Public R&D Spillovers and Productivity Growth

Context

▶ Decline in public R&D since 1960 in the US

▶ Research question: What is the impact of the decline in public R&D on productivity growth?

1. Data

- ► Patent data + Compustat: 1950-2020
- Most comprehensive panel of its kind
 - Freely available on my website

2. How is public R&D different?

- ▶ $y_i = \alpha + \beta \mathbb{1}[\text{patent } i \text{ is publicly funded}] + \mathbf{X}_i \mathbf{\gamma} + \varepsilon_i$
- 1. More fundamental (y_i = % citations to papers)
 - +267%*** (baseline: 0.06)
- 2. More 'ahead of time' (y_i = years ahead of class creation)
 - +19%*** (baseline: 6.75)
- 3. More likely to generate spillovers ($y_i = \#$ of classes citing) Especially to small firms
 - +22%*** (baseline: 2.38)

3. From theory to data

▶ Productivity-enhancing function with spillovers

productivity growth = R&D × spillovers (Griliches, '79)
$$\frac{A_{it}}{A_{it-1}} = e_{it}{}^{r}S_{it}$$

$$= e_{it}{}^{r} \left(\prod_{a} \left(\frac{P_{at}}{P_{at-1}} \right)^{s_{iat}} \right)^{\gamma} \left(\prod_{f} \left(\frac{P_{ft}}{P_{ft-1}} \right)^{s_{ift}} \right)^{s}$$

P_{at} and P_{ft} = patents s_{iat} and s_{ift} = shares of exposure (Jaffe '86)
 Take logs, estimate flow equation as

$$\Delta a_{it} = r \underbrace{\ln(e_{it})}_{\substack{\text{own In} \\ \text{R\&D flow}}} + \gamma \underbrace{\sum_{a} s_{iat} \Delta p_{at}}_{\substack{\text{exposure to} \\ \text{public R\&D patents}}} + \varepsilon \underbrace{\sum_{f} s_{ift} \Delta p_{ft}}_{\substack{\text{exposure to} \\ \text{private R\&D patents}}} + \epsilon_{it}$$

4. Shift-Share IV for public R&D spillovers: funding shocks

▶ Due to wars, space race, geopolitics, pandemics, etc.

Positive impact on firm-level productivity

5. Patent examiner IV for public and private spillovers

Examiner leniency provides variation in the visibility of innovation

		(1)	(2)	(3)	(4)
$\Delta_5 \ln(\text{VA/worker})$	Public	0.089***	0.090***	0.096***	0.065**
		(0.025)	(0.026)	(0.027)	(0.026)
	Private	0.035***	0.034**	0.031**	0.028**
		(0.013)	(0.013)	(0.012)	(0.013)
F-stats	Public	61.0	60.5	58.7	59.0
	Private	1,503	1,501	1,525	1,356
	Joint	43.3	42.9	39.9	39.8
Period FEs		✓	✓	✓	✓
State FEs		✓	✓	✓	✓
SIC2 sectors FEs		✓	✓	✓	
SIC3 sectors FEs					✓
Lagged sales		✓	✓	✓	✓
Lagged R&D			✓	✓	✓
Lagged firm controls				✓	✓
N		3,561	3,561	3,561	3,561

Public R&D spillovers twice as impactful

6. Aggregation: Heterogeneous agent model of growth

- Heterogeneous firms + 2 types of spillovers
- Private and public
- Decline in public R&D explains a third of the deceleration in TFP

Conclusion

- ► Large, positive impact of public R&D on firm productivity through technology spillovers
- ▶ Public R&D spillovers at least twice as impactful as private R&D spillovers
- Smaller firms are more negatively impacted by the decline in public R&D
- Decline in public R&D in the US can account for a third of the deceleration in TFP