a good fit to the Fed’s short-run headline inflation expectations.

This may reflect the notion that the Fed talks less about objects that they think they cannot

control well, such as short-run headline inflation.

Second, while communication rules tend to be stable over time, there is strong evidence
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for occasional time-variation in the Fed’s communication rule. Oftentimes, this is driven by

changes in the economic environment or in policy that necessitate new language (such as un-

conventional monetary policy and quantitative easing). Our approach provides a consistent

procedure to detect changes in this mapping beyond narrative approaches.

Lastly, we emphasize that the procedure we lay out is general and flexible. As such, it is

easy to adopt to a wide variety of settings in which systematic communication may play a role.

Corporate earnings calls, political campaigns or announcements of judges all form examples

of environments where one can use our method to estimate and study communication rules.

Furthermore, our approach is not limited to environments where data is written in English.

For example, a researcher could study the monetary policy statements for the Banco Central

do Brasil in the original Portuguese without translation, or evaluate survey responses from

households in developing countries directly from the original.
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