All at sea?
Brexit, shipping, and the UK land-bridge

Clarán Mac Domhnaill
Department of Economics, University of St Andrews Business School
cmd32@st-andrews.co.uk

Introduction
• Transporting goods via Great Britain traditionally a popular route for trade between Ireland and continental Europe, known as UK ‘land-bridge’
• How did Brexit non-tariff trade barriers affect cargo volumes on the land-bridge?
• I explore this using a difference-in-differences analysis of quarterly port-level data

Research questions
1. Was the reduction in trade flows due to Brexit reflected in maritime cargo volumes?
2. Has Brexit caused a diversion of cargo from the UK land-bridge trade route to direct routes?

Methods
Theoretical framework
Firm exporting a good from Ireland to France chooses between road-based land-bridge route, R, and the direct short sea shipping route, S, to maximise profit:

\[\text{profit} = \text{revenue} - \text{costs} = \sum_{i,j,t} \left(p_{i,j,t} - c_{i,j,t} \right) q_{i,j,t} \]

where

- $p_{i,j,t}$: price of firm's good
- $c_{i,j,t}$: costs of respective routes
- $q_{i,j,t}$: firm's total factor productivity

\[\sigma R + \sigma S - \eta R^\tau + \gamma \eta S \]

with

- σ: constant elasticity of substitution, ease of switching between routes
- η: parameter on land-bridge route
- τ: constant elasticity of substitution, ease of switching between routes

\[\text{profit} = \left(\frac{\delta R}{R} \right)^\gamma \left(\frac{\delta S}{S} \right)^{1-\gamma} \]

where

- δR: cost of the route
- δS: cost of the route

\[\frac{\delta R}{R} = (1+\eta) \frac{1}{R} - \frac{\eta}{R} R \]

Study design
Difference-in-differences methodology, comparing average change between 2013 and 2022 in EU-UK cargo volumes with average change in EU global cargo volumes. For first research question:

- Scenario I: UK cargo volumes
- Scenario II: EU global cargo volumes

For second research question:

- Scenario I: Irish cargo volumes
- Scenario II: EU global cargo volumes

Can derive ratio of goods allocated between routes, and model non-tariff trade barriers due to Brexit as an ‘implicit tariff’, $\tau > 0$, on the land-bridge route:

\[\frac{P_{i,j,t}}{P_{i,j,t}} = \left(\frac{\delta R}{R} \right)^\gamma \left(\frac{\delta S}{S} \right)^{1-\gamma} \]

\[\gamma \in (0,1); \text{parameter on land-bridge route} \]

\[\eta \in (0,1); \text{parameter on land-bridge route} \]

\[\frac{\delta R}{R} = (1+\eta) \frac{1}{R} - \frac{\eta}{R} R \]

Energy consumption and carbon emissions
• Short sea shipping is less energy-intensive than road freight
• Energy intensity of truck around 1.2 mega-joules per tonne-kilometre (MJ/tkm), around 0.7 MJ/tkm for Ro-Ro vessel
• Carbon emissions intensity of truck vs Ro-Ro vessel
• Rough calculation indicates energy consumption and carbon emissions around 60% lower on direct route than on land-bridge

Conclusions
• 27% decrease in EU-UK Ro-Ro cargo volumes due to Brexit
• Ireland-UK Ro-Ro volumes decreased by 34%
• Meanwhile, Ireland-France Ro-Ro volumes increased by 147%
• Energy consumptions and emissions approximately increased by 147%
• But considerable heterogeneity across cargo types

Acknowledgements
I would like to express my deepest gratitude to Dr. Radoslaw Stefanski and Prof. David A. Jaeger for all their help and advice with this research project. This endeavour would not have been possible without the University of St Andrews scholarship funded by Sir Bob Reid.