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COVID-19 infection externalities: 
Pursuing herd immunity or 
containment?1

Zachary Bethune2 and Anton Korinek3

Date submitted: 19 April 2020; Date accepted: 21 April 2020

We analyze the externalities that arise when social and economic 
interactions transmit infectious diseases such as COVID-19. Public 
health measures are essential because individually rational agents 
do not internalize that they impose infection externalities upon 
others. In an SIR model calibrated to capture the main features of 
COVID-19 in the US economy, we show that private agents perceive 
the cost of an additional infection to be around $80k whereas the 
social cost including infection externalities is more than three times 
higher, around $286k. This misvaluation has stark implications for 
how society ultimately overcomes the disease: individually rational 
susceptible agents act cautiously to  atten the curve  of infections, but 
the disease is not overcome until herd immunity is acquired, with a 
deep recession and slow recovery lasting several years. By contrast, 
the socially optimal approach in our model isolates the infected and 
quickly contains the disease, producing a much milder recession. 
If the infected and susceptible cannot be targeted independently, 
then containment is far costlier: it remains optimal for standard 
statistical values of life but not if only the economic losses from lost 
lives are counted.

1 We would like to thank Olivier Blanchard, W. David Bradford, Eduardo Davila, Mark Gersovitz, Olivier Jeanne, 
Andrei Shevchenko and Joseph Stiglitz as well as seminar participants at Michigan State and at the University 
of Virginia for helpful comments and conversations. We thank Mrithyunjayan Nilayamgode for excellent 
research assistance. Korinek gratefully acknowledges nancial support from the Institute for New Economic 
Thinking (INET).

2 Assistant Professor, University of Virginia.
3 Associate Professor, University of Virginia and CEPR Research Fellow.
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1 Introduction

The ongoing coronavirus pandemic has presented policymakers with a pivotal chal-

lenge: to choose between either an uncontrolled spread of the virus, that may cost

millions of lives in worst-case scenarios, or the imposition of non-pharmaceutical

public health interventions, such as social distancing that harm economic and social

activity and may undermine the livelihoods of far larger numbers of people. Con-

taining epidemics falls into the realm of public policy because infectious diseases

by their very nature involve externalities: when infected individuals engage in so-

cial or economic activity, they impose signi�cant externalities on those with whom

they interact and whom they put at risk of infection. The objective of this paper

is to characterize the infection externalities of COVID-19 and compare individually

rational behavior with what is socially optimal.

The novel coronavirus was �rst identi�ed in Wuhan, China, in December 2019. It

jumped from bats via an intermediate host to humans. The virus has o�cially been

named �SARS-CoV-2,� and the disease that it causes has been named �coronavirus

disease 2019� (abbreviated �COVID-19�). It spreads among humans via respiratory

droplets and aerosols as well as by touching infected surfaces. In an uncontrolled

outbreak, the disease burden grows exponentially, with cases doubling approximately

every six days. The incubation period, i.e. the time between when one is exposed to

the virus and when one develops symptoms of disease, is from two to 14 days, with

an average of �ve days. Those infected usually present with a fever, a dry cough and

general fatigue, frequently involving a mild form of pneumonia. About 15 percent of

cases develop more severe pneumonia that requires hospitalization, intensive care,

and in many cases, mechanical ventilation. Verity et al. (2020) estimate the infection

fatality rate to be around 0.67% � as long as the healthcare capacity of a country is

not overwhelmed.

This paper analyzes the externalities that arise when economic interactions trans-

mit infectious diseases such as COVID-19. We embed rationally optimizing indivi-

dual agents into epidemiological models to study and quantify the trade-o� between

economic costs and epidemiological control.1 We start out by building on the sim-

plest epidemiological model, the SIS model, which splits the population into two

1See Anderson and May (1991) for a comprehensive textbook treatment of models of epidemi-
ology. A good overview is also available at
https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology
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compartments � susceptible S and infected I � and assumes that susceptible agents

can acquire an infection by interacting with infected agents at a given rate. In-

fected agents I in turn recover at a given rate and return to the pool of susceptible

agents S. In section 2 we embed optimizing individual agents into this model who

choose the level of an economic activity that may transmit infections and analyze

the externalities arising from individual choices. In section 3 we include an epidemi-

ological compartment R of recovered & resistant agents in our analysis, delivering

the SIR model in the spirit of the epidemiological model �rst laid out by Kermack

and McKendrick (1927).

We start by analyzing a model economy in which we introduce a disease that

imposes a utility cost on infected agents and that follows the dynamics of an SIS

model. We contrast the behavior of individually rational optimizing agents with

what would be chosen by a social planner who has the power to coordinate the

decisions of individual agents. Individual agents who are susceptible to a disease

rationally reduce the level of their economic activity so as to reduce the risk of

infection. However, individually rational infected agents recognize that they have

nothing to lose from further social interaction and do not internalize that their eco-

nomic activities impose externalities upon others by exposing them to the risk of

infection. We show in a proposition that this induces the social planner to value the

cost of an extra infection more highly than decentralized agents. The decentralized

SIS economy converges to an equilibrium in which the disease is endemic. By con-

trast, a social planner who internalizes the infection externalities induces infected

agents to signi�cantly reduce their economic activity so as to lower the spread of the

disease. In our simulations, we �nd that for a wide range of parameter values, the

social planner does this to a su�cient extent to contain and eradicate the disease

from the population. Only if the social cost of a disease is extremely low, akin to

the common cold, will the planner allow the disease to become endemic.

We expand our analysis to an SIR model that is calibrated to capture the epi-

demiological parameters of COVID-19 and the US economy. Again, we �nd and

prove that infected individuals who behave individually rationally engage in exces-

sive levels of economic activity because they disregard the infection externalities

that they impose upon the susceptible. In our numerical simulations based on stan-

dard statistical value of life considerations, we show that private agents perceive the

cost of an additional infection to be around $80k whereas the true social cost in-

3
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 1
-3

4



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

cluding infection externalities is more than three times higher, around $286k, when

the fraction of infected agents is 1%.

Focusing on dynamics, this mis-valuation has stark implications for how society

ultimately overcomes the disease: for a population of individually rational agents,

the main focus is precautionary behavior by the susceptible, which �attens the curve

of infections. However, in the decentralized setting, the disease is not overcome until

herd immunity is acquired. The resulting economic cost is high: an initial sharp

decline in aggregate output by about 8% is followed by a slow recovery that takes

several years. By contrast, the socially optimal approach in our model focuses public

policy measures on the infected in order to contain and eradicate the disease. Since

the infected make up a smaller fraction of the population, this produces a much

milder recession.

A natural concern is that targeting the infected is di�cult since many countries,

including the US, have su�ered from shortages in testing kits, and because COVID-

19 has a long incubation period and a signi�cant fraction of infected individuals

are asymptomatic. To capture this situation, we analyze a version of our model

in which the epidemiological status of individuals is hidden so the planner has to

choose a uniform level of economic activity for all agents. Even in that case, the

social planner aggressively contains the disease for our baseline parameterization.

However this must now be achieved through a reduction in the level of activity

of all agents, generating a decline in aggregate output that is much more severe -

about 15% - and permanent since the planner needs to keep activity low even when

only a small measure of the population is infected to prevent the re-emergence of

the disease. If the planner assigns a lower value to lives, e.g. if he only counts the

economic losses from losing workers rather than the statistical value of life as in our

baseline parameterization, then the planner �nds it optimal to let the disease spread

and go for herd immunity. In either case, when the planner cannot distinguish the

epidemiological status of agents, the social cost of an extra infection is larger than

when the planner can target infected individuals, about $300k for a fraction infected

of 1%.

In an extension of our model, we compare the private and social gains from vacci-

nation. Individually rational susceptible agents �nd vaccines useful for two reasons:

�rst, they no longer face the risk of costly infection and second they no longer need

to incur the cost of social distancing to avoid becoming infected. Vaccines are most
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useful in a society in which social distancing is determined by individually rational

behavior. When no one in such a population has immunity, the private gain from

an individual vaccination is $26k. By contrast, a planner would perceive the social

gain from vaccination nearly 17 times larger, at $430k when there is no existing

immunity in the population.

Literature In the economics literature, our work is most closely related to Gold-

man and Lightwood (2002), Gersovitz and Hammer (2003, 2004) and Gersovitz

(2011) who study externalities of health interventions for infectious diseases in SIS

and SIR models. Georgiy et al. (2011) show cross-country externalities in respon-

ding to �u pandemics. Our addition to this strand of literature is (i) to analyze

the economic e�ects of the speci�c non-pharmaceutical interventions relevant for

COVID-19 � social distancing � and (ii) to contribute a quantitative analysis to the

evaluation of COVID-19 infection externalities to better inform the policy debate.

Our work is also related to recent papers who analyze optimal non-pharma-

ceutical controls in SIR models calibrated to COVID-19, that feature a tradeo� of

economic activity and disease transmission. Alvarez et al. (2020) and Eichenbaum

et al. (2020) characterize optimal disease control in SIR models in which the trans-

mission of disease depends on economic choices. We complement these papers by

providing analytic results on the externalities that arise in both SIS and SIR models

and by quantifying by how much individually rational agents undervalue the cost

of infection. Our �ndings also highlight the crucial role of testing, as suggested in

Berger et al. (2020) and Piguillem and Shi (2020). We also provide quantitative es-

timates of the magnitude of the externalities imposed by COVID-19 and formulate

policy as a function of the measure of infected and susceptible agents. We rely on

various estimates of the rate of COVID-19 transmission, death rates, and hospital

capacity provided by Atkeson (2020), Verity et al. (2020), and others. Our work

complements the collection of recent economics papers that analyze the role of �s-

cal policy (e.g. Faria-e-Castro, 2020) or spillover e�ects caused by COVID-19 (e.g.

Guerrieri et al., 2020).
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2 First Step: An SIS Economy

2.1 Model Setup

In this section, we develop a simple SIS model that introduces a role for economic

decision-making, an analysis of welfare and an expression of the externalities that

arise. Although the SIS model omits important characteristics of diseases such as

COVID-19, it illustrates the basic structure of the problem and allows us to analyze

the interactions between economics and epidemiology in utmost clarity. We will

build on this setting below to provide a richer description of externalities in the SIR

model.

Epidemiology Let us denote the mass of susceptible individuals by S and the

mass of infected individuals by I, and normalize the total population to N = S+I =

1∀t. By assumption, all individuals in a given category are identical. Time is

continuous and goes on forever. We follow the convention in the epidemiological

literature of dropping the time subscript of S and I but remind the reader that they

are, of course, time-dependent. Changes are denoted by Ṡ and İ. The evolution of

S and I follows the standard epidemiological laws

Ṡ = −β (·) IS + γI (1)

İ = β (·) IS − γI (2)

The term β (·) IS captures the �ow of susceptible individuals that become infected,

where β (·) is the meeting intensity at which individuals interact with each other,
I
N

= I is the probability that an individual's interaction partner is infected conditio-

nal on meeting, and S normalizes the term by the measure of susceptible individuals

in the population. In the economic model block below, we will specify how exactly

β (·) depends on individual behavior. The term +γI captures that infected indi-

viduals recover at rate γ and return to the pool of susceptible individuals. The

expression for İ is the mirror image of Ṡ since the population is constant. Thus it is

su�cient to keep track of only one of the two variables � an epidemiological version

of Walras' Law.
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Individual Behavior The utility of an individual agent depends on her epidemi-

ological status i = S, I as well as on the level of activity ai ∈ [0, 1] that she chooses

to take.2 This may be interpreted as the extent of social activity and the portion of

economic activity in which physical interaction is required. Activity level ai = 0 re-

�ects complete isolation whereas ai = 1 captures normal activity. We parameterize

the probability of infection β (aS, aI) = β0aSaI in the spirit of the epidemiological

relationships described above, where β0 re�ects the spread at the maximum level of

activity for both types of agents.

In the analysis of individual behavior, we denote by I = Pr (i = I) the probabi-

lity of an agent being infected. We observe that each atomistic agent takes as given

the activity level of other agents and the fraction of infected in the population and

denote these by āI , āS, and Ī, where the latter evolves according to the law (2).

The individual's epidemiological status thus satis�es3

İ = β (aS, āI) Ī (1− I)− γI (3)

In equilibrium it will be the case that āI = aI , āS = aS, and Ī = I.

For an individual with initial epidemiological status I (0), the utility maximiza-

tion problem is to choose a path of activity levels {aS, aI} so as to

max
{aS ,aI}

U =

∫
t

Ei
[
e−rtui (ai)

]
(4)

subject to (3), where the �ow utility of the agent in a given period is Ei [ui (ai)]. For

now, we capture the utility derived from social activity in reduced form. In our full

model below we will describe how activity a interacts with the economic functions

of agents in more detail. We assume that the �ow utility of susceptible agents

uS (a) = u (a) is increasing and concave u′′ (a) < 0 < u′ (a) up to its maximum level

at which it becomes �at so u′ (1) = 0.4 For now, the �ow utility of infected agents

is uI (a) = u (a) − c
(
Ī
)
where c

(
Ī
)
captures the additional utility loss from being

sick and satis�es c (0) > 0 and c′
(
Ī
)
≥ 0. The latter may re�ect congestion e�ects

2Note that an individual's epidemiological status i = S, I di�ers from the aggregate measures
S̄ and Ī.

3An alternative interpretation is that the decision maker is a household with a fraction I of
members infected.

4We could also consider a vector a instead of a scalar a to capture that there is a multi-
dimensional set of choice variables a�ecting disease transmission.
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in the healthcare system, which are of critical importance during the COVID-19

pandemic.

We reformulate the individual's optimization problem in terms of the current-

value Hamiltonian

H = I
[
u (aI)− c

(
Ī
)]

+ (1− I)u (aS)− VI
[
β (aS, āI) Ī (1− I)− γI

]
together with the transversality condition limT→∞ e

−rTVI = 0, where VI is the

current-value shadow cost of an agent being infected. Each agent internalizes that

her infection status depends on her choice of interactions with other agents but

rationally takes as given the overall fraction of the population infected Ī, which

determines both the risk of infection for susceptible individuals and the congestion

e�ects in the healthcare system. This generates rich externalities, as we will explore

subsequently.

In addition to the transversality condition, the individual's optimality conditions

are

u′ (aS) =VI · β0āI Ī (5)

u′ (aI) =0 (6)

rVI =u (aS)− u (aI) + c
(
Ī
)
− VIβ (·) Ī − VIγ + V̇I (7)

The �rst optimality condition re�ects that the agent equates the marginal utility

of activity aS to the marginal expected cost of becoming infected, which consists

of the lifetime utility loss of infection VI times the marginal probability of infection

βS (·) Ī = β0āI Ī. Ceteris paribus, a larger number of infected agents increases the

infection probability βĪ and induces the agent to scale back her economic activity,

i.e. to behave in a more cautious manner. The second optimality condition implies

that it is individually rational for the infected agent to pick the maximum level of

activity aI = 1 that maximizes her utility, not taking into account the epidemiologi-

cal e�ects of her behavior. The third optimality condition re�ects the �ow shadow

cost of being infected versus susceptible: the agent obtains di�erent �ow utility and

experiences the cost c
(
Ī
)
; moreover, the agent no longer faces the risk of infection,

captured by the term −VIβ (·) Ī and faces the potential prospect of recovery −VIγ;
�nally, the shadow cost of being infected changes through time as I changes.

In equilibrium, the probability of infection of an individual agent equals the
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aggregate fraction of infected agents I = Ī.

De�nition 1 (Decentralized SIS Economy). For given initial I (0), a decentralized

equilibrium of the described SIS system is given by a path of the epidemiological

variable I that follows the epidemiological law (2) as well as paths of action variables

(aS, aI) and the shadow cost VI that satisfy the optimization problem of individual

agents.

Steady State In steady state, we set İ = 0 in equation (2), obtaining a non-

degenerate infection rate of I = 1 − γ/β (aS, aI), and set V̇I = 0 in (7). The

optimality condition (6) implies aI = 1. The three variables I, aS, VI are jointly

pinned down by equation (5) as well as the two laws-of-motion set to zero.

2.2 Social Planner

Let us now contrast the outcome in a decentralized setting with what would be

socially optimal if a planner who must obey the epidemiological laws can determine

the path of individual actions {aS, aI}. The planner would maximize overall social

welfare, consisting of the integral over the utility (4) of the unit mass of agents

j ∈ [0, 1],

W =

∫
Udj

where the epidemiological status of individuals follows the epidemiological law (2).

For a given value of inital infections I (0), the problem of the planner can be

captured by the current-value Hamiltonian

H = I [u (aI)− c (I)] + (1− I)u (aS)−WI [β (aI , aS) I (1− I)− γI]

plus the transversality condition limT→∞ e
−rTWI = 0, whereWI is the current-value

shadow cost of an agent being infected. The resulting optimality conditions are

u′ (a∗S) = WI · β0a∗II (8)

u′ (a∗I) = WI · β0a∗S (1− I) (9)

rWI = u (a∗S)− u (a∗I) + c (I) + Ic′ (I) +WI · β (·) (1− 2I)−WIγ + ẆI (10)

where we denote by an asterisk the planner's choices.
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De�nition 2 (Planner's Allocation in SIS Economy). For given I (0), the planner's

allocation in the described SIS system is given by a path of the epidemiological

variable I that follows the epidemiological law (2) as well as paths of action variables

(a∗S, a
∗
I) and the shadow cost WI that satisfy the planner's optimization problem.

The optimality condition for a∗S mirrors the equivalent expression (5) in the de-

centralized equilibrium � individual agents and the planner both account for the

risk of infection of susceptible agents in a similar manner. However, the planner's

shadow price of infection WI di�ers from that of decentralized agents, which we

describe below. In our simulations we found that generally VI < WI so the planner

values the cost of acquiring the infection more highly than private agents and will

act in a more precautionary manner than private agents for given parameter values.

The second optimality condition for a∗I di�ers from the optimality condition of pri-

vate agents: the planner captures that the activity of infected agents increases the

infection risk of the susceptible, which individual agents disregard.

The third optimality condition captures the law of motion of the planner's

shadow price of infection. In addition to the costs captured by individual agents in

the decentralized equilibrium, the term Ic′ (I) re�ects that at the aggregate level,

the cost of infections is convex, and the extra term WIβ (·) (1− I) re�ects that the

planner internalizes that additional infections will transmit to the current population

of susceptible agents. We summarize our results as follows:

Proposition 1 (Infection Externalities in SIS Economy). The planner internalizes

the infection externalities of the infected and would choose a lower level of activity

for infected agents, a∗I < aI . For given actions, the planner experiences a higher

social cost of infection than private agents, WI > VI .

Proof. See discussion above.

