Red Herrings: A Model of Attention-Hijacking by Politicians

Margot Belguise, Economics Department, University of Warwick, UK margot.belguise@warwick.ac.uk

WARWICK THE UNIVERSITY OF WARWICK

My PhD is funded by the ESRC Midlands Graduate School Doctoral Training Partnership (grant number ES/P000711/1)

Motivation

		Fact checks	About u	s News	s & updates	¢
at	Health	Econo	my	Europe	Crime	

Boris Johnson's kipper claim is a red herring

"I want you to consider this kipper [...] Brussels bureaucrats who have insisted that each kipper must be accompanied by this: a plastic ice pillow

[which he brandishes, audience laughs]."

- Boris Johnson, during the Conservative party leadership campaign in 2019
- \rightarrow Politicians are often accused of sending "red herrings"
- Literally: Strongly-smelling fish...
- Figuratively: Information **disclosed to distract from** other information

 \rightarrow How do red herrings affect political outcomes? How does their use change with the media landscape?

The Model

Incumbent *i*:

Type (private information):

1. Quality: **Bad** with $Pr = \pi$

- 2. Preference for tale-telling: "Newsmaker" with $Pr = \mu$
- Action: Send **tale** or not $(T_i \in \{0, 1\})$

$$U_{i} = \begin{cases} V + BT_{i} & if \ i = newsmaker\\ V - \epsilon T_{i} & otherwise \end{cases}$$

Figure 1: Timing of the game

Media:

- If i = bad, detects a scandal
- "media attention to tales")
- Covers stories \mathcal{S}_m ; covers all scandals and tales it detects

Voter v:

• Bayesian

• If $T_i = 1$, detects the tale with Pr = q (the • **Inattentive:** When $S_m = \{S, T\}$, sees only the tale with Pr = H

(= scandal crowded-out!)

• Action: Re-elect the incumbent or not $(V \in$ $\{0,1\})$

$$U_v = V1\{i = good\} - (1 - V)1\{o = good\}$$

where o = opponent

 \rightarrow Mechanism: If **bad** incumbents AND **good** newsmakers BOTH send tales... \Rightarrow the voter may fail to recognize red herrings

newsmaker?

Main Results

Extension: Partisan Voters

Assumptions: Electorate divided between:

- α "non-partisans" with utility: $V_v 1\{i = good\} + (1 - V_v) 1\{o = good\}$
- $\gamma \frac{\alpha}{2}$ "supporters" with utility: $V_v[1\{i = good\} + \beta_s] + (1 - V_v)1\{o = good\}$
- $1 \gamma \frac{\alpha}{2}$ "opponents" with utility: $V_v[1\{i = good\} - \beta_o] + (1 - V_v)1\{o = good\}$

Results:

- 1. If electorate = sufficiently pro-incumbent $(\gamma > \frac{1}{2} \text{ and } \beta_s > 1 - \pi)$
 - \rightarrow Shrinking non-partial sample ($\downarrow \alpha$) makes it easier for red herring senders to be re-elected; Otherwise, it makes it harder.
- 2. Paradoxically, making life harder for red herring senders may worsen screening!

2) Media Attention to Tales (q) has a Non-Monotonous Welfare Effect:

- 1. Initially, q worsens screening: Red herrings are more likely to crowd-out scandals
- 2. Yet, high q may guarantee first-best screening!
- \rightarrow Mechanism: Good newsmakers are disciplined and refrain from tale-telling \rightarrow possible to tell good and bad politicians apart
 - Tale-telling = electorally costly for good newsmakers if the voter is **suspicious of tales**
 - This cost increases in q... while bad incumbents' return to tale-telling increases in q
 - When $\mu < H$, (i.e. few newsmakers / high inattention):
 - The voter is suspicious of tales... unless good newsmakers engage in tale-telling more frequently than bad non-newsmakers...
 - ...Impossible for q high!

- \rightarrow Mechanism: Wedge between good newsmakers and red herring senders
 - While the latter may need opponent votes to be re-elected, the former do not
 - Good newsmakers not disciplined \rightarrow impossible to perfectly tell good and bad politicians apart

Want to read more? ...Scan me to read the paper:

