# Soothing Investors: The Impact of Manager Communication on Mutual Fund Flows Ahmed Guecioueur

INSEAD

### Motivation

- Investors tend to be reluctant to bear risk: even those who hold stocks tend to put only a small fraction of their financial wealth in them (Calvet et al. 2023)
- Can investors be encouraged to take more risk? If so, how?
- Gennaioli, Shleifer, and Vishny (2015) hypothesize that trusted financial intermediaries ("money doctors") can give their clients the confidence to overcome their anxieties and take risks, including through communication
- Communication by fund managers is prevalent (Hillert, Niessen-Ruenzi, and Ruenzi 2021): over 9/10 semi-annual reports contain fund letters. Risk is a major topic.
- Is the money doctors mechanism of anxiety alleviation at work in this setting?

# **Empirical setting**

# The effect is concentrated among anxious readers

Cross-sectional median split; i.e. always same time period

| Dependent Variable:                        | Net Flow $_{i,t \rightarrow t+1}$ (%) |                     |                       |                       |  |  |
|--------------------------------------------|---------------------------------------|---------------------|-----------------------|-----------------------|--|--|
| Sub-sample:                                | Low A                                 | nxiety              | High A                | nxiety                |  |  |
|                                            | (1) (2)                               |                     | (3)                   | (4)                   |  |  |
| Risk Detail <sub>i,t</sub>                 | -0.1019<br>(0.1386)                   | -0.1170<br>(0.1365) | 0.5850***<br>(0.2064) | 0.5795***<br>(0.2065) |  |  |
| Risk Level <sub><i>i</i>,<i>t</i></sub>    |                                       | 0.1137<br>(0.1060)  |                       | 0.2221**<br>(0.1109)  |  |  |
| Local Economy Controls $_{i,t}$            | $\checkmark$                          | $\checkmark$        | $\checkmark$          | $\checkmark$          |  |  |
| Fund Controls <sub><i>i</i>,<i>t</i></sub> | $\checkmark$                          | $\checkmark$        | $\checkmark$          | $\checkmark$          |  |  |
| Year-month FEs                             | $\checkmark$                          | $\checkmark$        | $\checkmark$          | $\checkmark$          |  |  |
| Fund FEs                                   | $\checkmark$                          | $\checkmark$        | $\checkmark$          | $\checkmark$          |  |  |

- Focus on communication by index mutual funds that track the S&P 500 market index to aid identification (Hortaçsu and Syverson 2004)
- Extract statements related to risk the very thing investors fear
  - Measure both amount/detail of communication & level of risk conveyed
- Examine aggregate flows to & from these funds to study investors' behavior

# Providing more detail about risk encourages risk-taking

- *Risk Detail*<sub>*i*,*t*</sub> is the log word count about risk. (Total length is controlled for.)
- Effect is present in the cross-section, and over time (i.e. within-fund)
- The level of risk conveyed is informative but investors don't learn from it
- Other specifications involving changes to sentiment from a prior  $\Rightarrow$  similar result

| Dependent Variable:           | Net Flow $_{i,t \rightarrow t+1}$ (%) |                       |                       |                       |                       |                      |
|-------------------------------|---------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|
|                               | (1)                                   | (2)                   | (3)                   | (4)                   | (5)                   | (6)                  |
| Risk Detail <sub>i,ti,t</sub> | 0.5044***<br>(0.1808)                 | 0.4976***<br>(0.1768) | 0.5258***<br>(0.1974) | 0.5022***<br>(0.1842) | 0.4950***<br>(0.1877) | 0.4795**<br>(0.2002) |
| Risk Level <sub>i,t</sub>     |                                       | 0.1043<br>(0.1123)    |                       | 0.0058<br>(0.0169)    | 0.0144<br>(0.0201)    |                      |

| Ν     | 553  | 552  | 686  | 685  |
|-------|------|------|------|------|
| $R^2$ | 0.61 | 0.61 | 0.52 | 0.52 |

Clustered (Fund & Year-month) standard-errors in parentheses: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

### Measuring investor anxiety at a fund-month level

- For readership of letter issued by fund *i* during month *t*:
- Geographic anxiety attitudes based on Google search activity for anxiety-related topics, varying per state & month:

#### **Anxiety**<sub>*i*,*t*</sub>

is defined as the asset-weighted mean of local anxiety attitudes:

Anxiety<sub>*i*,*t*</sub> =  $\frac{\sum_{j} \text{Investment}_{j,t} \times \text{Geographic Anxiety}_{j,t}}{\sum_{i} \text{Investment}_{i,t}}$ ,

with Investment weight = reader count × mean per-capita fund investment (Census Bureau SIPP) and reader count based on SEC EDGAR geolocated IP addresses

### **Interpreting the empirical findings**

- In the literature, effective risk aversion increases with anxiety (e.g. Kuhnen and Knutson 2011; Guiso, Sapienza, and Zingales 2018) ...
- ... and communication reduces anxiety (e.g. Hayward 1975; Hall, Roter, and Katz 1988)
- Consider an investor who holds the (mean-variance-efficient) fraction

| <pre>1{High Risk Level}</pre> i,t                |              |              | 0.3339       |               |              | 0.5278       |
|--------------------------------------------------|--------------|--------------|--------------|---------------|--------------|--------------|
|                                                  |              |              | (0.8204)     |               |              | (1.242)      |
| Risk Detail <sub>i,t</sub>                       |              |              | -0.0457      |               |              | -0.0404      |
| $\times \ \mathbb{1}{\{High Risk Level\}_{i,t}}$ |              |              | (0.1380)     |               |              | (0.2232)     |
| Risk Level measure                               |              | Sentiment    | Sentiment I  | High-Low Word | s High Words | High Words   |
| $\mathbb{1}{High Risk Level}$ threshold          |              |              | Median       |               |              | 0            |
| Fund Controls $_{i,t}$                           | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$ |
| Year-month FEs                                   | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$ |
| Fund FEs                                         | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$  | $\checkmark$ | $\checkmark$ |
| Ν                                                | 1,155        | 1,137        | 1,137        | 1,154         | 1,154        | 1,154        |
| R <sup>2</sup>                                   | 0.44         | 0.43         | 0.43         | 0.44          | 0.44         | 0.44         |