Whether the planner will induce more or less activity for susceptible agents than

in the decentralized equilibrium for given I depends on two competing forces: since

the infected engage in less activity, the risk of infection for susceptible agents is

lower, generating a force toward greater activity; however, for given actions, the

planner recognizes a greater social loss from one more individual becoming infected,

WI > VI , generating a force toward lower levels of activity. By implication, for given

aI , she would choose a lower level a∗S < aS than decentralized agents.
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Corollary 1 (Decentralizing the SIS Economy). The planner can implement her

allocation in a decentralized setting in the following ways:

1. by imposing taxes on the activities of susceptible and infected agents aS and

aI such that

τI = WI · β0a∗S (1− I) > 0 (11)

τS = (WI − VI) β0a∗I Ī > 0 (12)

2. by imposing a tax (11) on the activity of infected aI , and a utility penalty on

becoming infected of

τV = WI − VI > 0 (13)

3. by imposing a tax (11) on the activity of infected aI , and a utility penalty or

equivalent tax on being infected such that

τC = Ic′ (I) +WI · β (·) (1− I) > 0 (14)

as well as any appropriate combination of the three instruments τS, τV , τC.

Formulating the di�erent ways of decentralizing the SIS economy is not neces-

sarily meant to provide hands-on policy guidance (especially for points 2. and 3.)

Instead, we describe the three options because they o�er three complementary ways

to understand the infection externalities in our framework. Clearly, as captured by

point 1., it is the actions of the susceptible and infected that ultimately need to

change to implement the socially optimal allocation. However, the sole reason why

the behavior of the susceptible is distorted is that they misperceive the social cost

of being infected. As point 2. illustrates, this implies that correcting the shadow

price of becoming infected by imposing an extra penalty would induce the socially

optimal level of activity among the susceptible. Moreover, as clari�ed in point 3.,

the undervaluation of the shadow price of infection arises simply because infected

individuals � even once we have induced them to engage in the socially optimal

level of activity � do not internalize the potential cost that they impose on others,

captured by the right-hand side of (14), which consists both of the increase in the

cost C (I) for all agents and the term re�ecting the infection externality.
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Proof. The current-value Hamiltonian of individuals who face taxes τS and τI on

consuming goods that are produced by actions aS and aI of susceptible or infected

individuals and a tax on being infected τC is

H = I
[
u (aI)− τIaI − c

(
Ī
)
− τC

]
+(1− I) [u (aS)− τSaS]−VI

[
β (aS, āI) Ī (1− I)− γI

]
Given a utility penalty τV of becoming infected, the resulting optimality conditions

are

u′ (aS) =τS + (VI + τV ) β0āI · Ī (15)

u′ (aI) =τI (16)

rVI =u (aS)− u (aI) + c
(
Ī
)

+ τC − VIβ (·) Ī − VIγ + V̇I (17)

By setting τI to the value given in (11) and one of the three instruments τS, τV ,

τC to the values given in (12) to (14), the optimality conditions of decentralized

agents who face the taxes will replicate the optimality conditions (8) and (9) of the

planner.

Steady State The steady state of the system is obtained by setting İ = 0 and

ẆI = 0 in equations (2) and (10). For given (I,WI), optimality conditions (8) and

(9) jointly pin down a∗S and a∗I .

2.3 Calibration

The time units in our calibration are weeks. We set the epidemiological parameters

to γ = 1/3 to re�ect an average duration of the disease of three weeks and β0 = 2.5/3

to capture a parameter R0 = β0/γ of 2.5, re�ecting best available estimates on

the spread of the disease without precautionary measures.5 We set the economic

parameter ρ to re�ect a typical annual discount rate of 4%.

To capture the e�ects of the level of activity a on the economy and ultimately

on welfare, we assume that there is a unit mass h ∈ [0, 1] of goods ch, of which a

fraction φ requires physical contact. Examples for goods that do not require physical

contact are real estate services, information services, etc. Conversely, examples of

5See the discussion in Atkeson (2020) and references therein. Current evidence suggests that
covid-19 has an R0 between 2.0 to 3.25.
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goods that do require physical contact include personal services such as haircuts,

hospitality, medical treatments, transportation, etc. Although it is di�cult to draw

a sharp delineation, we set φ = .25, in line with estimates reported in Mitchell (2020)

on the fraction of the economy that is paralyzed by a severe physical lockdown of

economic activity. (We note that demand multiplier e�ects such as those discussed

in Guerrieri et al. (2020) may lead to additional negative spillovers from physical

lockdowns to other sectors of the economy that do not intrinsically rely on physical

contact. At present, we still lack data on the magnitude of these e�ects.)

Producing and consuming ch units of good h generates disutility d (ch) and provi-

des consumption utility ũ (ch). All the goods together provide the agent with overall

�ow utility of

u =

∫
[ũ (ch)− d (ch)] dh

For any good that does not depend on physical contact, it is optimal to choose the

�rst-best level of output and consumption c∗, which satis�es ũ′ (c∗) = d′ (c∗). By

contrast, for the fraction φ of goods that do require physical interaction, output and

consumption is scaled by the activity variable a so that ch = ac∗. The resulting �ow

utility of activity level a is

u (a) = φ [ũ (ac∗)− d (ac∗)] + (1− φ) [ũ (c∗)− d (c∗)]

In our numerical application below, we assume log consumption utility ũ (c) =

log c and linear disutility d (c) = c, implying that overall �ow utility is u (a) =

φ [log a− a], omitting a constant term. Observe that this speci�cation satis�es our

earlier assumptions lima→0 u
′ (a) =∞ and u′ (1) = 0. Note that we have implicitly

assumed that the utility of all individuals of a given epidemiological status is a�ected

equally by a reduction in activity a. This is valid if individuals are well-insured,

including if they receive social insurance against idiosyncratic shocks. By contrast,

if some individuals lose their jobs and incomes whereas others can continue to work,

additional welfare costs arise (see e.g. Guerrieri et al., 2020).

The cost of disease captures both the disutility of being sick and, in reduced

form, the potential risk of death. In the analysis of public policies, e.g. safety

regulations or environmental policies, economists routinely have to weigh decisions

that compare economic bene�ts and health costs. Estimates of the implied cost of

adverse health events are obtained by evaluating how much individuals are willing
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to spend to avoid a given risk of an adverse event. Based on guidance from the US

Department of Transportation (2012) on the value of a statistical life by consumer

price in�ation, a current estimate in the US is around $10.3m at the age of the

median worker of approximately 40 years. By comparison, before the pandemic, the

weekly level of economic activity in the US as measured by GDP was approximately

$1200/capita. In our model, we assume that this corresponds to the �rst-best level

c∗ = 1 and observe that the marginal utility of consumption at that level satis�es

ũ′ (c∗) = 1. For a median worker, a risk of death of δ = 0.66% for a disease that

lasts on average for 1/γ weeks can thus be expressed in terms of a weekly �ow utility

cost of $10.3m/$1200·0.0066 · γ ≈ 19.

However, a striking feature of COVID-19 is that the case fatality rate depends

strongly on age (Verity et al., 2020), ranging from virtually zero for children and

teenagers to 7.8% for patients of age≥80. Combining Verity et al (2020)'s case

fatality rates with life expectancy data from the SSA, Table A1 shows that the

expected statistical loss of life years for an average infected individual in the US is

0.136 years. Using the procedure described by Atkins and Bradford (2020) and a

discount rate of 4%, we translate the $10.3m statistical value of life into a $498k

value of a statistical life year. Calculating the present discounted value of this

�gure across di�erent age cohorts, Table A1 shows that this delivers an expected

statistical loss of life valued at $50.0k, which amounts to a weekly �ow utility cost

of $50.0k/$1200·γ ≈ 14.

We parameterize the cost of disease as c(I) = c0 · (1 +κI) where the base cost of

disease is given by c0 = 14. One of the concerns about COVID-19 is its potential to

overwhelm the capacity of our healthcare system since about 15% of cases require

hospitalization and about 5% of cases require mechanical ventilators. (Given the

early stage of medical research, there is still considerable uncertainty about these

parameter values.) The US currently has only about 200,000 ventilators available.

Assuming the best available distribution to the places where they are needed and

no other demand for ventilators by chronically sick patients, this implies that at

most .06% of the population can be served at a given time. If the infection rate rises

above I = .06%/5% = .012, mortality will rise signi�cantly, as experienced in earlier

hotspots such as Wuhan or Northern Italy. We set κ = 1/.012/2 ≈ 40 to re�ect

that the cost of disease is an increasing function of the fraction of the population

that is infected. In summary, the parameters for our baseline calibration of the cost
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of disease are (c0, κ) = (14, 40).

To explore the full range of outcomes in the SIS model, we also consider a low-

cost disease for which individuals experience just a minor reduction in utility, akin

to e.g. the common cold. Without appealing to any speci�c disease, we set r = 5%

so a unit of time corresponds to longer time periods and (c0, κ) = (0.05, 0) for this

low-cost scenario. As we will show in the numerical analysis below, these parameter

choices induce the planner to prefer an endemic equilibrium over eradication for

su�ciently high values of I (0).

Computational Procedure Computationally, we solve a system of two non-

linear di�erential equations with boundary conditions using a shooting algorithm.

In the decentralized equilibrium, the system is given by (I, VI) described in (2) and

(7), subject to I(0) and the transversality condition. The system features two steady

states: an unstable one at I = 0 and a stable one at I ∈ (0, 1− γ
β0

). Starting from any

I(0) > 0, the system is saddle-path stable leading to the non-degenerate equilibrium.

Similarly, the planner's allocation is given by a path of (I,WI) described in 2 and 10,

subject to I(0) and the transversality condition. However, unlike the decentralized

equilibrium, the planner's allocation may feature multiple steady states and dynamic

paths that satisfy the transversality condition, so the shooting algorithm for each

steady state must be complemented by a comparison of the global optimum across

multiple di�erent WI(0)'s.

2.4 SIS Results

Figure 1 depicts the law of motion for the fraction of infected agents in the population

for our baseline calibration (left) and the low cost-of-disease scenario (right).6 The

decentralized SIS economy converges to a unique steady state for any positive initial

I (0) > 0, which occurs where the law of motion intersects with the 45-degree line.7

This occurs around I = 0.2 in the baseline scenario, and around I = 0.6 in the

low-cost scenario. The left-hand side of Figure 2 shows the policy functions for aI

and aS as a function of I in the decentralized equilibrium: infected agents disregard

the infection externalities and engage in full activity aI = 1, whereas susceptible

6For illustration, we compute the law of motion from the continuous-time system on a discrete
time grid with step size one, equivlent to a week in our calibration.

7There is, of course, also a locally unstable steady state at I = 0, at which the population is
wholly disease-free.
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Figure 1: Law of motion for I, in baseline (left) and low cost-of-disease scenario
(right)
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agents reduce their activity the greater the fraction of infected in the population.

By contrast, susceptible agents scale down their activity level in proportion to the

cost and risk of infection they face, which is proportional to I.

The social planner, by contrast, chooses to eradicate the disease in the baseline

scenario (right panel of Figure 1) by reducing the activity level of both susceptible

and infected agents, ensuring that I → 0 asymptotically. For low I, she focuses her

risk mitigation on infected individuals. As I grows, the planner shifts her mitigation

e�orts from infected agents to susceptible agents. Intuitively, the planner relents on

the activity reduction of the infected since there are fewer and fewer agents left to

whom they could pass on the infection. In the low-cost scenario (lower panels of

Figure 2), there is a discontinuity around I (0) = 0.16: when the initial fraction of

the population is su�ciently low, the planner chooses to eradicate the disease as in

the baseline scenario. However, when the initial disease burden is higher, it is no

longer optimal to incur the cost of eradication, and the planner instead chooses a

steady state with a positive disease burden that is slightly below the steady state of

decentralized agents, internalizing the infection externalities.

The upper panels of Figure 3 simulate the paths of the SIS economy for initial

I (0) = 10% in the baseline parameterization. The solutions in the decentralized

economy and under the planner diverge � the disease remains endemic in the decen-

tralized economy, with the fraction of infected converging to an interior steady state,

whereas the planner eradicates the disease. The middle panel shows that the lives

of susceptible agents quickly return to normal under the planner's solution, whereas

decentralized agents �nd it optimal to progressively reduce their activity as I rises.
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Figure 2: Activity as a function of the measure of infected agents, in baseline (top
panels) and low cost scenario (bottom panels)
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Figure 3: Dynamic paths starting from I(0) = 0.10 in the baseline (top panels) and
I(0) = 0.15 in the low-cost scenario (bottom panels)
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To accomplish a rapid eradication, the planner isolates infected agents by reducing

their economic activity to near zero, which mitigates the harm to the susceptible.

The e�cient solution relies on the planner's ability to identify and isolate the the

sick, highlighting the role of testing which we explore in later sections.

What is particularly interesting is that the shadow cost of an additional infection

as perceived by the planner is signi�cantly greater than what decentralized agents

perceive. Private agents disregard the infection externalities, whereas the planner

recognizes that additional infections cost not only the a�ected agents but also pose

a risk to others. In the baseline scenario, the cost of infection is an increasing

function of I for both the decentralized and the planner's allocation because more

infections imply greater risk for the susceptible as well as more externalities and (for

the planner) a higher cost of reducing the activity of infected agents.

The lower panels of Figure 3 show the paths of the economy for an initial level

of infection I (0) that is above the planner's eradication threshold under a low cost-

of-disease scenario. In that case, the planner focuses on slowing down the rate of

infection to preserve the higher utility of uninfected agents, and then converges to a

steady state I that is slightly below the decentralized steady state. The right-hand
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panel shows that the planner recognizes the utility loss from infection to be a mul-

tiple of what decentralized agents perceive � because she internalizes the infection

externalities generated by an additional infected agent. Moreover, the marginal cost

of an additional infection is now decreasing over time as the economy approaches

the steady state.

3 SIR Model

3.1 Model Setup

We expand the SIS model from above to account for the observation that individuals

recovered from COVID-19 acquire resistance to future infection.

Epidemiology We denote the fraction of recovered/resistant individuals by R and

normalize the population to S + I + R = 1. The epidemiological laws of motion in

our SIR model are

Ṡ = −β (·) IS (18)

İ = β (·) IS − γI (19)

Ṙ = γI (20)

where the last compartment re�ects that infected individuals recover at rate γ.

Recovered/resistant is an absorbing state. In our derivations below, we will keep

track of the state variables I and R and note that S = 1− I −R.

Individual Behavior The optimal activity level of resistant individuals R is aR =

1 since they can no longer become infected, generating �ow utility uR = u (1).

Given that this is constant, there is no change in the endogenous economic decision

variables of agents, and the individual optimization problem continues to be given

by equation 4.

The current-value Hamiltonian of individuals in the SIR model is

H =I
[
u (aI)− c

(
Ī
)]

+RuR + (1− I −R)u (aS)

− VI
[
β (āI , aS) Ī (1− I −R)− γI

]
+ VR [γI] , (21)
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where R = Pr(i = R) is the individual's probability of being resistant, plus the

two transversality conditions limT→∞ e
−rTVI = 0 and limT→∞ e

−rTVR = 0 on the

current-value shadow cost of being infected and shadow value of becoming resistant,

respectively. The optimality conditions from the Hamiltonian are8

u′ (aS) = VI · β0āI Ī (22)

u′ (aI) = 0 (23)

rVI = u (aS)− u (aI) + c
(
Ī
)
− VIβ (·) Ī − (VI + VR) γ + V̇I (24)

rVR = uR − u (aS) + VIβ (·) Ī + V̇R (25)

De�nition 3 (Decentralized SIR Economy). For given I (0) and R (0), a decentra-

lized equilibrium of the described system is given by a path of the epidemiological

variables I and R that follow the epidemiological laws as well as paths of (aS, aI)

and VI , VR that satisfy the optimization problem of individual agents.

3.2 Social Planner

Social welfare in the economy continues to be given by expression (4), where the

expected �ow utility Ei [ui (ai)] is now calculated over the fractions of the three types

of agents i = S, I,R. The planner's Hamiltonian is given by the equivalent to the

decentralized Hamiltonian (21) with Ī = I, R̄ = R and āI = aI , where we denote

the shadow prices on the laws of motion for I and R by WI and WR. The planner's

optimality conditions for a∗S and a
∗
I are equivalent to (8) and (9) with S = 1−I−R.

The optimality conditions describing the evolution of shadow prices are

rWI =u (a∗S)− u (a∗I) + c (I) + Ic′ (I) (26)

+WI · β (·) (1− 2I −R)− (WI +WR)γ + ẆI (27)

rWR =uR − u (a∗S) +WIβ (·) I + ẆR (28)

De�nition 4 (Planner's Allocation in SIR Economy). For given I (0) and R (0),

the planner's allocation in the described SIR system is given by a path of the epi-

demiological variables I and R that follow the epidemiological laws as well as paths

8Note that we de�ne VI as a shadow cost but VR as a shadow value in the Hamiltonian; therefore
the optimality conditions for the two are rVI = −HI + V̇I but rVR = +HR + VR.
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of (aS, aI) and VI , VR that satisfy the planner's optimization problem.

Comparing the allocations of decentralized agents and the planner, we arrive at

similar results on the di�erences in behavior as in the SIS model:

Proposition 2 (Infection Externalities in SIR Model). The planner internalizes the

infection externalities of the infected and would choose a lower level of activity for

infected agents, a∗I < aI , but the same (full) level of activity for recovered agent,

a∗R = aR = 1. For given actions, the planner perceives a higher social cost of

infection than private agents, WI > VI , but the same social value of being recovered

as private agents.

Proof. See discussion above.

As in our discussion follow Proposition 1, the planner's e�ects on the activity

level of susceptible agents depends on the two competing forces: since the infected

engage in less activity, the risk of infection for susceptible agents is lower, generating

a force toward greater activity; however, for given actions, the planner recognizes a

greater social loss from one more individual becoming infected, WI > VI , generating

a force toward lower levels of activity.

The social planner's allocation can be decentralized in a similar fashion to what

we discussed in Corollary 1 for the SIS economy:

Corollary 2 (Decentralizing the SIR Economy). The planner can implement her

allocation in a decentralized setting in the three ways discussed in Corollary 1.

3.3 SIR Results

We keep the parameterization from the baseline scenario of Section 2.3 but now

account for the fact that recovered individuals are resistant to re-infection. Com-

putationally, we solve a non-linear four-dimensional boundary value problem in

(I, R, VI , VR) with conditions I(0) > 0, R(0) = 0 and the two transversality con-

ditions. The boundary conditions for the planner's solution are equivalent in the

corresponding system in (I, R,WI ,WR), where again the algorithm must check for

a global optimum across potentially multiple paths that satisfy the system given by

equations (19), (20), (26),(28), and the boundary conditions.

