

Price Uncertainty and Returns to Housing

Francisco Amaral

Macrofinance Lab & ECONtribute, University of Bonn

Motivation

- We know how location, credit and other factors influence housing prices
- Yet, we do not know how price uncertainty affects prices & returns

Definition: Price Uncertainty

Higher price uncertainty \rightarrow lower prices & higher returns

 Δ^+ price uncertainty $o \Delta^0$ capital gains Δ^+ price uncertainty $o \Delta^+$ total returns

- Conceptually Expected variance of distribution from which price is drawn
- Empirically Predicted variance of pricing errors from hedonic housing price model (Jiang and Zhang, 2023)

Research Questions

1. To what extent is price uncertainty priced in housing markets?

Note: Binscatters of outcomes on price uncertainty based on regression (1). Data is for Berlin (1984-2022).

R1 Higher price uncertainty $\rightarrow 6\%$ lower sales prices \checkmark \approx foreclosure discounts **R2** Higher price uncertainty $\rightarrow 50$ b.p. annual total return premium \checkmark $\approx 1/10$ average return to housing in Germany

Mechanism – Bargaining Model

2. What is driving price uncertainty in housing markets?

Data & Background

- Source New data set, universe of real estate transactions in German cities over the last 40 years, incl. rental income (Amaral et al., 2023)
- **Sample** Berlin, Cologne, Hamburg, Duesseldorf (420k transactions)
- Setting Market for apartments
- Liquidity Apartment rental market is larger and more liquid than the sales market

Empirical Strategy

Transaction-level regressions:

$$outcome_{i,tq} = \gamma \hat{\sigma}_{i,tq} + B_X X_i + \kappa_{n,ty} + \eta_{tm} + \epsilon_{i,ty}$$
(1)

 $outcome \in \{\text{sales price, rental yield, capital gain, total return}\}$ $\hat{\sigma}_{i,tq}$ – price uncertainty of property i in quarter tq Optimal bid, B^* $R_1 \sim ln \mathcal{N}(\mu_r, \sigma_R^2)$ $P_2 \sim ln \mathcal{N}(\mu_p, \sigma_P^2)$

•
$$B^* = f(R_1, P_2, barg.power)$$
 & $\sigma^2 = f(matching frictions)$

 Risk-aversion & matching frictions necessary to explain all empirical results

Matching Frictions \rightarrow Price Uncertainty

- Properties with higher price uncertainty are traded in smaller & more illiquid markets
- Main friction: lower number of comparable properties \rightarrow higher uncertainty about the price

- X_i vector of apartment *i* characteristics, size and age $\kappa_{n,ty}$ neighborhood-year FEs
- η_{tm} year-month FEs
- Use repeat-sales to measure total returns at property level:

 P_t – apartment price in t

 R_t – rent payment in t

c – costs as share of rent

Note: Binscatters of atypicality index (left) and asking price spread (right) on price uncertainty based on regression 1. All data is for Berlin.

Conclusions

Price uncertainty (*idiosyncratic risk*) is significantly priced in housing markets
Matching frictions (*atypicality of house*) drives price uncertainty