Fund controls: total (log) word count, fund's prior month return, its square, fees & (log) size, and fund family's (log) age & (log) size. Clustered (Fund & Year-month) standard-errors in parentheses. Signif. Codes: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

## An explicit test for belief-based persuasion

Weaker prior (i.e. higher <u>V</u>VIX) should produce stronger updates; however...

| Dependent Variables:       | Net Flow $_{i,t \rightarrow t+1}$ (%) |           | $Inflow_{i,t \to t+1} (\%)$ |          | $Outflow_{i,t 	o t+1}$ (%) |        |
|----------------------------|---------------------------------------|-----------|-----------------------------|----------|----------------------------|--------|
|                            | (1)                                   | (2)       | (3)                         | (4)      | (5)                        | (6)    |
| Risk Detail <sub>i,t</sub> | 0.5248***                             | 0.5195*** | 0.5569***                   | 0.5160** | 0.0350                     | 0.0958 |

$$x_t = rac{\mathbb{E}_t[R_{t+1}]}{\gamma_t \mathbb{V} \operatorname{ar}_t(R_{t+1})}$$

(1)

(2)

of her financial wealth in the risky asset with excess return  $R_{t+1}$  (and the remainder in the risk-free asset)

 If communication does not shift her beliefs (as shown by my empirical results), the results are instead consistent with a decrease in effective risk aversion:

Wet Flow 
$$= rac{x_{t+1} - x_t}{x_t} = rac{\gamma_t}{\gamma_{t+1}} - 1$$

# Asset pricing implications for the stock market

- In the paper, I show that communication-driven flows are persistent and not due to rebalancing between equity funds  $\Rightarrow$  fresh flows into the stock market  $\Rightarrow$  a \$1 inflow increases the value between \$1.9-\$5 (Gabaix and Koijen 2021; Hartzmark and Solomon 2023)
- Allows me to produce rough counterfactuals for the S&P 500 level over my sample period, based on my flow estimates × each estimated market multiplier
- Effect is responsible for a 27–67 b.p. annual average return
- Observed S&P 500 annual ex-div. return was  $8\% \Rightarrow$  about 3–8% of that

### References

|                                            | (0.1633)     | (0.1917)     | (0.1886)     | (0.2005)     | (0.0667)     | (0.0804)     |
|--------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Risk Detail <sub>i,t</sub>                 | -0.0778      | -0.0346      | -0.1485      | -0.1028      | -0.0546      | -0.1038      |
| $\times 1{Low Prior Strength}_t$           | (0.1141)     | (0.1328)     | (0.1271)     | (0.1536)     | (0.0873)     | (0.0948)     |
| Fund Controls <sub><i>i</i>,<i>t</i></sub> | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Fund FEs                                   | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Market Controls <sub>t</sub>               | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |              |
| Year-month FEs                             |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |
| Ν                                          | 1,155        | 1,155        | 1,155        | 1,155        | 1,155        | 1,155        |
| $R^2$                                      | 0.31         | 0.44         | 0.74         | 0.79         | 0.83         | 0.85         |

Clustered (Fund & Year-month) standard-errors in parentheses: \*\*\*: 0.01, \*\*: 0.05, \*: 0.1

- Calvet, Laurent E, Claire Célérier, Paolo Sodini, and Boris Vallée. 2023. "Can security design foster household risk-taking?" Journal of Finance 78 (4): 1917–1966.
- Gabaix, Xavier, and Ralph SJ Koijen. 2021. "In search of the origins of financial fluctuations: The inelastic markets hypothesis." National Bureau of Economic Research Working Paper 28967.
- Gennaioli, Nicola, Andrei Shleifer, and Robert Vishny. 2015. "Money doctors." *Journal of Finance* 70 (1): 91–114.
- Guiso, Luigi, Paola Sapienza, and Luigi Zingales. 2018. "Time varying risk aversion." Journal of Financial Economics 128 (3): 403–421.
- Hall, Judith A, Debra L Roter, and Nancy R Katz. 1988. "Meta-analysis of correlates of provider behavior in medical encounters." Medical Care 26 (7): 657–675.
- Hartzmark, Samuel M, and David H Solomon. 2023. "Marketwide predictable price pressure." Available at SSRN 3853096.
- Hayward, Jack. 1975. "Information a prescription against pain." The Study of Nursing Care Project Reports, 2nd ser., no. 5, Royal College of Nursing, London.
- Hillert, Alexander, Alexandra Niessen-Ruenzi, and Stefan Ruenzi. 2021. "Mutual fund shareholder letters: flows, performance, and managerial behavior." Available at SSRN 2524610.
- Hortaçsu, Ali, and Chad Syverson. 2004. "Product differentiation, search costs, and competition in the mutual fund industry: A case study of S&P 500 index funds." *Quarterly Journal of Economics* 119 (2): 403–456.
- Kuhnen, Camelia M, and Brian Knutson. 2011. "The influence of affect on beliefs, preferences, and financial decisions." *Journal of Financial and Quantitative Analysis* 46 (3): 605–626.



Presenter bio at — www.ahmedgc.com

CEPR Paris Symposium 2023