Figure 4 illustrates the path of the disease in the decentralized and planner's

allocation starting from an initial infection rate of I (0) =1%, which is close to

21
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 1
-3

4



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

estimates of the true number of COVID-19 cases in the US in the �rst half of April,

given that the fraction of undiagnosed cases is signi�cant (Verity et al., 2020), and

setting R (0) = 0. In the decentralized economy, susceptible agents reduce their

economic activity but infections continue to rise for the �rst 12 weeks. As the

higher fraction of infected increases the risk for susceptible agents, they continue

to reduce their economic activity until infection activity peaks. Subsequently, the

rising number of recovered agents in the population together with still very cautious

behavior by the susceptible leads to a decline in the fraction of infected, allowing

susceptible agents to increase economic activity again. One striking observation is

that even after two years, the epidemic is still ongoing: the fraction of infected in

the population is still 0.5%, whereas close to half of the population has recovered

and acquired resistance (middle panel).

Taken together, once could say that the extremely cautious behavior of the

susceptible has ��attened the curve,� but ultimately the mechanism that overcomes

the epidemic is to acquire herd immunity, i.e. to acquire su�cient resistance in the

population so that the epidemic dies out. Given the externalities, infected agents

simply do not �nd it individually rational to engage in the severe measures that

would be necessary to contain the disease.

The planner, by contrast, aims to eradicate the disease as quickly as possible by

reducing activity by the infected to close to zero, even though this imposes a stark

utility cost on infected agents given the Inada condition lima→0 u
′
I (a) = ∞. After

eight weeks, the fraction of infected is su�ciently close to zero that the planner

allows infected individuals to raise their economic activity. However, observe that

all throughout, the planner allows susceptible agents � who make up the majority of

the population � to engage in almost full activity. In short, one could say that the

planner's strategy to overcome the epidemic is containment and eradication, i.e. to

drive down the number of infected su�ciently so that it no longer poses a risk to

the susceptible, even though they never acquire herd immunity. This illustrates the

stark di�erence in how the disease is overcome by decentralized agents versus the

planner.

These results crucially hinge on the assumption that the epidemiological status

of individuals is observable. In practice, widespread shortages in testing capacity

as well as the considerable number of asymptomatic cases that are still potentially

able to spread the disease currently make it di�cult to implement what we have
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Figure 4: Dynamic paths starting from I(0) = 0.01 under the baseline scenario.
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characterized as the planner's optimal strategy. For comparison, we consider the

case in which the epidemiological status of individuals is unobservable in Section

3.4.

To provide additional intuition on the di�erences between the decentralized out-

come and the planner's solution, the left-hand panel of Figure 5 illustrates how

private agents and the planner perceive the marginal cost of an additional infection

VI versus WI . The �rst observation is that the planner's WI is signi�cantly higher

than private agents' VI , for two reasons: �rst, she internalizes that infected agents

spread the disease, and secondly she induces infected agents to starkly reduce their

level of economic activity. At the initial level of infected I (0) = 1%, private agents

perceive the cost of infection to be around $80k (using the same conversion mecha-

nism as discussed in Section 2.3 when we converted the statistical value of life years

into utils). The social cost of an additional infection as perceived by the planner,

by contrast, is much larger and corresponds to approximately $286k � about three-

and-a-half times higher than what decentralized agents perceive. Furthermore, the

social cost of infection rises in I as the planner internalizes that the rising case load

risks overwhelming the capacity of the healthcare system, raising the social cost of

disease C (I).

The right-hand panel of Figure 5 illustrates the policy functions for economic

activity aS (I, R) and aI (I, R) for varying I while holding R = 0. Since an increase

in I exposes susceptible agents to higher infection risk, they strongly scale back

their economic activity in the decentralized equilibrium. For an infection rate of

I =1%, susceptible agents cut back physical activity from a normal level of 1.00

to aS = 0.65; for I =5%, they cut activity to aS =0.25. By contrast, the planner
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Figure 5: Cost of disease and initial economic activity (for R = 0) as a function of
I.
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reduces the economic activity of the infected to near zero while maintaining activity

for the susceptible near normal levels.

To verify the robustness of our �ndings, Figure 6 illustrates an alternative

scenario in which we only consider the purely economic cost of the disease with

c(I) = c0 = 1.7 � this is 88% less than the cost in our baseline scenario that was

derived from the statistical value of life calculation in Section 2.3. The planner's

solution is nearly identical, with rapid containment and elimination of the disease.

By contrast, the disease spreads more rapidly in the decentralized economy since

susceptible agents engage in less precautionary behavior when the cost of disease

is lower. They cut back on activity in proportion to the fraction I, which drives

their risk of infection. In the long-run, over 70% of the population experiences an

infection (middle-panel) compared to 50% in the baseline. There continues to be a

discrepancy between the private and social shadow cost of an infection VI and WI

� the two di�er by a factor of almost six as private agents do not internalize the

infection externalities that are now greater, given less precautionary behavior of the

susceptible population.

3.4 Hidden Epidemiological Status

Following a containment and elimination strategy that focuses on the infected, as

we found optimal in our analysis above, requires that the epidemiological status
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Figure 6: Dynamic paths starting from I(0) = 0.01 under c0 = 1.7 and κ = 0.
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of individuals is readily identi�able. This has been a challenge, not only because

COVID-19 has a long incubation period, up to 14 days, and a signi�cant fraction of

infected individuals are asymptomatic (Verity et al., 2020), but also because many

countries, including the US, have su�ered from shortages in testing kits. Whereas

our baseline model assumed that individuals and the planner can easily target their

chosen actions to whether a given individual is susceptible or infected, the reality is

that many are unaware of their epidemiological status. To analyze the implications

of this lack of information, we now consider the extreme case that the epidemiological

status i of an individual is hidden so that the planner needs to chose a uniform level

of activity â that does not depend on epidemiological status.

This modi�es the Hamiltonian (21) of the planner so that there is just a single

decision variable â that replaces aS, aI and aR,

H =u (â)− Ic
(
Ī
)
− VI

[
β
(
ˆ̄a, â
)
Ī (1− I −R)− γI

]
+ VR [γI]

The optimality condition for individual agents with respect to â is

u′ (â) = VI · β0ˆ̄aĪ (1− I −R)

By contrast, the planner's optimality condition becomes

u′ (â) = 2WI · β0âI (1− I −R)

Comparing the the two conditions, we �nd:
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Figure 7: Dynamic paths starting from I(0) = 0.01 under the baseline scenario,
including optimal policy under hidden status
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Proposition 3 (Infection Externalities with Hidden Status). In the model with hid-

den epidemiological status, the planner internalizes twice the infection risk perceived

by decentralized agents for a given cost of infection. Furthermore, for given actions,

the planner perceives a higher social cost of infection than private agents, WI > VI .

Proof. See discussion above.

The reason why the planner internalizes twice the expected cost of infection is

that she recognizes that it is not only the actions of the susceptible that matter but

also the actions of the infected agents.

Figure 7 illustrates the dynamic path of the disease starting from an infection

rate of 1%. The left and middle panels reproduce the paths of infections and levels

of activity from Figure 4 and add (red dash-dotted) lines for the planner who cannot

distinguish the epidemiological status of individuals. The planner still contains and

quickly eliminates the virus, but the path of infections is slightly higher compared

to the optimal planning scenario. Containment must now be achieved through a

reduction in the level of activity of all agents. The middle panel shows that the level

of activity of all agents is initially reduced to 40% of the normal level, increasing

back to 55% over the span of 11 weeks, but never rising above 63% over the �rst

two years.

The reason is that the planner must choose an activity level at which the infection

rate is non-increasing, even if the fraction infected is close to zero. The fraction
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Figure 8: The dynamic path of the disease reproduction number, Rt = β(·)Sγ−1,
starting from I(0) = 0.01 under the baseline scenario, including optimal policy under
hidden status
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infected is non-increasing if the disease reproduction number satis�es Rt ≤ 1, where

Rt =
β(â, â)S

γ
=
β0â

2S

γ

Transforming the inequality above, the planner must set activity below â ≤
√
γ/β0S

in order to keep the disease contained. Since, under the planner's allocation, the

susceptible population remains close to one, this implies â ≤
√
γ/β0 ≈ 0.63. Figure

8 illustrates the disease reproduction number Rt along the dynamic paths of the

three allocations.

The right panel of Figure 7 illustrates the impact on aggregate output (which

includes the fraction 1 − φ of output that does not require physical/social inte-

raction). When the planner must resort to blunt measures that are independent of

epidemiological status, she induces a recession that is larger than in the decentra-

lized economy. Aggregate output is initially reduced by 15% and returns to 10%

below normal after 20 weeks. The long-term prospects are grim since the planner

never allows the level of physical activity to go above 63%.

If the planner assigns a lower value to lives, e.g. if he only counts the economic

losses from losing workers rather than the statistical value of life as in our baseline

parameterization, then she �nds it optimal to let the disease spread and go for herd
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Figure 9: Cost of disease and economic activity as a function of I under hidden
status (for R = 0)
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immunity, albeit at a slower rate than in the decentralized equilibrium. Once herd

immunity is acquired, then the planner can relax restrictions on activity.

The hidden epidemiological status also raises the social cost of an additional

infection, as shown in the left-panel of Figure 9. At an initial infection rate of

1%, the social cost is $300k, slightly higher compared to when the planner can

separately reduce the activity of the infected but more than seven times as high as

what is perceived by decentralized agents who know their epidemiological status.

For a lower infection rate of 0.5%, the social cost under hidden status increases to

$345k compared to a social cost of $250k when status is observable.

The planner internalizes that even for a small initial outbreak, she must impose

economic costs across all agents, which leads to large social costs. The right panel

of Figure 9 shows that the planner, under hidden epidemiological status (red dash-

dotted line), reduces economic activity by 60% at an infection rate of 1% and by up

to 80% if the fraction infected is 5%.

3.5 Private versus Social Gains from Vaccination

The future economic damage imposed by the virus will depend heavily on how soon

a vaccine is developed. Individually rational susceptible agents have incentives to

become vaccinated in order to avoid the risk of infection. In our SIR model, the

bene�t of moving from susceptible to resistant is re�ected by VR in equation (25).
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Figure 10: Private versus social gains from vaccination, given I = 1%
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The �ow gains over time are captured by two terms. The �rst term, uR − u(aS),

captures that recovered agents do not have to distance themselves in order to avoid

becoming infected. The second term, VIβ(·)I, captures the expected gain from

avoiding the infection entirely.

The left panel of Figure 10 illustrates the private gain from a vaccination (solid-

blue line) when 1% of the population is infected, for R ∈ [0, 0.99]. Initially if no

one has immunity, the private gain from becoming vaccinated is equivalent to $26k.

The gain falls as more of the population becomes resistant/recovered as this reduces

the risk of infection. Around R = 0.6 the population acquires herd immunity, and

the private gain to an additional vaccination declines to $1.8k as the infection risk

of susceptible individuals becomes negligible.

However, since private agents do not internalize the infection externality, the

social gain of an additional vaccination in the decentralized economy is many times

larger, shown as the dashed-purple line in the left panel of 10, which re�ects WR,

the planner's willingness to pay to transition an agent from susceptible to resis-

tant/recovered, taking as given the private actions of agents. At zero immunity the

social gain from an additional vaccination is $430k, nearly 17 times larger than what

private agents are willing to pay. As more of the population becomes resistant the

social gains from additional vaccinations fall. Around the level of herd immunity,

WR declines sharply: from to $67k at R = 0.6 to merely $14k. at R = 0.75.

The right panel of Figure 10 illustrates that the social gains from vaccination

depend crucially on what strategy society adopts to contain the disease. The green
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line marked with circles plots the social bene�t of an extra vaccination, WR, under

the assumption that the planner employs the optimal containment strategy descri-

bed in section 3.2. Since the disease is quickly eradicated in that scenario, the social

gain from moving an agent from susceptible to recovered is rather small � only $40

(without �k�). This illustrates that eradication and vaccination are substitutes. Ho-

wever, when the epidemiological status of individuals is hidden and the planner is

forced to reduce activity across all individuals to contain the disease, the social gain

from an extra vaccination ŴR is signi�cantly larger, around $235k at zero immunity,

and remaining positive even once herd immunity is reached.

4 Conclusions

We integrate macroeconomic activity into epidemiological SIS and SIR models in

order to analyze and quantify the externalities that arise. Our main �nding is that

agents who behave individually rationally generate large externalities because they

do not internalize the e�ects of their economic and social activities on the infection

risk of others and therefore engage in inadequate social distancing. Infected agents

rationally choose to engage in full economic activity, while susceptible agents reduce

activity which �attens the spread of the virus. However full recovery only occurs

after herd immunity is reached across several years.

We �nd in a model calibrated to capture the main features of COVID-19 and

the US economy that private agents perceive the cost of an additional infection to

be around $80k whereas the true social cost is more than three times higher, around

$286k. Facing an initial outbreak in which 1% of the population is infected, the

planner optimally isolates the infected by reducing their social activity close to zero

while only slightly reducing the activity of the susceptible. This leads to a sharp

reduction in the number of infected agents and an overall mild impact on aggregate

output.

Alternatively, if the planner cannot make policy contingent on the epidemiologi-

cal status of individuals, for instance either because of the asymptomatic nature of

COVID-19 or the lack of su�cient testing, then optimal policy still sharply reduces

the number of infections but at signi�cantly larger initial economic cost but that

is short lived. The social cost of an additional infection in this scenario is around

$300k.
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We leave several possible extensions for future work: First, it would be use-

ful to re�ne our epidemiological models to account for additional nuances of the

SARS-CoV-2 virus. For example, including a separate compartments for exposed

agents E would make it possible to explicitly account for the long incubation period

of COVID-19 and for the possibility that exposed agents recover without ever dis-

playing symptoms of the disease. Accounting for spatial heterogeneity would make

it possible to better capture the dynamics of the disease in a large country such as

the US and to analyze the bene�ts of travel restrictions. Moreover, since the case

fatality rate of COVID-19 di�ers so strongly for patients of di�erent age, accounting

for di�erent age groups would make it possible to analyze how the externalities by

age group di�er.

Secondly, it would be useful to re�ne the analysis of the macroeconomic feedback

e�ects of the reductions in social and economic activity that we analyze. For ex-

ample, Guerrieri et al. (2020) show that feedback e�ects in a multi-sector economy

with �nancial market imperfections may lead to an ampli�cation of the initial shock

generated by social distancing. This provides valuable insights for macroeconomic

policymakers.
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 Age Infection
 group Men Women Men Women Men Women fatality rate Men Women
 0–9 20.45 19.56 72.0 76.9 12,171$         12,305$         0.002% 0.2$              0.2$               
 10–19 21.43 20.54 62.2 67.1 11,810$         12,006$         0.007% 0.8$              0.8$               
 20–29 23.22 22.21 52.8 57.3 11,304$         11,571$         0.031% 3.5$              3.6$               
 30–39 21.98 21.71 43.6 47.7 10,598$         10,947$         0.084% 8.9$              9.2$               
 40–49 20.06 20.40 34.5 38.3 9,600$           10,058$         0.161% 15.5$            16.2$             
 50–59 20.95 21.88 26.0 29.3 8,266$           8,839$           0.595% 49.2$            52.6$             
 60–69 17.76 19.65 18.3 20.9 6,628$           7,243$           1.930% 127.9$          139.8$           
 70–79 10.35 12.31 11.6 13.4 4,713$           5,280$           4.280% 201.7$          226.0$           
 ≥80 4.92 7.76 6.2 7.4 2,810$           3,240$           7.800% 219.2$          252.7$           

Total: 327.14 Wgt. Average: 50.0$             

* in thousands of USD

Sources:
Population numbers: US Census Bureau (2018)
Life Expectancy: US Social Security Administration, Period Life Table (2016): https://www.ssa.gov/oact/STATS/table4c6.html
Case fatality rate: Verity et al. (2020), Table 1

Value of statistical life* E[loss] given infection*

Table A1: Calculation of population-weighted expected loss of VSLYs (Value of Statistical Life Years) in US given infection

Population Life Expectancy
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The COVID-19 pandemic and the subsequent lockdown brought 
about a massive slowdown of the economy and an unparalleled stock 
market crash. Using US data, this paper explores how firms with high 
Environmental and Social (ES) ratings fare during the first quarter 
of 2020 compared to other firms. We show that stocks with high ES 
ratings have significantly higher returns, lower return volatilities, 
and higher trading volumes than other stocks. Firms with high ES 
ratings and high advertising expenditures perform especially well 
during the crash. This paper highlights the importance of ES policies 
in making firms more resilient during a time of crisis.
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“Life would still present them with other moral trials, of course, but that no longer mattered: 

they were on the other shore.” 

- Gabriel Garcia Marquez, Love in the Time of Cholera 

 

The magnitude and the speed of the stock market crash in the U.S. and around the world 

caused by the COVID-19 pandemic and the subsequent economic lockdown took everyone by 

surprise. The stock market in the U.S. peaked on February 19, and a mere month later prices 

had declined by almost 30%. Yet, in this rampant stock market sell out, investors were not 

indiscriminate. This paper documents and compares the relative performance of stocks with 

high Environmental and Social (ES) ratings to other stocks and studies why these stocks have 

turned out to be so resilient during the roller-coaster first quarter of 2020. 

 

Many previous studies show that ES policies provide cash flow and discount rate benefits to 

firms. In particular, Lins, Servaes, and Tamayo (2017) show that U.S. non-financial firms with 

high ES ratings had better financial performance than other firms during the Great Recession 

of 2008-2009. The current crisis is a major economic shock to the economy, like the Great 

Recession was. However, the COVID-19 pandemic is very different from the Great Recession 

as the speed and severity of the economic meltdown are unprecedented. Whereas in the 

Great Recession the unemployment rate in the U.S. climbed to nearly 10% by the end of the 

recession, in the current crisis, initial claims for jobless benefits reached 11% of the U.S. labor 

force in just three weeks. Do ES policies that preceded the COVID-19 crisis help firms mitigate 

the stock market sell out? Is the relative performance of high ES rated stocks better than 

other stocks, akin to the situation in the Great Recession? Why do ES policies ease the way to 

“the other shore” - help firms to survive the unprecedented stock market crash? We address 

these questions in this paper. 

 

Our first result is that first quarter abnormal returns are significantly correlated with ES 

ratings in the cross-section, even after controlling for the usual firm characteristics including 

size, cash to assets, Tobin's Q, and leverage. An increase in ES ratings equal to one standard 

deviation is associated with an increase in quarterly returns of 2.1%. There is evidence (see, 

e.g. Berg, Koelbel, and Rigobon, 2020) of ESG ratings disagreements between different rating 

agencies. We use ES ratings from Thomson Reuters Refinitiv for our main results, but we find 

similar results using MSCI ES scores. 

 

Next, we inspect more closely the relation between the returns for firms with high ES ratings 

and the COVID-19 pandemic. We estimate a difference-in-difference regression of firm-level 

daily abnormal returns with two treatment dates, February 24,5 when the stock market 

 

5 The S&P 500 peaked on February 19, 2020. On Friday, February 21, several municipalities in Northern 
Italy went into lockdown and subsequently the decline in the S&P 500 accelerated.  
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decline started, and March 18, when President Trump signed the second Coronavirus 

Emergency Aid Package. We include the second treatment date because we wish to identify 

the effect the COVID-19 pandemic has on stocks. The second treatment date is the start of an 

aggressive fiscal policy response to the pandemic, which may affect the results from the 

previous treatment. We find that firms with high ES ratings earned an extra daily return of 

0.41% from February 24 until the end of the 1st quarter relative to firms with low ES ratings. 

 

We complement the difference-in-difference regressions with a less parametric look into the 

relation between the returns to ES ratings and the COVID-19 pandemic. Following Ramelli and 

Wagner (2020), we estimate daily cross-sectional regressions of cumulative abnormal returns 

of U.S. listed firms and inspect the evolution of the loading on ES ratings over time. We find 

that the loading on ES ratings is flat from January 1, 2020 till the end of February and then 

increases consistently afterwards until it plateaus around mid-March. These results are 

consistent with ES stocks being more resilient during the COVID-19 market crash. 

 

We consider two mechanisms that can potentially explain the resilience of high ES firms.  

Albuquerque, Koskinen, and Zhang (2019) present a model where firms with credible ES 

policies have more loyal customer base and face less price-elastic demands for their products. 

This in turn leads to reduced exposure for firms to systematic risk and increased valuations. 

In other words, customer resiliency drives firm’s stock resiliency. Heinkel, Kraus, and Zechner 

(2001) develop a model of segmented capital markets where a polluting firm, held by only a 

subset of investors, carries greater systematic risk. Consequently, green firms, arguably firms 

with high ES ratings, would have higher valuations. We use advertising expenditures as a 

proxy for customer loyalty and show that the effect we find is stronger for firms with high ES 

ratings coupled with high advertising expenditures, consistent with Albuquerque et al. (2019). 

For the second mechanism, we construct a variable that measures the ES preferences of 

institutional investors. If firms with high ES ratings have owners with a preference for those 

stocks, then these firms should perform relatively better during a market sell-off. We do not 

find evidence for this second mechanism. Further, the point estimates of the coefficients 

describing the first effect are roughly two times larger than the point estimates of the 

coefficients for the second effect. 

 

We also document that high ES rated firms display lower volatility of stock returns during the 

first quarter of 2020. We do this in two ways. First, we compute the standard deviation of 

daily log returns, raw and CAPM adjusted, for the first quarter of 2020. Second, we use a 

range-based volatility measure, high minus low daily prices, and estimate difference-in-

difference regressions using daily data. We find that volatility is lower for high rated ES firms 

under both approaches and for the various measures of volatility. Lastly, we document that 

daily trading volume increases for high ES rated firms relative to low ES firms after the 
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February 24 treatment date suggesting that some investors stepped in to stop the downward 

slide in prices, thus also reducing stock return volatility. 

 

We consider two alternative hypotheses for our findings. One alternative explanation is that 

the oil price decline in the first quarter of 2020 affected particularly firms in the energy sector, 

which are known to score low in some dimensions of ES. This alternative explanation would 

also predict that highly rated ES firms display relatively lower volatility and higher trading 

volume. We repeat the analysis excluding the firms in the energy sector from our sample. We 

find very similar results. Another alternative explanation is that some businesses were 

considered ‘essential’ and kept on operating in a normal fashion. This may have resulted in 

some resiliency of cash flows and of stock returns for these businesses. We show that the 

documented resiliency of high ES rated firms is not a feature of any particular industry. Ten 

of the Fama-French 12 industries show resiliency of high ES rated firms during the stock 

market crash, though with significant coefficients for only five of the industries. Further, we 

account for within industry variation in ES and find the same results. These results suggest 

that the effect of ES policies on stock returns is not due to some businesses being considered 

essential in combatting the pandemic. 

 

Similarly to Lins et al. (2017), Cornett, Erhemjamts, and Tehranian (2016) show that U.S. 

banks' financial performance during the Great Recession is positively related to their ESG 

score. This evidence is consistent with a flight to quality during the market downturn. The 

evidence in Ferrell, Liang, and Renneboog (2016) that well-governed firms invest more in ES 

policies supports this view. In a contemporaneous paper, Shan and Tang (2020) document 

that Chinese firms with greater employee satisfaction appear to endure the COVID-19 stock 

market downturn better than other firms, supporting employee satisfaction as one dimension 

of ES policies creating shareholder value (Edmans, 2011). We show that our results on ES 

cannot be explained by a good corporate governance effect. 

 

Stocks with high ES ratings were not the only stocks that performed better during the first 

quarter of 2020. Acharya and Steffen (2020) provide evidence that firms with access to 

liquidity, either through cash or lines of credit, perform better during the 1st quarter. Ramelli 

and Wagner (2020) show that non-financial firms with higher cash holdings and lower 

financial leverage are less affected than other firms. The availability of liquidity is of course 

valuable in a situation where demand is collapsing and more financially fragile firms may face 

bankruptcy, but our results are not subsumed by firms' cash or leverage positions. This paper 

addresses the more complicated question why ES policies provided firms resiliency in the 

midst of market collapse. 

 

Some recent papers have addressed the relationship between epidemics and stock market 

developments. Baker, Bloom, Davis, Kost, Sammon, and Viratyosin (2020) show that no other 

infectious disease outbreak has had such powerful impact on the U.S. stock market. Alfaro, 
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Chari, Greenland, and Schott (2020) link the stock market fall directly to epidemic model 

revisions of predicted infections. Toda (2020) uses an epidemic model to predict a temporary 

fall in the stock market of 50%. Schoenfeld (2020) shows that firms systematically 

underestimated their exposure to the COVID-19 pandemic. 

 

The next section describes the data. Section 3 presents our main results. Section 4 presents 

robustness results, and Section 4 concludes. 

 

 

 

I. Data 
 

 

Our main data source on firms' ES performance is Thomson Reuters' Refinitiv ESG database, 

formerly known as Asset4. Refinitiv collects information from corporate annual reports, 

sustainability reports, non-governmental organizations, and news sources for publicly traded 

companies at an annual frequency. Refinitiv ESG evaluates firms' environmental (E) 

performance in three areas: resource use, emissions, and innovation. Social (S) commitments 

are measured in four areas: workplace, human rights, community, and product responsibility. 

Governance (G) is evaluated in three dimensions: management, shareholders, and corporate 

social responsibility strategy. Refinitiv provides materiality-weighted aggregate scores to 

investors for each of the three main categories: Environment Pillar Score, Social Pillar Score, 

and Governance Pillar Score. The scores are based on the relative performance of ESG factors 

within the firm's sector (for E and S) and country (for G) and range from 0 to 100. They have 

been used in the prior literature, e.g. by Ferrel, Liang and Renneboog (2016) and Dyck, Lins, 

Roth, and Wagner (2019). Our main measure, ES, is the average of the environment and social 

scores in 2018 expressed in percentage terms. We thus omit the Governance Pillar Score. 

 

As an alternative measure, we also obtain firm-level data from MSCI's ESG Research database, 

previously known as KLD. Firms are rated on a variety of strengths and concerns on seven 

attributes: community, diversity, employee relations, environment, product, human rights, 

and governance. We exclude corporate governance attributes from our analysis to focus on 

non-governance aspects of ESG. We measure ES as the difference between the number of 

strengths and the number of concerns for each firm in 2016, the last year for which data is 

available. Given that the number of individual concerns and strengths in each attribute varies 

over time and across firms, we divide the number of strengths (concerns) for each firm-year 

across all six ES categories by the maximum possible number of strengths (concerns) in all six 

categories for each firm. We then subtract the scaled concerns from the scaled strengths to 

obtain our alternative measure, ES-MSCI, which is bounded between -1 and 1. Our results are 

very similar using the alternative way of measuring firms' ES performance. 
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We construct a firm-level investor ES measure based on revealed preference from 

institutional investors. Investors' ES preference is estimated using institutional investors' 

equity holdings, following recent studies (Starks, Venkat, and Zhu, 2018, and Gibson, 

Glossner, Krueger, Matos, and Steffen, 2019). We measure institutional ownership using 

Thomson Reuters' 13F database, which reports institutional investors' equity holdings 

collected from regulatory authorities, fund reports, fund associations, and fund management 

companies at a quarterly frequency. To construct the measure, we first measure an investor's 

ES preference as the value-weighted average Refinitiv ES score of its portfolio holdings for 

each quarter in 2018 and then average across the four quarters. Investor-based ES score of a 

firm is measured as the weighted average of its investors' ES preference based on holdings in 

the first quarter of 2019. 

 

  

Table 1:  Summary statistics 

Variable            Obs. Mean Std.Dev. 25% Median 75% 

Abn Return_cum            2,171  -22.875 42.412 -39.780 -17.374 2.753 

ES            2,171  0.289 0.212 0.136 0.208 0.384 

Investor-based ES            2,123  0.544 0.064 0.514 0.555 0.587 

Tobin's Q            1,971  2.268 1.882 1.098 1.545 2.600 

Size            2,156  21.555 1.628 20.421 21.438 22.542 

Cash            1,972  0.156 0.209 0.023 0.067 0.191 

Leverage            1,959  0.321 0.231 0.118 0.307 0.463 

ROE            1,971  -0.022 0.691 -0.002 0.092 0.158 

Advertising            2,171  0.007 0.020 0.000 0.000 0.002 

Volatility            2,171  6.128 2.954 4.446 5.452 7.037 

Idio Volatility            2,171  4.768 3.049 2.977 4.010 5.747 

Abn Return        134,689  -0.369 5.655 -1.633 -0.140 1.159 

Volume        137,493  1.957 5.406 0.197 0.584 1.648 

DayPrc_range        137,494  0.060 0.066 0.019 0.038 0.078 

 

This table reports the summary statistics (number of observations, mean, standard deviation, 25th, 50th 

(median) and 75th percentiles) for all variables. The Appendix provides the definition and data sources 

for all variables.  

 

 

We obtain daily stock returns, daily high and low prices, and trading volumes from Capital IQ 

North America Daily for the first quarter of 2020 and CRSP from 2017 to 2019. CAPM-adjusted 

return is estimated as the difference between the daily logarithm return of a stock and the 

CAPM beta times the daily logarithm market return.6  The CAPM beta is estimated by using 

 

6 Our results are similar if instead we use arithmetic returns.  
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daily returns from 2017 and 2019, where the market index is S&P 500. 

 

Accounting data for 2019 is obtained from Compustat, which are used to construct control 

variables, i.e. Tobin's Q, Size, Cash, Leverage, Return on Equity, and Advertising. We winsorize 

all control variables at the 1% level in each tail. All variables are described in the Appendix. 

After matching all datasets, our sample consists of 134,689 firm-day return observations for 

2,171 distinct firms. Summary statistics are presented in Table 1. Figure 1 depicts the stock 

market performance of the S&P 500 during the first quarter of 2020, with both treatment 

dates (the 24th February and 18th March 2020) indicated.  

 

 

 

Figure 1. S&P 500 during the first quarter of 2020 

 

This figure plots the stock market path of S&P 500 during the first quarter of 2020. The red lines mark 

our two treatment dates.  
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II. Results 
 

 

Average return effects Table 2 presents results of regressing quarterly log returns on 

firms' ES ratings and other firm characteristics. In column (1) we use ES ratings as the only 

independent variable. In column (2) we add industry fixed effects, and in column (3) we add 

Tobin's Q, firm size, cash to assets, financial leverage, return on equity, and advertising 

expenditures as independent variables. The effect of ES ratings on stock returns is significant 

at 5% level or better, even after controlling for all the variables. The magnitude of the 

coefficient estimate suggests that one standard deviation increase in ES ratings leads to a 

higher stock return of 2.1% on average (9.9 times 0.212). Firms with high Tobin's Q, larger 

firms, firms with high cash, and lower leverage all perform better (see Ramelli and Wagner, 

2020, for a discussion of the role of cash and leverage).  
 

 

Table 2: Cross-sectional regressions of returns 
 (1) (2) (3) 

Dependent variable Abn Return_cum Abn Return_cum Abn Return_cum 

ES 15.283*** 18.251*** 9.913** 
 (3.58) (4.71) (2.40) 

Tobin's Q   3.638*** 
   (7.11) 

Size   3.019*** 
   (5.13) 

Cash   10.559** 
   (2.02) 

Leverage   -39.450*** 
   (-11.68) 

ROE   1.817 
   (1.62) 

Advertising   -2.019 
   (-0.05) 

Constant -27.289*** -28.147*** -87.750*** 
 (-17.81) (-20.46) (-7.29) 

Industry FE No Yes Yes 

Number of firms 2,171 2,171 1,945 

adj. R2 0.005 0.229 0.346 

 

This table reports the results of regressions of first quarter 2020 abnormal returns on firms’ ES under 

several specifications: without firm controls (specification 1), with industry fixed effects (specification 

2), and with industry fixed effects and firm controls (specification 3). The numbers in parentheses are 

t-statistics.  ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. The Appendix 

contains a detailed description of all the variables 
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Next, we conduct a difference-in-difference estimation that attempts to demonstrate a 

tighter link between the performance of firms with high ES ratings and the COVID-19 

pandemic. We construct a COVID-19 treatment dummy. Dummy _COVID equals 1 for each 

day on or after February 24 until the end of the quarter, and zero otherwise. February 24 is 

the start of the ̀ fever' period in Ramelli and Wagner (2020). It is also the first trading day after 

the first lockdown in European soil, in Northern Italy. We construct a second treatment 

dummy to isolate the effect that the U.S. fiscal policy response to the pandemic had on firms' 

stock returns. Dummy_Fiscal equals 1 for each day on or after March 18 until the end of the 

1st quarter, and zero otherwise. March 18 is the day that President Trump signed the second 

Coronavirus Emergency Aid Package (the Families First Corona Response Act). The first 

Coronavirus Emergency Aid Package was a very small package of $8.3 billion targeted 

specifically to combat the spread of Coronavirus and was signed by President Trump on March 

6. The third and largest Coronavirus Emergency Aid Package (the Coronavirus Aid, Relief, and 

Economic Security Act) was signed by President Trump on March 27. 

 

 

Table 3: Diff-in-Diff regressions for abnormal returns 
 (1) (2) 

Dependent variable Abn Return Abn Return 

Dummy_ES_High*Dummy_COVID 0.410** 0.410** 
 (2.63) (2.60) 

Dummy_ES_High*Dummy_Fiscal -0.522 -0.522 
 (-0.86) (-0.86) 

Dummy_ES_High 0.002  

 (0.06)  

Dummy_COVID -1.077***  

 (-3.57)  

Dummy_Fiscal 1.261  

 (0.98)  

Constant -0.128* -0.393*** 
 (-1.73) (-16.00) 

Firm FE No Yes 

Day FE No Yes 

Number of firm-days 134,689 134,689 

adj. R2 0.007 0.082 

 

This table reports the results of Diff-in-Diff estimation of daily abnormal returns during the first quarter 

of 2020. Dummy_ES_High equals one for high ES firms, and zero otherwise. Dummy_COVID equals one 

from 24th February to 31st March 2020, and zero before this period. Dummy_Fiscal equals one from 

18th March to 31st March 2020, and zero before this period. Firm and day fixed effects are (not) 

included in Specification 2 (1). Standard errors are clustered by firm and day. The numbers in 

parentheses are t-statistics.  ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively. The Appendix contains a detailed description of all the variables. 
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Table 3 contains the results. Column 1 is with no fixed effects and column 2 has both firm and 

day fixed effects. Standard errors are clustered by firm and day. The results show that the 

coefficient associated with the interaction between Dummy_COVID and a dummy variable 

that equals one for the top quartile of ES rated firms (Dummy_ES_High) is positive and 

significant at the 5% level. High ES rated firms earn an average abnormal daily return of 0.41% 

relative to other firms from February 24 to March 31 (corresponding to 10% cumulative 

abnormal return for high ES firms relative to others). The results also show that the fiscal 

response dummy interacted with the high-ES dummy is insignificant. Overall, investors pay 

more for firms with higher ES ratings as the market collapses in the first quarter of 2020. 

 

 

 

Figure 2. Evolution of coefficients during the first quarter of 2020 

 

This figure plots the evolution of coefficients during the first quarter of 2020 from daily cross-sectional 

regressions of cumulative stock returns (from the start of the quarter to the day) on ES ratings, Tobin’s 

Q, firm size, cash to assets, financial leverage, return on equity and advertising expenditures (all lagged 

2019 values), and industry fixed effects. It plots the daily loading on ES ratings, cash to assets, and 

leverage with two-standard-error bands. 
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To further document the resiliency of stock returns of high ES rated firms, we conduct daily 

cross-sectional regressions of cumulative stock returns (from start of the quarter to the day) 

on ES ratings, Tobin's Q, firm size, cash to assets, financial leverage, return on equity and 

advertising expenditures (all lagged 2019 values), and industry fixed effects (as in Ramelli and 

Wagner, 2020). Figure 2 plots the daily loading on ES ratings, cash to assets, and leverage with 

two standard error bands. The advantage of this analysis relative to the difference-in-

difference regressions is that we do not commit to a particular treatment date. The 

disadvantage is that it does not give an estimate of the average change in stock returns, but 

rather how the relevance of ES ratings as an explanatory variable changes overtime. The 

figure shows the loading on ES ratings increasing dramatically sometime at the end of 

February until it plateaus in mid-March. It describes the building up towards the effect we 

eventually find in the cross-sectional regressions of quarterly returns (note that the last point 

estimate in Figure 2 is the point estimate in column 3 of Table 2). The loading on cash to assets 

also increases reaching similar levels to that of ES. The loading on leverage is negative and 

falls precipitously with the crisis. This evidence is consistent with Acharya and Steffen (2020) 

and Ramelli and Wagner (2020). The reasons for the dramatic effect of ES on returns are 

analysed next. 

 

Two mechanisms of resiliency We study two mechanisms that can potentially explain 

the resiliency of firms with high ES ratings: customer loyalty and investor segmentation. Both 

mechanisms predict lower systematic risk of high ES stocks. Luo and Bhattacharya (2009) and 

Albuquerque, Koskinen, and Zhang (2019) propose that customers are more loyal to firms 

with a strong reputation and credibility to pursuing ES policies. In Albuquerque et al. (2019) 

these firms benefit from a lower price elasticity of demand to obtain higher profit margins. 

These higher profit margins lower operating leverage and reduce firm systematic risk. 

Intuitively, it is customer resiliency that delivers firm’s stock resiliency. Albuquerque et al. 

(2019) present some direct evidence of their mechanism by showing that changes in ROA are 

less positively correlated with the business cycle for high ES firms. We follow Albuquerque et 

al. (2019) and others in using advertising expenditures as a measure of customer loyalty. We 

expect that the effect we find is concentrated on those firms with high advertising 

expenditures. 

 

The second mechanism adapts the segmented capital markets model of Heinkel, Kraus, and 

Zechner (2001). In that model, polluting firms are only held by a subset of investors since ES 

investors choose not to hold them. The lack of diversification that polluting firms have then 

leads to higher systematic risk for these firms. Also, in parallel to customer loyalty, investor 

loyalty can contribute to the resiliency of ES stocks. The literature on Sustainable and 

Responsible Investments (SRI) shows that investors are more loyal, and less performance-

sensitive to SRI funds than to conventional mutual funds (Bollen, 2007, and Renneboog, Ter 

Hort, and Zhang, 2011). Our proxy for ES investor preferences is constructed using the idea 
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of revealed preference.7 We expect that stocks with investors with a preference for ES have 

less systematic risk and are more resilient.8 

 

 

Table 4: Triple interactions regressions for abnormal returns 
 (1) (2) (3) (4) 

Dependent variable Abn Return Abn Return Abn Return Abn Return 

Dummy_ES_High*Dummy_COVID*D

ummy_Advertising_High 
0.536** 0.536**   

 (2.37) (2.35)   

Dummy_ES_High*Dummy_Fiscal*Du

mmy_Advertising_High 
-1.022** -1.023**   

 (-2.49) (-2.46)   

Dummy_ES_High*Dummy_COVID*D

ummy_InvestorES_High 
  0.263 0.262 

   (1.06) (1.04) 

Dummy_ES_High*Dummy_Fiscal*Du

mmy_InvestorES_High 
  0.135 0.137 

   (0.31) (0.30) 

All dummies entered separately Yes Yes Yes Yes 

All possible interactions entered Yes Yes Yes Yes 

Constant Yes Yes Yes Yes 

Firm FE No Yes No Yes 

Day FE No Yes No Yes 

Number of firm-days 134,689 134,689 131,654 131,654 

adj. R2 0.007 0.082 0.007 0.083 

 

This table reports the results of triple interactions estimation for daily abnormal returns during the first 

quarter of 2020. Dummy_ES_High equals one for high ES firms, and zero otherwise. Dummy_COVID 

equals one from 24th February to 31st March 2020, and zero before this period. Dummy_Fiscal equals 

one from 18th March to 31st March 2020, and zero before this period. Specifications 1 and 2 (3 and 4) 

are triple interaction regressions for high Advertising (Investor-based ES) firms. Firm and day fixed 

effects are (not) included in Specifications 2 and 4 (1 and 3). Standard errors are clustered by firm and 

day. The numbers in parentheses are t-statistics.  ***, **, and * indicate significance at the 1%, 5%, and 

10% levels, respectively. The Appendix contains a detailed description of all the variables. 

 

 

Table 4 displays the results. In our tests, we repeat the difference-in-difference regressions 

of Table 4, expanding the interactions to a triple interaction between Dummy_COVID, 

 
7 We also use an alternative investor preference measure of ES, which is the institutional ownership of a 
firm by pension funds and endowments. Starks, Venkat and Zhu (2018) show the long-term investors 
have a preference for high ES stocks. We do not find that this measure has any effects.  
8 Using data from Morningstar on the sustainability of mutual funds that explores how their investments 
are made, Hartzmark and Sussman (2019) show evidence that investors value sustainability.  
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Dummy_ES_High, and a dummy indicating the firms in the top quartile of advertising 

expenditures (in columns 1 and 2) and to a triple interaction between Dummy_COVID, 

Dummy_ES_High, and a dummy indicating the firms in the top quartile of ES investor 

preference (in columns 3 and 4). In columns 1 and 2, we find positive point estimates on the 

triple interaction linked to advertising expenditures. Column 2 adds firm and day fixed effects 

to the regression. In both columns standard errors are clustered by firm and day. Consistent 

with the predictions from the first mechanism, there is a significant average abnormal return 

earned by firms with high ES ratings and high advertising expenditures relative to firms with 

low ES ratings or low advertising expenditures after February 24. The effect is 0.54% in daily 

returns. Columns 3 to 4 show positive point estimates on the triple interaction of interest 

linked to ES investor preference. However, the point estimates are not statistically significant. 

Economically, the point estimate on the ES investor preference triple interaction is half of the 

effect estimated in the triple interaction with advertising expenditures. Overall, we find 

strong support for the first resiliency mechanism. 

 

We end this subsection with a note that while these two mechanisms explain why high ES 

firms may have lower market beta, they do not fully explain the resiliency that we find, 

because the dependent variable in the tests above is the CAPM-adjusted stock return. It is, 

however, possible that market beta may have declined during the 1st quarter for high ES firms 

and that is the reason for the increased loading on ES in the cross sectional regressions that 

give rise to Figure 2. Further analysis on the profitability and productivity of highly rated ES 

firms during the COVID-19 pandemic will also help shed light on the customer loyalty 

mechanism. We leave this avenue for future research. 

  
Volatility of stock returns and trading volume  Toward the resilience hypothesis of ES 

firms, we also provide evidence of how volatility of stock returns varies with ES ratings in the 

cross section. Table 5 presents the results. In panel A, we repeat the regressions in Table 2 

using as the dependent variable the standard deviation of daily raw log returns over the 

quarter (columns 1,2, and 3) and the idiosyncratic volatility calculated as the standard 

deviation of CAPM-adjusted daily stock returns over the quarter (columns 4, 5, and 6). In 

panel B, we repeat the regressions in Table 3 using as dependent variable a range measure 

of daily volatility, the daily high price minus the daily low price divided by the average price. 

 

In all regression specifications, we find that firms with high ES ratings experience a decrease 

in stock return volatility as compared to firms with low ES ratings (1% or better of 

significance). Panel B, which uses a daily measure of volatility, suggests that the change in 

volatility can be traced to the Dummy_COVID treatment variable. There is a drop in range 

based volatility of stock returns for high rated ES firms relative to low ES rated firms (an 

amount equal to 10% of the sample average of volatility of the daily price range), even though 

volatility increases for all firms after the COVID-19 crisis. Overall, the resiliency of high ES stock 

returns appears to be displayed both in the performance of mean returns as well as in the 
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volatility of returns. Panel B suggests that the fiscal policy treatment dummy has an added 

effect contributing to even lower volatility of high ES rated firm returns relative to firms with 

low ES ratings. 

 

We add one final piece of evidence consistent with our resiliency hypothesis using data on 

daily trading volume. Table 6 contains the results. In Table 6, we repeat the regression 

specifications of Table 3 but with daily stock trading volume as the dependent variable. The 

results in Table 6 show a strong increase on daily volume after February 24 for high ES rated 

firms relative to other firms (an amount equal to 2.05 million shares, which represents a 

doubling of the trading volume for the average firm), even though trading volume increased 

for all firms with the COVID-19 crisis. There is a further increase in trading volume with the 

Dummy_Fiscal for high ES rated firms, but it is of smaller size and only significant in the 

specification without fixed effects.  

 

 

 

Table 5: Volatility regressions 

Panel A: Cross-sectional regressions for volatility 
 (1) (2) (3) (4) (5) (6) 

Dependent variable Volatility Volatility Volatility Idio Volatility Idio Volatility Idio Volatility 

ES -2.377*** -2.271*** -0.977*** -2.814*** -2.723*** -0.810*** 
 (-8.19) (-8.06) (-3.52) (-9.32) (-9.27) (-2.90) 

Tobin's Q   -0.155***   -0.116*** 
   (-4.54)   (-3.37) 

Size   -0.345***   -0.507*** 
   (-8.76)   (-12.76) 

Cash   0.664*   0.814** 
   (1.92)   (2.31) 

Leverage   3.189***   3.518*** 
   (14.08)   (15.42) 

ROE   -0.167**   -0.217*** 
   (-2.23)   (-2.87) 

Advertising   0.549   3.599 
   (0.22)   (1.44) 

Constant 6.806*** 6.776*** 12.981*** 5.582*** 5.555*** 14.816*** 
 (65.79) (68.14) (16.08) (51.56) (53.31) (18.23) 

Industry FE No Yes Yes No Yes Yes 

Number of firms 2,171 2,171 1,945 2,171 2,171 1,945 

adj. R2 0.030 0.140 0.282 0.038 0.143 0.328 
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Panel B: Diff-in-Diff regressions for the daily price range 
 (1) (2) 

Dependent variable DayPrc_range DayPrc_range 

Dummy_ES_High*Dummy_COVID -0.006*** -0.006*** 
 (-3.48) (-3.33) 

Dummy_ES_High*Dummy_Fiscal -0.006* -0.006* 
 (-1.92) (-1.84) 

Dummy_ES_High -0.010***  

 (-11.56)  

Dummy_COVID 0.055***  

 (5.86)  

Dummy_Fiscal 0.045***  

 (2.78)  

Constant 0.032*** 0.061*** 
 (42.75) (335.29) 

Firm FE No Yes 

Day FE No Yes 

Number of firm-days 137,494 137,494 

adj. R2 0.323 0.622 

 

This table reports the regression results for the volatility of stock returns during the first quarter of 

2020. Panel A reports results for cross-sectional regressions of Volatility and Idio Volatility on firms’ ES 

under several specifications: without firm controls (specifications 1 and 4), with industry fixed effects 

(specifications 2 and 5), and with industry fixed effects and firm controls (specifications 3 and 6). Panel 

B reports the results of Diff-in-Diff estimation for the daily price range during the first quarter of 2020. 

Dummy_ES_High equals one for high ES firms, and zero otherwise. Dummy_COVID equals one from 

24th February to 31st March 2020, and zero before this period. Dummy_Fiscal equals one from 18th 

March to 31st March 2020, and zero before this period. Firm and day fixed effects are (not) included 

in Specification 2 (1). Standard errors are clustered by firm and day. The numbers in parentheses are 

t-statistics.  ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. The Appendix 

contains a detailed description of all the variables. 
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Table 6: Trading volume regressions 
 (1) (2) 

Dependent variable Volume Volume 

Dummy_ES_High*Dummy_COVID 2.051*** 2.051*** 
 (7.34) (6.84) 

Dummy_ES_High*Dummy_Fiscal 0.418* 0.418 
 (1.78) (1.42) 

Dummy_ES_High 1.890***  

 (8.11)  

Dummy_COVID 0.695***  

 (8.38)  

Dummy_Fiscal 0.185  

 (1.55)  

Constant 0.911*** 1.716*** 
 (19.01) (53.77) 

Firm FE No Yes 

Day FE No Yes 

Number of firm-days 137,493 137,493 

adj. R2 0.075 0.727 

 This table reports the results of Diff-in-Diff estimation for daily trading volume of stocks during the 

first quarter of 2020. Dummy_ES_High equals one for high ES firms, and zero otherwise. 

Dummy_COVID equals one from 24th February to 31st March 2020, and zero before this period. 

Dummy_Fiscal equals one from 18th March to 31st March 2020, and zero before this period. Firm 

and day fixed effects are (not) included in Specification 2 (1). Standard errors are clustered by firm 

and day. The numbers in parentheses are t-statistics.  ***, **, and * indicate significance at the 1%, 5%, 

and 10% levels, respectively. The Appendix contains a detailed description of all the variables. 

 

 

III. Robustness 
 

 

We investigate two competing hypotheses. One such hypothesis is that the oil price decline 

in the first quarter of 2020 affected particularly firms in the energy sector, which are known 

to score low in some dimensions of ES. Energy sector firms would then have significantly 

lower returns, higher volatilities, and possibly also lower trading volumes relative to other 

firms if liquidity moved out of that sector. We repeat the analysis excluding the firms in the 

energy sector from our sample and find very similar results.  

     

Another alternative explanation for our results is that some businesses were considered 

‘essential’ and kept on operating in a normal fashion. This may have resulted in some 

resiliency of cash flows and stock returns for these businesses. We investigate the effect on 

stock returns by industry. We use the Fama-French classification for 12 industries. We repeat 

the regression specification in Table 3 allowing for triple interactions of Dummy_COVID with 
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the Dummy_ES_High and a dummy for each of the industries. The results are shown in Figure 

3. The figure shows that ten out the twelve industries display positive point estimates on the 

interaction between Dummy_COVID and the Dummy_ES_High. Five of those estimates are 

statistically significant. The two negative point estimates are both statistically insignificant. 

Overall, the figure suggests that our findings are not associated with any one industry in 

particular, but encompass most industries. We go one step further to rule out this hypothesis. 

It is possible that the Dummy_ES_High is not randomly distributed across industries. We then 

construct a Dummy_ES_High within each industry. This way we are exploiting cross-sectional 

variation in ES within each industry. The results of this analysis are very similar to those 

displayed in Figure 3. 

 

We conduct several robustness tests. First, we augment the list of firm level variables in the 

cross-sectional regressions of quarterly stock returns and quarterly volatility of stock returns 

with operating leverage and measures of institutional ownership. Operating leverage, 

calculated as in Albuquerque et al. (2019) and others, leads to a significant drop in 

observations. Still, our results hold and are quantitatively similar. 

 

 

Figure 3. Abnormal returns from ES by industry 

 

We extend the regression specification (2) in Table 3 by allowing for triple interactions of 

Dummy_COVID with Dummy_ES_High and a dummy for each of the Fama and French 12 industries. 

The figure plots the point estimates of the triple-interaction terms with two-standard-error bands. 
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Second, we redo the analysis with MSCI ES ratings. The latest ratings available date back to 

2016 and also have a slightly smaller sample relative to Refinitiv's ES ratings. We find very 

similar results with the proxy for ES constructed with MSCI ES data as in Albuquerque et al. 

(2019). While the MSCI ratings are from 2016, firm ES ratings are fairly sticky, which may 

explain the results. Another possible explanation for the similarity in results despite the lag in 

measurement of the ES proxy is that investors care about firm reputation and credibility for 

ES policies and such reputation depends on a track record of ES performance. 

 

Third, we change the Dummy_COVID to equal 1 from January 30 onwards. January 30 is the 

day the World Health Organization declares the outbreak a public health emergency. The 

results corresponding to Tables 3, 4, Table 5 panel B, and Table 6 are somewhat weaker 

because the coefficients of interest are smaller, but retain significance at 10% level or higher. 

 

Finally, we consider the separate roles of E and S in ES. Using Refinitiv's scores, we show that 

the results in the paper are very similar if we use only the E score or if we use only the S score. 

This is perhaps to be expected because the correlation between the two scores is 0.73, and 

the correlation between the aggregate score ES and either E or S is over 0.91 (untabulated 

results). Firms appear to do both E and S at the same time and this limits our ability to evaluate 

their separate contributions. 

 

The last component in ESG, the governance score, has only a correlation of 0.52 with the E 

score and 0.42 with the S score (untabulated). When we rerun our results with the G score, 

we find that the G score explains the cross section of stock returns, but only if other firm 

characteristics are not included in the regression. The G score, however, is also associated 

with a decline in volatility of returns and with an increase in trading volume. The magnitude 

of the G score effects, though, is smaller than that of either the E or S score effects. Overall, 

the results with the G score serve to reassure that our main results are not picking up a good 

governance effect. 

 

 

 

IV. Conclusion 
 

 

The first quarter of 2020 was an extraordinary time for U.S. stock markets: first calm before 

the storm, then the fastest collapse ever, and ending with a tremendous rally. This paper 

examines how firms with highly rated environmental and social policies fare in the 

tumultuous marketplace. We show that stock prices for those firms perform much better than 

the prices for other firms. The relative performance boost is comparable to that of firms with 

large cash balances. The stock market performance is especially strong during the market 

collapse for high ES stocks that also advertise a lot. In addition, the volatility of stock returns 
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is lower for high ES stocks, while the trading volume is higher. The evidence presented in this 

paper is consistent with the view that consumer behavior is the main driver the resiliency 

effects of ES policies.  
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Appendix: Variables, definitions, and sources. 
 

This table presents the variable definitions and data sources. Compustat and CRSP items are in brackets. 

ES The average between Refinitiv Environment Pillar Score and Social Pillar Score, divided by 100 
and measured in 2018. Environment (Social) Pillar Score is the weighted average relative rating 
of a company based on the reported environmental (social) information and the resulting three 
(four) environmental (social) category scores. Dummy_ES_High is an indicator for firms in the 
top quartile. Source: Thomson Reuter’s Refinitiv ESG 

Investor-based 
ES 

We first measure an investor’s revealed ESG preference as the value-weighted average ES 
score of its portfolio holdings for each quarter in 2018, and then average across the four 
quarters. Investor-based ES of a firm is measured as the weighted average its investors’ ES 
based on holdings at the first quarter of 2019. Dummy_InvestorES_High is an indicator for firms 
in the top quartile. Source: Own calculation based on Thomson Reuter’s 13F and Refinitiv ESG 

ES-MSCI We divide the number of strengths (concerns) for each firm-year across all six ES categories 
excluding governance by the maximum possible number of strengths (concerns) in all six 
categories for each firm-year, to ensure comparability over time and across firms. We then 
subtract the scaled concerns from the scaled strengths to obtain a net measure. It is measured 
in 2016. Source: MSCI’s ESG Research 

Dummy_COVID A dummy variable equals one from 24th February to 31st March 2020, and zero from the 1st 
January to 23rd February 2020. 

Dummy_Fiscal A dummy variable that equals one from 18th March to 31st March 2020, and zero from the 1st 
January to 17th March 2020. 

Tobin’s Q The book value of assets (item 6) minus book value of equity (item 144) plus the market value 
of equity (item 25* item 24), all divided by book value of assets (item 6). It is measured in 2019. 
Source: Compustat 

Size The natural log of the market value of equity (PRCCD* CSHOC) as of 31st December 2019. 
Source: Capital IQ North America Daily 

Cash Cash holdings (item 1) over book assets (item 6), measured in 2019. Source: Compustat 

Leverage Book value of debt (item 9+ item 34) over book assets (item 6), measured in 2019. Source: 
Compustat 

ROE Ratio of operating income (item 13) to book equity (item 144), measured in 2019. Source: 
Compustat 

Advertising Advertising expenditures [XAD] over total assets [AT]. Missing values are set to zero, following 
the past literature. Dummy_Advertising_High is an indicator for firms in the top quartile. It is 
measured in 2019. Source: Compustat 

Abn Return The difference between the daily logarithm return of a stock and the CAPM beta times the 
daily logarithm market return during the first quarter of 2020, expressed in percentage. The 
CAPM beta is estimated by using daily returns from 2017 and 2019, where the market index is 
S&P 500. Abn Return_cum is the sum of Abn Return over the first quarter of 2020. Source: CRSP, 
Capital IQ North America Daily 

Volatility The volatility of daily logarithm raw returns of stocks during the first quarter of 2020. Source: 
Capital IQ North America Daily 

Idio Volatility The volatility of daily Abn Return of stocks during the first quarter of 2020. Source: Capital IQ 
North America Daily 

Volume Daily trading volume [CSHTRD] of a stock during the first quarter of 2020. Daily trading volume 
is adjusted for stock splits and dividends. CSHTRD is divided by 1 million to reflect daily trading 
volumes in unit of millions. Source: Capital IQ North America Daily 

DayPrc_range Daily high-low price range of a stock during the first quarter of 2020, scaled by the midpoint of 
high and low daily prices. The high (low) price [PRCHD] ([PRCLD]) is the highest (lowest) trade 
price for the date. Source: Capital IQ North America Daily 
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Saving lives versus saving 
livelihoods: Can big data 
technology solve the pandemic 
dilemma?
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This paper studies the effectiveness of big data technology in mitigating 
the economic and health impacts of the COVID-19 outbreak. I exploit 
the staggered implementation of contact-tracing apps called "health 
code" in 322 Chinese cities during the COVID-19 pandemic. Using 
high-frequency variations in population movements and greenhouse 
gas emissions across cities before and after the introduction of health 
code, I disentangle the effect of big data technology from confounding 
factors such as public sentiments and government responses. I find 
that big data technology significantly improves the tradeoff between 
human toll and economic costs. Cities adopting health code experience 
a significant increase in economic activities without suffering 
from higher infection rates. Overall, big data technology creates an 
economic value of 0.5%-0.75% of GDP during the COVID-19 outbreak 
in China.
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1 Introduction

Pandemics such as COVID-19 present an impossible choice to policymakers between saving

lives and saving livelihoods. On the one hand, population movement restrictions such as

social distancing and lockdown are deemed necessary to contain the rapid spreads of the

disease. On the other hand, such restrictions inflict steep economic costs as normal activities

are disrupted. The painful tradeoff between human toll and economic costs has led to heated

and sometimes divisive debate in the policy domain.

How can we solve the pandemic dilemma between saving lives and saving the economy?

Many believe that the answer lies in big data technology (Ferretti, Wymant, Kendall, Zhao,

Nurtay, Abeler-Dörner, Parker, Bonsall, and Fraser, 2020). Using the enormous amount of

real-time location data produced by smartphones, we may detect potential carriers of the

disease and break the transmission chains. At the same time, big data technology can also

identify the group of people who are unlikely to carry the disease so that they can resume

normal work and life, which limits the economic damage of the disease. Advocates often

cite the successful experiences in China and South Korea where big data technology was

aggressively deployed to combat the virus.

However, big data technology is also highly controversial. Critics argue that some

countries such as Singapore have seen little success from using contact-tracing apps.1 Im-

plementing big data technology could also divert critical resources from proven containment

methods such as aggressive testing. Big data technology may also disproportionately impact

the rights of those under- or misrepresented by the data.2 Finally, big data technology also

raises concerns about privacy infringement and government surveillance. Therefore, using

big data to address the public health crisis can potentially do more harm than good.

1See WSJ April 22 article, “Singapore Built a Coronavirus App, but It Hasn’t Worked So Far”.
2For instance, the April 12, 2020, AP News article “Europe eyes smartphone location data to stem virus

spread” reports that Israeli government’s cell phone location-tracking program has caused complaints that
the authorities are erroneously confining people to their homes based on inaccurate location data.
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This paper sheds light on this debate by studying the effectiveness of big data technology

in mitigating the economic and human costs of the COVID-19 outbreak in China. I exploit

the staggered implementation of contact-tracing apps called “health code” in 322 Chinese

cities amid the COVID-19 pandemic. Using high-frequency variations in population move-

ments and greenhouse emission across cities, I disentangle the effect of big data technology

from confounding factors such as public sentiments and government responses. I show that

big data technology allows the vast majority of the population to resume economic activities

without risking the public health condition. The estimated benefits of this technology seem

to dominate the potential costs related to privacy.

I start by describing the institutional background. On February 9, 2020, 17 days after

the lockdown of Wuhan, the first “health code” was developed by Ant Financial, a FinTech

company afflicted with Alibaba, and adopted by the Hangzhou municipal government, where

Ant Financial’s headquarter locates. This app uses real-time location data produced by

smartphones to predict holders’ risks of being infected based on whether the holders are

in close contact with confirmed patients. This app assigns a QR code for each holder,

which functions as a “traffic permit” within the city. Holders can travel in the city freely

if they obtain green codes but face quarantine if their codes are yellow or red. Health code

was subsequently expanded to other cities in China. By the end of March 31, 276 cities

out of 322 cities in the sample have implemented this system. The adoption of health code

represents the largest experiment of big data technology in the public health domain. It offers

an invaluable opportunity to examine the effectiveness of big data technology in mitigating

economic and human costs inflicted by pandemics.

I collect the adoption dates of health code in each of 322 cities from local government

websites and news reports. To measure high-frequency variations in economic activities at

the city level, I use within-city population movements constructed from smartphone locations

by Baidu and daily emission of greenhouse gases related to industrial activities. I also use
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daily numbers of confirmed COVID-19 cases, cured patients, and death tolls for each city

provided by the Chinese Center for Disease Control and Prevention (CCDC). The sample

period spans January 1 to March 31, 2020, covering the lockdown of Wuhan on January 23,

2020, and the introduction of the first health code in Hangzhou on February 9, 2020. The

staggered implementation of health code across cities allows me to disentangle the causal

effects of the big data technology from confounding factors.

The empirical analysis yields three main results. First, I find that the introduction

of health code significantly mitigates the negative impact of the COVID-19 outbreak on

economic activities by 2-3%. Second, cities that implemented health code attract greater

population inflows and experience smaller population outflows. Third, I find that the increase

in economic activities does not lead to an increase in infection rates in cities with health

code. Overall, the use of big data technology has significantly improved the tradeoff between

economic activities and public health, creating an economic value of 0.5%-0.75% GDP during

the COVID-19 outbreak in China.

One potential concern on the empirical approach is that cities that adopt health code

early could have higher economic importance for the country, thus are forced to reopen

before other cities. I address this concern by matching the treated cities to control cities

with similar pre-COVID-19 economic activities and find the results are robust. One may

also worry that the timing of implementation of health code may be correlated with the

successful containment of the outbreak in a city. I address this concern by matching the

treated cities to control cities with similar active cases when health code was introduced.

The results are also robust to this alternative matching scheme.

Finally, I compare the estimated economic benefits of big data technology with potential

costs. I find that the introduction of health code creates an economic value of $50-75$ per

capita. Comparing this estimate to the value of privacy estimated in the literature (Athey,

Catalini, and Tucker, 2017; Tang, 2019), I find that the benefits of big data technology seem
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to outweigh the potential costs on privacy.

Why is big data technology an effective tool to mitigate the economic and human costs of

pandemics? The answer is that it can address the key amplification mechanism of pandemics:

information frictions. Because of the hidden virus, people are afraid of going out, which

brings offline consumption to a standstill. Governments have to impose quarantines on

the whole population just to stop a few hidden carriers. In such a situation, big data

technology can be a powerful tool. By leveraging the enormous amount of data produced in

our digital age, big data technology can help to identify the hidden carriers, thus contains

the transmission of the virus. Furthermore, it can reduce people’s fear of being infected,

thus restores economic activities depressed by pandemics.

This paper contributes to the fast-growing literature on the optimal policy response

to the pandemic shock (Alvarez, Argente, and Lippi, 2020; Barro, Ursúa, and Weng, 2020;

Correia, Luck, and Verner, 1918; Eichenbaum, Rebelo, and Trabandt, 2020; Hall, Jones,

and Klenow, 2020; Dewatripont, Goldman, Muraille, and Platteau, 2020; Fang, Wang, and

Yang, 2020; Piguillem, Shi, et al., 2020; Jones, Philippon, and Venkateswaran, 2020). This

paper is closely related to Alvarez, Argente, and Lippi (2020) and Jones, Philippon, and

Venkateswaran (2020) which study the optimal lockdown policy to control the fatalities

of a pandemic while minimizing the output costs of the lockdown. Alvarez, Argente, and

Lippi (2020) suggest that 60% of the population should be under tight lockdown to contain

pandemics like COVID-19. The economic costs of such lockdown are estimated to be at least

8% of the GDP. This paper shows that big data technology can significantly improve the

tradeoff between economic and human costs of a pandemic.

This paper also contributes to the literature on the effect of big data on the economy.

Farboodi and Veldkamp (2019) and Jones and Tonetti (2019) construct neoclassical growth

models in which big data are an important contributor to economic growth. This paper

provides micro-level evidence that big data can address frictions that limit economic growth.
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Athey, Catalini, and Tucker (2017) and Tang (2019) use field experiments to estimate the

value of privacy. This paper contributes to this literature by showing that personal location

data can create substantial economic value in pandemics, which seems to outweigh the value

of privacy. Finally, this paper also sheds light on the regulation of big data technology,

an issue studied by Acemoglu, Makhdoumi, Malekian, and Ozdaglar (2019), Bergemann,

Bonatti, and Gan (2020), and Campbell, Goldfarb, and Tucker (2015).

2 Background and Data

Health code. Health code is a big data technology that uses smartphone location data

to predict the risk of an individual to be infected by a disease. It was initially developed

by several tech companies in China such as Ant Financial and Tencent in the height of the

COVID-19 outbreak. Health code are used as “traffic permits” by numerous local govern-

ments. HOlders of green code can freely travel in the city; holders of yellow or red code have

to be quarantined for 7 or 14 days, respectively. The codes turn back to green after the the

quarantine. Figure 1 shows the three levels of color codes used in China.
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Figure 1: Hangzhou Health Code
This figure shows the first health code introduced in China, the Hangzhou health code.
Individuals with green code can freely travel in the city. Individuals with yellow code have
to be quarantined for 7 days. Individuals with red code have to be quarantined for 14 days.
The code turn back to green after the corresponding quarantine periods.

Registering a health code is voluntary and can be easily done in smartphone apps.

Because many cities in China have imposed movement restrictions, people have a strong

incentive to register the code if they want to enter public space such as supermarkets and

subways. Although there is no systematic record on the adoption rates in the population,

anecdotal evidence suggests that the adoption rates are quite high. For instance, in Zhejiang

province where health code was first introduced, around 90% of the provincial population has

obtained health code 15 days after the introduction according to the disclosure of the local

government officials.3 Among all the health codes, 98.2% are green, and 1.8% are yellow or

red.

The first health code app was developed by Ant Financial and implemented in its head-

3See New York Times article on March 1, 2020: “In Coronavirus Fight, China Gives Citizens a Color
Code, With Red Flags”, by Paul Mozur, Raymond Zhong and Aaron Krolik.
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quarter city, Hangzhou, on February 9, 17 days after the lockdown of Wuhan. 2 days later, a

different version of health code app was developed by another tech giant in China, Tencent,

and implemented in its headquarter city, Shenzhen. Following Hangzhou and Shenzhen,

many provinces and cities adopt their version of health code. It is worth noting that the

adoption of health code was not coordinated by the central government. Instead, it is largely

initiated by local governments. The decentralized adoption created a patchwork of policies.

Cities do not recognize each other’s health code. Different versions of health code sometimes

show inconsistent results for the same individual. Some people have been required to scan

multiple health code from different providers at a single location.

The uncoordinated implementation of health code have created inconvenience and con-

fusion for people who travel across cities to the extent that the central government warned

local governments not to go overboard by launching too many versions of health code.4 How-

ever, it is good news for identification purpose. I collect the implementation dates of health

code of 322 Chinese cities from the local government websites and local news media. Figure 2

shows the number of cities that adopted health code over time. The adoption process lasts

for two months after the initial adoption in Hangzhou.

4See South China Morning Post article on March 9, 2020, “National version of China’s controversial
health code isn’t ready”.
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Figure 2: Implementation of Health Code in Chinese Cities
This figure plots the number of cities that adopt health code. The first vertical line indicates
January 23, 2020, the date of Wuhan lockdown. The second vertical line indicates February
9, 2020, the date when the first health code was introduced in Hangzhou. Data source:
government websites, local news report.

Figure 3 shows the fraction of cities that have adopted health code by February 15,

February 29, March 15, and March 31, respectively. The adoption appears to be quite

idiosyncratic: it is not related to the geographical proximity to the epicenter of the virus

outbreak, Hubei. The coastal and inland provinces seem to have a balanced tendency to

adopt health code. The staggered introduction of health codes across Chinese cities will

provide a great laboratory to identify the causal effect of big data technology on the economy

and public health.
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Figure 3: Implementation of Health Code in Chinese Cities
This figure shows the fraction of cities that adopted health code in each province. The four
snapshots are at February 15t, February 29, March 15, and March 31, 2020. Data source:
government websites, local news report.

Economic activities. I use daily within-city population movements as a high-frequency

measure of economic activities across cities. The data are created using real-time smartphone

phone location data from the largest Chinese search engine in China, Baidu.5 The population

movement data covers 322 Chinese cities between January 1 and April 10 in 2020. The final

data is a panel consisting of 28,658 city-day level observations. The high-frequency nature of

this data is important for identification because health code was rolled out within 2 months.

Therefore, typical macroeconomic data at quarterly or monthly frequency may not capture

the effect of the adoption.

Figure 4 plots the national average within-city movement in the sample period. I report

the value as a percentage of the average value in the first week of 2020. Note that the

5The source of the data can be found on the website of CNEMC: http://https://qianxi.baidu.com/.
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sample period contains the Lunar New Year holiday, during which the economic activities

would naturally decrease. To control for the effect of Lunar New Year, I normalize the level

of within-city movement using the same day value of the 2019 lunar calendar. Figure 4 shows

a steep drop in economic activities after January 23, 2020, the day of Wuhan lockdown. The

second vertical red line indicates February 9, 2020, the date when Hangzhou health code was

introduced. The within-city movement slowly recovers in mid-February. By the end of the

sample period, the within-city movement has rebounded to about 95% of the pre-COVID-19

level.
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Figure 4: Economic Activities of Chinese Cities
This figure plots the average economic activities as measured by within-city population
movements. The sample period is from January 1 to March 31, 2020. The first vertical line
indicates January 23, 2020, the date of Wuhan lockdown. The second vertical line indicates
February 9, 2020, the date when the first health code was introduced in Hangzhou. Data
source: Baidu.
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The Baidu data also provides a between-city migration pattern. For each city in the

sample, the data shows the top 100 cities of inflows and outflows and the corresponding

intensities.

Greenhouse gas emission. One may worry that within-city movements may not capture

economic activities that can be conducted without human movements. To address this

concern, I use the daily level of Nitrogen Dioxide (NO2) as an alternative high-frequency

measure of economic activities. NO2 is a green house gas created by factories and automobiles

burning fossil fuels. Because Chinese economy heavily relies on coal as a source of energy,

the amount of Nitrogen Dioxide is a good measure of economic activities of China. I collect

daily level of NO2 from the China National Environmental Monitoring Center (CNEMC)

for each city.6 Figure 5 plots the average NO2 of the sample cities where the values are

normalized by the average of the first two weeks in 2020. A sharp drop occurs after the

Wuhan lockdown on January 23, 2020. Economic activities decreased by 40% of the pre-

lockdown level at the peak of outbreak. The magnitude of the reduction is similar to the

within-city movements. The NO2 level started to slowly recover in March, 2020. The sharp

decrease in the NO2 level during the COVID-19 outbreak documented in the data from the

China National Environmental Monitoring Center (CNEMC) is consistent with the satellite

images produced by the National Aeronautics and Space Administration (NASA) as shown

in Figure 6.

6The source of the data can be found on the website of CNEMC: http://www.cnemc.cn/.
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Figure 5: Average NO2 Level of Chinese Cities
This figure plots the average NO2 level of Chinese cities. The values are normalized by the
average of the first two weeks in 2020. Data source: the China National Environmental
Monitoring Center (CNEMC).
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Figure 6: Nitrogen Dioxide (NO2) Level over China
This figure shows the heat maps of Nitrogen Dioxide (NO2) level over China. The heat maps
are created by the National Aeronautics and Space Administration (NASA).

In addition to NO2, I also use the daily level of fine particulate matter (PM2.5), which

is produced by chemical reactions between gases such as Sulfur Dioxide, Nitrogen Oxides,

and volatile organic compounds with dust from industrial activities, as a high-frequency

measure of economic activities. I also collect daily level of PM2.5 for each city from the

China National Environmental Monitoring Center (CNEMC).

Virus outbreak. I collect the daily count of confirmed, dead, and recovered COVID-19

cases of each of 322 cities from the Centers for Disease Control and Prevention of China

(CDC).7 Figure 7 plots the time series of COVID-19 cases in the sample. From January 11

to April 3, 2020, the data cover 81,198 confirmed COVID-19 cases, 3,302 dead cases, and

75,887 recovered cases. The fatality rate amount the confirmed cases is around 4%, which is

7The source of the data can be found on the website of CDC: http://2019nCoV.chinacdc.cn/2019-nCoV/.
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in line with the fatality rates in other countries. The increase in the confirmed cases levels

off in early March. Using this data, I calculate the infection rate, defined as the ratio of

newly confirmed cases over the active cases as a measure of the severity of the outbreak.
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Figure 7: Confirmed, Cured, Dead, and Current Cases of COVID-19
This figure plots the cumulative confirmed, cured, dead, and current cases of COVID-19 in
the sample. Data source: Chinese Center for Disease Control and Prevention.

One may worry that the numbers of cases in Wuhan and other cities of Hubei can

be underestimated because testing capacity was limited at the early stage of the outbreak.

Furthermore, government officials in the epicenter cities initially may have also downplayed

the severity of the outbreak. Fang, Wang, and Yang (2020) found that there were substantial

undocumented infection cases in the early days of the COVID-19 outbreak in cities of Hubei

province. Still, they find the gap between the officially reported cases and their estimated
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actual cases narrows significantly as the testing capacity was strengthened in Wuhan. To

address this concern, I conduct robustness checks for all the regressions by excluding the

observations in Hubei province. It is worth noting that economic activity measures are

based on smartphone location or air pollution data, which are unlikely to be subject to the

same measurement issue as the confirmed COVID-19 cases.

Summary statistics. Table 1 provides the summary statistics of the final sample. Panel

A reports the city-date sample. I use this sample to study the impact of health code on

city-level economic activities and the COVID-19 infection rates. The sample period starts

from January 1, 2020, and ends on March 31, 2020. All three measures suggest consistent

reduction in economic activities: the average within-city movements, NO2, and PM2.5 are

around 78%, 63%, and 78% of their normal levels. The average daily infection rate is 2%,

which implies that the new confirmed case grows by 2% of the active cases each day.

In addition to the three main data sources, I collect information on the level of the

emergency response of each province from the local government websites and news reports.

A higher level of emergency gives local governments greater power to impose exceptional

measures such as lockdown and social distancing rules. This system classifies the emergency

event into four levels. The lowest level is coded as 0 and the highest as 4. The average

emergency level in the sample is 2.

Panel B and C report two city pair-day samples on population inflows and outflows,

respectively. I use these two samples to study the impact of health code on the between-city

migration pattern. The inflows and outflows are expressed as the percentage of the total

flows of the corresponding city. The average inflow and outflows are both 1%.
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Table 1: Summary Statistics

Panel A: City-level economic activities

N mean sd p5 p25 p50 p75 p95

Within-city movements 28658 78 26 32 56 84 99 109

NO2 24742 63 30 23 40 58 81 119

PM2.5 24742 78 51 20 43 68 102 171

Infection rate 28658 2 5 0 0 0 0 20

Confirmed cases 28658 144 1986 0 0 8 31 213

Cured cases 28658 83 1252 0 0 3 18 140

Dead cases 28658 5 91 0 0 0 0 3

Emergency level 28658 2 1 0 0 2 3 3

Panel B: City-to-city population inflows

N mean sd p5 p25 p50 p75 p95

Outflow 1964052 1 4 0 0 0 0 4

Confirmed cases (source) 1964052 143 2020 0 0 8 30 169

Cured cases (source) 1964052 82 1270 0 0 3 18 126

Dead cases (source) 1964052 5 93 0 0 0 0 2

Existing cases (source) 1964052 56 1004 0 0 0 6 54

Emergency level 1964052 2 1 0 0 2 3 3

Panel C: City-to-city population outflows

N mean sd p5 p25 p50 p75 p95

Outflow 1896486 1 4 0 0 0 0 4

Confirmed cases (source) 1896486 116 1548 0 0 17 49 252

Cured cases (source) 1896486 75 1083 0 0 6 35 173

Dead cases (source) 1896486 3 72 0 0 0 0 3

Existing cases (source) 1896486 37 725 0 0 0 11 76

Emergency level 1896486 2 1 0 0 2 3 3

Note: This table reports summary statistics of the regression sample. The sample is a panel of 322 cities
from January 1, 2020 to March 31, 2020. Data sources: Baidu, Chinese Center for Disease Control and
Prevention.
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3 Empirical Results

In this section, I exploit the staggered implementation of health code in 322 Chinese cities

to identify the causal effects of big data technology on economic activities and public health

conditions. Specifically, I use a difference-in-differences (DID) research design to test three

main hypotheses: (1) whether the introduction of health code increases local economic activ-

ities, (2) whether the introduction of health code affects the migration pattern between cities,

and (3) whether the introduction of health code reduces the infection rates of COVID-19.

3.1 Economic activities

I study the effects of big data technology on economic activities measured by within-city

population movements:

EconomicActivityi,t = βHealthCodei,t + γXi,t + εi,t, (1)

where EconomicActivityi,t is measured by within-city population movements of city i on

date t, HealthCodei,t is a dummy variable which equals to 1 if city i has health code at

time t, and 0 otherwise. The vector of the control variables, Xi,t, includes the emergency

level of the city and the log number of confirmed, cured, and dead cases. I also include

city fixed effects to absorb time-invariant city characteristics, time fixed effects to absorb

aggregate shocks. Therefore, the empirical design effectively compares differential changes

in economic activities of the treated cities with those of the untreated cities before and after

the introduction of health code.

Column 1 of Table 2 presents the baseline results. I find that the introduction of health

code significantly increases local economic activities. The regression also shows that the

severity of the outbreak also significantly affects local economic activities. In particular, an
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increase in confirmed and dead cases significantly reduce local economic activities while an

increase in cured cases increases local economic activities.

One may worry whether the above result is purely driven by comparing cities in Hubei

province, the epicenter of the virus outbreak, with the rest of the country. Column 2 of

Table 2 presents the results, excluding cities in Hubei province. I find the result is largely

the same as the baseline.

Another potential concern on the empirical approach is that cities that adopt health

code early could have higher economic importance for the country, thus are forced to reopen

before other cities. I address this concern by matching treated cities to control cities with

similar pre-COVID-19 economic activities. The result is presented in Column 3 of Table 2.

The result is robust in the matching sample.

Finally, one may worry that the timing of implementation of health code may be corre-

lated with a differential trajectory of outbreaks in each city. Cities may choose to implement

health code because the outbreak is over. I address this concern by matching the treated

cities to control cities with a similar number of active cases when health code was introduced.

The result is presented in Column 4 of Table 2. The results are also robust to this alternative

matching scheme.
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Table 2: Health Code and Economic Activities

(1) (2) (3) (4)
Economic activity Economic activity Economic activity Economic activity

Health code 1.038∗∗∗ 0.996∗∗∗ 2.105∗∗∗ 2.106∗∗∗

[0.307] [0.226] [0.393] [0.393]

Confirmed cases -4.569∗∗∗ -4.519∗∗∗ -4.450∗∗∗ -4.436∗∗∗

[0.194] [0.274] [0.210] [0.215]

Cured cases 2.204∗∗∗ 2.156∗∗∗ 1.896∗∗∗ 1.878∗∗∗

[0.200] [0.212] [0.215] [0.216]

Dead cases -2.687∗∗∗ -6.082∗∗∗ -2.515∗∗∗ -2.551∗∗∗

[0.649] [0.701] [0.641] [0.638]

City F.E. Yes Yes Yes Yes
Time F.E. Yes Yes Yes Yes
Emergency F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 28,658 27,145 26,077 27,857
Adj. R-squared 0.851 0.862 0.850 0.850

Note: This table reports the results of the following regression

EconomicActivityi,t = βHealthCodei,t + γXi,t + εi,t

where EconomicActivityi,t is measured by within-city movement of city i on date t, HealthCodei,t is a dummy
variable which equals to 1 if city i has health code at time t, and 0 otherwise. The vector of the control
variables, Xi,t, includes the emergency level of the city, the log number of confirmed/dead/cured cases, city
fixed effects, and time fixed effects. The sample is a panel of 322 cities from January 1, 2020 to March 31,
2020. Standard errors are clustered at date level. Data sources: Baidu, Chinese Center for Disease Control
and Prevention.

To investigate the dynamic effects of health code introduction, Figure 8 plots the differ-

ence in the economic activities between treated and control cities 20 days before and after the

implementation of health code. Before the introduction of health code, there is no pre-trend

between the treated and control cities, suggesting that the parallel trend assumption seems

to hold in the data. After the introduction of health code, the economic activities of the

treatment cities increases by around 2%-3% compared to the controlled cities.
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Figure 8: Difference in Economic Activities in Treated and Control Cities
This figure plots the difference in economic activities in treated and control cities. The
horizontal axis is the date since the adoption of health code. Standard errors are clustered
at date level. Data source: Baidu, Chinese Center for Disease Control and Prevention,

Within-city movements may not capture the economic activities can conducted without

population movements. To address this concern, I use the concentration level of NO2 and

PM2.5 as alternative measures of economic activities. The results are reported in Table 3.

Consistent with the baseline measure, I find that the introduction of health code significantly

increase economic activities as proxies by the concentration level of NO2 and PM2.5. The

economic magnitude is also quite similar: economic activities increase by 2-3% in cities where

health code is implemented.
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Table 3: Health Code and Economic Activities (Alternative Measures)

(1) (2) (3) (4)
NO2 NO2 PM2.5 PM2.5

Health code 2.470∗∗∗ 2.689∗∗∗ 4.636∗∗∗ 4.529∗∗∗

[0.838] [0.875] [1.503] [1.586]

Confirmed cases -1.698∗∗ -2.386∗∗∗ -0.145 -0.687
[0.661] [0.658] [1.821] [1.752]

Cured cases 3.872∗∗∗ 4.568∗∗∗ -0.865 -0.236
[0.646] [0.646] [1.729] [1.707]

Dead cases -5.737∗∗∗ -8.812∗∗∗ -2.433∗ -10.524∗∗∗

[0.765] [1.322] [1.410] [3.513]

City F.E. Yes Yes Yes Yes
Time F.E. Yes Yes Yes Yes
Emergency F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Full sample Excl. Hubei
Observations 24,742 23,674 24,742 23,674
Adj. R-squared 0.542 0.534 0.358 0.352

Note: This table reports the results of the following regression

EconomicActivityi,t = βHealthCodei,t + γXi,t + εi,t

where EconomicActivityi,t is measured by the NO2 or PM2.5 levels of city i on date t, HealthCodei,t is a
dummy variable which equals to 1 if city i has health code at time t, and 0 otherwise. The vector of the
control variables, Xi,t, includes the emergency level of the city, the log number of confirmed/dead/cured
cases, city fixed effects, and time fixed effects. The sample is a panel of 322 cities from January 1, 2020
to March 31, 2020. Standard errors are clustered at date level. Data sources: Baidu, Chinese Center for
Disease Control and Prevention.

3.2 Between-city migration pattern

Next, I investigate how health code affects the migration pattern between cities. Specifically,

I first examine the effect of health code on inflows into cities. The regression model is the

following:

Inflowi,j,t = βDestinationHealthCodej,t + γXi,j,t + εi,t,

where Inflowi,j,t is the flow from city i to city j on date t, DestinationHealthCodej,t is a

dummy variable which equals to 1 if destination city j has health code at time t, and 0
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otherwise. The vector of the control variables, Xi,j,t, includes the emergency level, and

the log number of confirmed, cured, and dead cases in the destination city. I also include

destination-city fixed effects to absorb time-invariant city characteristics. Finally, I include

source city-time fixed effects. The regression compares the flows from the same source city to

two similar destination cities, of which one has health code, but the other does not. Table 4

shows the results. I find that the introduction of health code significantly increase the inflows

to cities with health code by 11%. This result suggests that cities with health code become

more attractive as most residents can move freely and economic activities recover.

Table 4: Health Code and Population Inflows

(1) (2) (3) (4)
Inflow Inflow Inflow Inflow

Health Code (destination) 10.276∗∗∗ 10.539∗∗∗ 10.281∗∗∗ 10.267∗∗∗

[1.658] [1.654] [1.703] [1.701]

Confirmed cases (destination) 3.486∗∗ 3.943∗∗ 3.651∗∗ 3.643∗∗

[1.476] [1.511] [1.497] [1.496]

Cured cases (destination) 2.965∗∗ 2.929∗∗ 2.825∗∗ 2.828∗∗

[1.277] [1.318] [1.287] [1.286]

Dead cases (destination) -18.916∗∗∗ -20.169∗∗∗ -18.899∗∗∗ -18.890∗∗∗

[1.015] [1.249] [1.051] [1.050]

City pair F.E. Yes Yes Yes Yes
Destination-time F.E. Yes Yes Yes Yes
Emergency level F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 1,888,652 1,798,439 1,724,150 1,834,948
Adj. R-squared 0.857 0.859 0.855 0.855

Note: This table reports the results of the following regression

Inflowi,j,t = βDestinationHealthCodej,t + γXi,j,t + εi,j,t,

where Inflowi,j,t is the flow from city i to city j on date t, DestinationHealthCodej,t is a dummy variable
which equals to 1 if destination city j has health code at time t, and 0 otherwise. The vector of the control
variables, Xi,j,t, includes the emergency level, and the log number of confirmed/dead/cured cases in the
destination city, destination-city fixed effects, and source city-time fixed effects. The sample is a panel of 322
cities from January 1, 2020 to March 31, 2020. Standard errors are clustered at date level. Data sources:
Baidu, Chinese Center for Disease Control and Prevention.
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I then examine how health code affects the population outflows from a city. The regres-

sion model is the following:

Outflowi,j,t = βSourceHealthCodei,t + γXi,j,t + εi,t

where Outflowi,j,t is the flow from city i to city j on date t, SourceHealthCodei,t is a dummy

variable which equals to 1 if source city i has health code at time t, and 0 otherwise. The

vector of the control variables, Xi,j,t, includes the emergency level, and the log number of

confirmed, cured, and dead cases in the source city. I also include source-city fixed effects

to absorb time-invariant city characteristics. Finally, I include source city-time fixed effects.

The regression compares the flows from two similar source cities to the same destination city.

One of the source cities has health code, but the other does not. Table 5 shows the results. I

find that the introduction of health code significantly decrease the outflows from cities with

health code by 14%. This result suggests that residents in cities with health code seem to

be more willing to stay in the cities, presumably due to the recovery of economic activities.
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Table 5: Health Code and Population Outflows

(1) (2) (3) (4)
Outflow Outflow Outflow Outflow

Health Code (source) -14.120∗∗∗ -13.200∗∗∗ -15.080∗∗∗ -15.233∗∗∗

[1.774] [1.701] [1.740] [1.735]

Confirmed cases (source) -12.913∗∗∗ -15.333∗∗∗ -14.245∗∗∗ -14.626∗∗∗

[1.675] [1.807] [1.809] [1.811]

Cured cases (source) -4.130∗∗∗ -3.220∗∗ -4.687∗∗∗ -4.660∗∗∗

[1.251] [1.220] [1.389] [1.387]

Dead cases (source) 7.578∗∗∗ -11.209∗∗∗ 8.867∗∗∗ 8.165∗∗∗

[1.657] [1.866] [1.772] [1.807]

City pair F.E. Yes Yes Yes Yes
Source-time F.E. Yes Yes Yes Yes
Emergency level F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 1,887,544 1,834,631 1,784,667 1,846,851
Adj. R-squared 0.860 0.862 0.858 0.858

Note: This table reports the results of the following regression

Outflowi,j,t = βSourceHealthCodei,t + γXi,j,t + εi,j,t,

where Outflowi,j,t is the flow from city i to city j on date t, SourceHealthCodei,t is a dummy variable which
equals to 1 if source city i has health code at time t, and 0 otherwise. The vector of the control variables,
Xi,j,t, includes the emergency level, and the log number of confirmed/dead/cured cases in the source city,
source-city fixed effects, and destination city-time fixed effects. The sample is a panel of 322 cities from
January 1, 2020 to March 31, 2020. Standard errors are clustered at date level. Data sources: Baidu,
Chinese Center for Disease Control and Prevention.

3.3 Infection rate of COVID-19

The previous results offer evidence that the introduction of health code allow the economy

to return to normal. However, one important question is whether the reopen of the economy

will lead to a resurgence of virus infection in the future. To test this hypothesis, I estimate

the following regression model:

InfectionRatei,t+7 = βHealthCodei,t + γXi,t + εi,t
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where InfectionRatei,t+7 is the infection rate of COVID-19 in city i on date t+7; HealthCodei,t

is a dummy variable which equals to 1 if city i has health code at time t, and 0 otherwise.

The vector of the control variables, Xi,t, includes the emergency level of the city and the log

number of confirmed, cured, and dead cases. I also include city fixed effects to absorb time-

invariant city characteristics, time fixed effects to absorb aggregate shocks. It is worth noting

that I use the infection rate in 7 days because 7 days is the median time when symptoms

appear after exposure to the virus.

Column 1 of Table 6 presents the baseline results. I find that the introduction of

health code does not seem to increase the infection rates of COVID-19 despite that economic

activities have significantly increased. Column 2 of Table 6 presents the results excluding

cities in Hubei province. I find the result is largely the same as the baseline. This result

alleviates the concern that under-reporting in the epicenter of the virus outbreak could drive

the result. One may also worry that the timing of implementation of health code may be

endogenous to whether the virus outbreak was successfully stopped in a city. I address this

concern by matching the existing confirmed cases at the time of the introduction of health

code. Column 3 of Table 6 shows that the result in the matched sample is quite similar to

the baseline regression as well. Finally, in the sample matched by economic activities, as

shown in Column 4, I find the result is virtually the same.
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Table 6: Health Code and Infection Rates

(1) (2) (3) (4)
Infection rate Infection rate Infection rate Infection rate

Health code 0.079 0.075 0.020 0.026
[0.076] [0.076] [0.086] [0.085]

Confirmed cases -0.526∗ -0.746∗∗ -0.545∗ -0.539∗

[0.314] [0.317] [0.322] [0.316]

Cured cases -0.889∗∗∗ -0.759∗∗∗ -0.862∗∗∗ -0.861∗∗∗

[0.121] [0.113] [0.121] [0.112]

Dead cases 0.411∗∗ 1.269∗∗ 0.405∗ 0.415∗∗

[0.204] [0.493] [0.220] [0.190]

City F.E. Yes Yes Yes Yes
Time F.E. Yes Yes Yes Yes
Emergency F.E. Yes Yes Yes Yes
Sample Full sample Excl. Hubei Match by cases Match by act.
Observations 26,404 25,010 24,026 25,666
Adj. R-squared 0.411 0.388 0.423 0.422

Note: This table reports the results of the following regression

InfectionRatei,t+7 = βHealthCodei,t + γXi,t + εi,t

where InfectionRatei,t+7 is infection rate of city i on date t + 7, HealthCodei,t is a dummy variable which
equals to 1 if city i has health code at time t, and 0 otherwise. The vector of the control variables, Xi,t,
includes the emergency level of the city, the log number of confirmed/dead/cured cases, city fixed effects,
and time fixed effects. The sample is a panel of 322 cities from January 1, 2020 to March 31, 2020. Standard
errors are clustered at date level. Data sources: Baidu, Chinese Center for Disease Control and Prevention.

Figure 7 reports the dynamic effect of the introduction of health code on infection rates

of COVID-19. Again, there is no pre-trend between treated and control cities suggesting the

parallel trend assumption is stratified in the data. Furthermore, the introduction of health

code do not significantly increase the infection rate.
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Figure 9: Difference in Infection Rates in Treated and Control Cities
This figure plots the difference in infection rates in treated and control cities. The horizontal
axis is the date since the adoption of health code. Standard errors are clustered at date
level. Data source: Baidu, Chinese Center for Disease Control and Prevention,

3.4 Trade-off between lives and livelihoods?

Finally, I examine whether the big data technology helps to improve the trade-off between

lives and livelihoods. Specifically, I estimate the relationship between economic activities

and future infection rates with and without health code.

InfectionRatei,t+7 = β1HealthCodei,t × EconomicActivityi,t + γXi,t + εi,t
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where InfectionRatei,t+7 is the infection rate of COVID-19 in city i on date t+7; HealthCodei,t

is a dummy variable which equals to 1 if city i has health code at time t, and 0 otherwise;

EconomicActivityi,t is measured by the index of within-city movement of city i on date t.

The vector of the control variables, Xi,t, includes the current infection rate, emergency level

fixed effects, city fixed effects, and time fixed effects.

Figure 10 plots the predicted infection rates for each level of economic activities with

and without health code, respectively. I find that health code improve the tradeoff between

economic activities and virus infection. Specifically, without health code, a 50% increase in

economic activities is associated with a 6 bps increase in the daily infection rate. However,

with health code, a 50% increase in the economic activities is associated with only 3 bps

increase in the daily infection rate.
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Figure 10: Trade-off Between Economic Activities and COVID-19 Infection Rate
This figure plots the trade-off between economic activities and COVID-19 infection rates.
Data source: Baidu, Chinese Center for Disease Control and Prevention.

3.5 Do the benefits of health code justify the costs?

The above results show that health code can significantly improve economic activities without

sacrificing the public health. However, using big data technology could lead to other types of

costs. The most prominent concern is privacy. Do the benefits created by health code justify

its costs on privacy? In this section, I conduct a back-of-the-envelope calculation of the

benefits of health code and compare it with the costs of privacy estimated in the literature.

Section 3.1 shows that the introduction of health code increase economic activities by

around 2-3%. Assuming that the COVID-19 outbreak lasts for a quarter, then the in-
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troduction of health code creates an economic value of 0.5%-0.75% GDP. Given the GDP

per capita in China is around $10,000 as of 2018, a 0.5% increase in GDP translates to

0.5% × $10, 000 = $50 per person.8 In comparison, Tang (2019) estimate that in a field

experiment that Chinese people value their privacy at a value of $33. It seems that the

benefits of the health code technology dominate the potential costs of privacy.

A caveat of this cost-benefit analysis is that people in different countries may value

privacy differently. However, Athey, Catalini, and Tucker (2017) conduct experiments in the

U.S. and find that, even for people who claim to value privacy, they are willing to relinquish

their private data to exchange for small benefits. Therefore, big data technology could be

welfare improving in many countries where people appear to value privacy a lot. The second

caveat is that the above estimate is constructed based on the assumption that the COVID-

19 outbreak lasts for a quarter. However, if the COVID-19 outbreak lasts longer, then the

benefits should be adjusted accordingly. Third, the value of privacy estimated by Tang

(2019) is based on sharing social network ID and employer contact while health code require

location data, which may be valued differently by people. Fourth, using big data technology

does not necessarily lead to a loss of privacy. If health code is implemented by a trusted

entity or is protected by data anonymization technology, then people may be more willing

to share their data. Finally, the effectiveness of every big data technology depends on the

quality of data input. To make health code effective, it is estimated that three-quarter of the

population needs to register. The adoption rate appears to be an issue for Singapore where

only 20% of 5.7 million population has registered for their contact tracing app one month

after the introduction. The low adoption rate seems to compromise the effectiveness of this

technology as the number of cases keeps rising.9

8See the World Bank data: https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?locations=CN
9See WSJ April 22 article, “Singapore Built a Coronavirus App, but It Hasn’t Worked So Far”.
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4 Conclusion

Pandemics such as COVID-19 inflicts enormous costs to the economy. Policymakers are

facing the impossible choice between saving human lives and saving the economy. This

paper examines the effectiveness of big data technology in addressing the pandemic dilemma

using a large experiment of health code in China. Exploiting the staggered implementation of

health code in 322 cities in China, I find that the introduction of this technology significantly

revives economic activities while keeping the outbreak under control. I find that the benefits

of this big data technology seem to outweigh its potential costs on privacy. Given the medical

cure of the disease is still elusive, big data technology presents a promising solution to the

pandemic dilemma between lives and livelihoods.

This paper argues that big data technology addresses the key amplifier of the economic

costs caused pandemics, that is, information friction. This result has many important impli-

cations because information friction lies in the hearts of many social and economic problems.

By leveraging the enormous amount of data produced in our digital age, big data technology

can alleviate this friction and provide better solutions for many existing problems. How

to harness the power of big data technology without threatening our privacy will be a big

question in the post-COVID-19 world.
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Precaution, social distancing 
and tests in a model of 
epidemic disease1
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I develop an extension of a canonical epidemiology model in which 
the policy in place determines the probability of transmission of an 
epidemic disease. I use the model to evaluate the effects of isolating 
symptomatic individuals, of increasing social distancing and of tests 
of different quality: a poor quality test that can only discriminate 
between healthy and infected individuals (such as polymerase chain 
reaction 'PCR' or Rapid Diagnostic Test), and a high quality test that 
is able to discriminate between immune and vulnerable healthy, 
and infected individuals (such as a serology test like Neutralization 
Assay). I find that isolating symptomatic individuals has a large 
effect at delaying and reducing the pick of infections. The combination 
of this policy with the poor quality test represents only a negligible 
improvement, whereas with the high quality test there is an additional 
delaying and reduction in the pick of infections. Social distancing 
alone cannot achieve similar effects without incurring in enormous 
output losses. I explore the combined effect of social distancing at 
early stages of the epidemic with a following period of tests and find 
that the best outcome is obtained with a light reduction of human 
interaction for about three months together with a subsequent test of 
the population over 40 days.

1 This investigation was conducted under confinement, thus I thank M.  Àngels Fernández, and Magalí and 
MarÇal Obiols-Fernández for their interest, patience and excellent company. I also thank Raül Santaeulàlia-
Llopis and Charles Wyplosz for helpful comments and suggestions. The usual disclaimer applies.

2 Associate Professor of Economics, Universitat AutÒnoma de Barcelona, MOVE and Barcelona GSE.
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1 Introduction

As of April 2020 the rapid expansion of Covid-19 is affecting a large fraction of the
population all over the world, with thousands of positive tested cases and of deaths
in many countries. Precise statistics of the effects of the epidemic are scarce and
display substantial variance over time in a given country and also across countries.
Perhaps these differences in the available information reflect specific aspects of the
local realities and explain the variety of policies undertaken in different countries.
The current policies mainly consist of testing the population, of social distancing to
reduce human interaction and the possibility of transmission, and in isolating for
some time presumably ill individuals and regions with a high density of infected
population. The purpose of this paper is to propose a model suitable to study the
effects of these policies on the dynamics of the the epidemic and to take into account
the impact on output.

The model I propose follows a similar approach to other recent models such as
Atkeson (2020), Eichenbaum, Rebelo and Tranbandt (2020), Berger, Herkenhoff
and Mongey (2020) and Casares and Khan (2020). These models are based on the
relatively simple SIR model of immunology (Kermack and McKendrick, 1927) and
consider specific characteristics about the transmission mechanisms of the disease
to obtain predictions for the number of deaths, number of infected and recovered
individuals and on other economic outcomes. My approach and type of question is
closer to Berger, Herkenhoff and Mongey (2020) and to Piguillem and Shi (2020):
individuals can be infected, with and without symptoms, and healthy, with immu-
nity or not, and the disease can only be transmitted from an infected individual
to a healthy but vulnerable one. The policies in place determine endogenously the
probability of transmission of the disease and therefore have an impact on the mass
of agents that participate in social and production activities, hence on output.

In the model in this paper I explicitly take into account the severity of social dis-
tancing, which takes the form of a reduction in the number of contacts among agents
that participate in the market activity.1 I also take into account the effect of the
duration of social distancing. These are important margins because in the model
there are “industrial” occupations that observe severe losses with the reduction in
the number of contacts among workers, and “services” occupations that can be
completed from home with only a small loss of output. As an alternative to the
previous policy I study a simple precautionary regime: symptomatic individuals are
not tested but kept in isolation for 14 days. Finally I also consider the effects of two
different test: test 1 is a poor quality test that is only able to discriminate between
healthy and infected agents. This is the outcome of a polymerase chain reaction

1Casares and Khan (2020) also take this approach in a related model. Chen and Qius (2020)
conduct an empirical evaluation of various non-pharmaceutical interventions for 9 countries using
a dynamic-panel SIR model.
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(PCR) or a Rapid Diagnostic Test (RDT) test. With this technology one needs to
test repeatedly a large fraction of the population, since healthy agents participate
every period in market activities and a fraction of them are likely to become in-
fected. Then I look at test 2, a perfect test which is able to tell the type of healthy
individual and the length of the infection in case the individual is infected. This
second test is closer to serology testing such as Neutralization Assay that looks for
antibodies in the blood of the patient.2

I evaluate the effects of the previous policies in a quantitative exercise using a
calibration that is similar to the papers in this literature. I find that a simple
policy such as precaution is able to delay the pick of infection under laissez-faire
(or unawareness) from day 41 to day 262, and from almost 16% to about 3.6%.3

Perhaps surprisingly I find that adding the effect of test 1 to precaution is nearly
irrelevant, at least at relatively low levels of coverage such as 1% of the population,
but also at a level of 3%. Only the combination of precaution with test 2 delays some
additional 83 days the pick of infection which then affects 2.2% of the population.
Furthermore, with a 3% coverage in this last combination of policies the epidemic
does not take place. To obtain an infection rate below 1% using test 1 to control
for the disease it would be needed to test 15% of the population over 18 months.
These results suggest that there are dramatic differences in the effects of using test
type 1 and test type 2. This finding is relevant because in most countries the
implementation of tests type 1 is the main strategy (together with confinement) to
fight against Covid-19 (as of April 19th Germany is the first European country to
start large-scale coronavirus antibody testing). Finally, I find that a social distancing
policy consisting in reducing interactions by 10% has positive but very limited effects
under unawareness, but it is able to also prevent the epidemic from taking place
under precaution and its combination with tests. In terms of the effects on output,
social distancing is substantially more costly (output falls by more than 50%) than
precaution plus test 2 (less than 2% of output with a coverage of 1%, and literally
no loss with a coverage of 3%).4

Not all is good about the combination of precaution and test 2: the problem is that
either the population is constantly tested, or as soon as tests cease the infection is

2For a detailed exposition of different types of test see “Serology-based tests for COVID-
19” from the Center of Health Security, which is updated twice a week and can be found
here https://www.centerforhealthsecurity.org/resources/COVID-19/serology/Serology-based-tests-
for-COVID-19.html.

3A result along this lines is also found in Berger, Herkenhoff and Mongey (2020). In the model
it is assumed that the policy has a 100% compliance. The laissez-faire can be seen as the lower
bound of the effects when compliance decreases.

4These results are similar to those in Piguillem and Shi (2020). Their model allows for time
varying intensity of quarantine, which takes the form of a reduction in the fraction of the population
taking part in the economic activity and they do not consider tests type 1. Here in stead, social
distancing does not only affect endogenously the fraction of the population that participates in
economic activities but it also limits the extent of the activity, i.e., the number of contacts.
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likely to start again in the near future. The reason is that with test 2 the fraction of
healthy and immune individuals is too small to provide “herd immunity” (that is,
the mass of immune individuals is too small to prevent the disease from spreading
again). Hence, test 2 has benefits in the short run but it may have large costs at a
longer run. A severe social distancing policy will produce similar effects, to which in
addition one has to add a dramatic output loss. However, a “light” social distancing
may have small costs in the sort run but larger benefits in the future. In view of this
I conduct a grid search to investigate the effectiveness of the combination of policies.
In this final exercise I take into account the cumulative deaths, the infection rate (to
control for the possible collapse of the public health network), the level of healthy
and immune individuals to meet a herd immunity threshold and the cost of output.
My results suggest that it is best to implement a light social distancing to reduce
interactions by about 3-7% over 90 days, and then continue with test 2 covering 3%
of the population for additional 40 days.

The previous policy recommendation must be taken with caution, as it rests on
the fact that preferences are not lexicographic in the number of current deaths and
on the fact that an effective cure or vaccine to fight Covid-19 does not seem to
be available over the next 12-18 months.5 My results suggest that without a more
effective medical technology the optimal policy reduces the number of deaths by
about 20% in the short and in the long run, but unfortunately there is a medium
run period in which the cumulative deaths are almost as large as under laissez-faire.

The rest of the paper is organized as follows. Section 2 describes the environment,
Section 3 explains health distribution dynamics and the various policies, Section
4 introduces output losses, Section 5 conducts the quantitative exploration and
Section 6 offers additional discussion and suggestions for further research. There is
an Appendix with a few additional results from a sensitivity analysis.

2 Environment

Time is discrete and there is a unit mass of agents. In any given period agents can
be in one of the following four states: healthy and immune, healthy but vulnerable,
infected with symptoms and infected but asymptomatic, denoted respectively i, v,
s and a. The distribution of health status in a period t can be represented by a
vector Ht = (it, vt, st, at) and it satisfies:

it + vt + st + at = 1. (1)

For future reference it is convenient to introduce Mt as the mass of agents that
participate in market and social activities. φt denotes the the fraction of healthy

5Precisely the lack of a powerful remedy makes this sort of exercise interesting. See however
Eichenbaum et al. (2020) and Gonzalez-Eiras and Niepelt (2020) where the possibility of a decisive
medical improvement is taken into account.
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agents, thus φt = it + vt and the mass of infected agents is given by 1 − φt. It is
assumed that healthy and infected but asymptomatic agents may die at an exoge-
nous rate 1 − η, and that agents infected with symptoms die at a rate d (that is, d
is the fatality rate). The population is constant over time because dead agents are
replaced with newly born healthy but vulnerable agents.

The nature of the disease is such that the true health state may not be known to the
agent. In terms of the transmission of the disease the interaction of two individuals
of the same healthy/infected type is inconsequential. Only when an agent type v
interacts with an agent type s or type a the disease may be transmitted.

Let πn,m denote the probability that after a meeting between an agent type n and
one type m (with n,m = i, v, s, a) there is a change in the health status of the agent
n. For instance, πi,m = πm,i = 0 for all m, and by the same token, πs,m = πa,m = 0
for all m. It is clear however that πv,s = πv,a > 0 (and of course, that πs,v = πa,v =
0). This simply reflects the fact that only the interaction between a healthy but
vulnerable agent and an infected agent is able to change the health status of the
initially healthy agent. Since only πv,s = πv,a are strictly positive I simplify notation
and denote them by π.

In “normal” times (when economic activity and social interaction takes place un-
der no constraints) each individual maintains N consecutive meetings with other
individuals.6 I denote by pn the probability of a change in the health status of an
agent type n = i, s, a after N random consecutive meetings. Given the previous
assumption it follows that pi = ps = pa = 0. Given this, let pt be the probability
corresponding to the v type in period t, which satisfies

pt = L(N ;Ht). (2)

The function L(·) depends on the policy intervention (if any), on the number of
meetings and on the distribution of health in the group that meet. The purpose of
the paper is to look the effects of several configurations for L(·). Finally, I assume
that whether the agent is infected or not is materialized at the end of the period,
and in case an agent is infected the symptoms are revealed only with probability ρ.

3 Health distribution dynamics

The time-line of an infection process is as follows. Suppose that a healthy but
vulnerable agent gets infected in a period t. I assume that the disease process is
deterministic in that conditional on surviving, the infected agent faces an horizon of
t0 periods until recovery. That is, during the t0 periods of infection the probability

6Consecutive meetings simplify a bit the exposition and description but are not fundamental for
the results.
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of dying is constant and equal to d. If the agent survives the t0 periods then it is
assumed that she is totally recovered and becomes healthy and immune. In that
state the probability of dying is (1 − η), the same as for the other healthy and for
the infected but asymptomatic agents.

The dynamics of health status given an initial H1 are described below. In particular,
it holds that

it+1 = itη + s1t (1 − d) + a1t η, (3)

where s1t and a1t denote the mass of infected agents that in period t are one period
away from recovery. The mass of s agents evolves according to

sjt+1 = sj+1
t (1 − d), (4)

for j = 1, ..., (t0 − 1), with
st0t+1 = vt · pt · η · ρ (5)

and where st =
∑t0

j=1 s
j
t . The evolution of the at is nearly identical, with

ajt+1 = aj+1
t η, (6)

for j = 1, ..., (t0 − 1), with

at0t+1 = vt · pt · η · (1 − ρ) (7)

and with at =
∑t0

j=1 a
j
t and such that Equation (2) holds. Finally, under the as-

sumption that healthy but vulnerable agents participate it holds that

vt+1 = 1 − it+1 − st+1 − at+1. (8)

Notice therefore that vt+1 includes all vt agents that survive from t to t+ 1, plus all
the agents in every health state that died between t and t+ 1.

I now describe the configuration of L(·) under several canonical policies.

3.1 Unawareness: all agents participate

Even if the symptoms of Covid-19 are revealed, in many cases they consist of a
slight increase in temperature and some coughing. I make the assumption that these
symptoms are wrongly taken as symptoms of a common cold and thus all agents
keep interacting and participating in the N meetings. Under this assumption the
mass of agents that participate in the meetings is such that Mt = 1 in all periods
and thus

pt = π(1 − φt)
N∑
i=1

φi−1
t . (9)
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3.2 Precaution: symptomatic agents do not participate

Assume that once the symptoms are revealed, the agent is confined for t0 periods.
This assumption has dynamic effects for the size of the group that participate and on
the probability pt. In particular, the mass of agents that participate in the meetings
satisfies:

Mt = φt + at, (10)

and the probability pt satisfies

pt = π
at
Mt

N∑
i=1

(
φt
Mt

)i−1

. (11)

3.3 Testing 1: agents tested to be infected do not participate

A first policy to consider consists of randomly testing individuals among those that
do not show symptoms (those with symptoms are not tested but are prevented
from participating during t0 periods, as under precaution). This means that all non
tested asymptomatic agents, plus all tested to be not infected, will participate. This
policy can be implemented in two different ways: by testing a constant fraction of
the asymptomatic population, and by making a fixed number of tests. These policies
entail repeating the test to a fraction of the population that has been tested before,
but they may be appropriate if it is difficult to verify the authenticity of tests realized
in the near past. This policy may be the only one available at early stages of the
epidemics when the available tests can only discriminate between infected and non
infected agents.

3.3.1 Testing a constant fraction of the asymptomatic population

In this case the asymptomatic population in every period is φt + at, and after the
test the population that participates is given by

Mt = φt + at(1 − τ). (12)

The probability of infection for a healthy but vulnerable agent satisfies

pt = π
at(1 − τ)

Mt

N∑
i=1

(
φt
Mt

)i−1

. (13)

3.3.2 Realizing a constant number of tests

Let τ represent the number of tests which are devoted to check the asymptomatic
population. If At is the asymptomatic population in period t, then the probability
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of being checked is τt = τ/At if τ ≤ At (and τt = 1 otherwise). The mass of
agents participating in the market and the probability of infection for a healthy but
vulnerable agent are given respectively by

Mt = φt + at(1 − τt) (14)

and

pt = π
at(1 − τt)

Mt

N∑
i=1

(
φt
Mt

)i−1

. (15)

3.4 Testing 2: A perfect test

Suppose now that the available test is able to discriminate among healthy and
immune, healthy but vulnerable, and the periods of infection for those that are
detected to be infected. In this sense the test is perfect and its results last for as
long as the agent is alive. Thus some of the repeated tests that were conducted
under the previous testing 1 can be more efficiently used to check the state of not
previously checked agents.7 I will proceed under the assumption that there is a fixed
number of tests to be done in every period. I will also assume that infected agents
with symptoms are not tested but are not allowed to participate for t0 periods as
soon as the symptoms appear.

As in the case above the mass of asymptomatic agents in any period t is given by
it + vt + at. How many of them would need to be tested in the current period? The
answer is of course all those that have not been tested before, thus one needs to
keep track of the previously tested agents in each possible group. To facilitate the
exposition let ñt be the mass of agents type n = i, v, a that are alive in t and that
have been tested before t. Let also n̄t be the mass of agents type n = i, v, a that are
tested for the first time in t. With respect to the i have that:

ĩt = (̃it−1 + īt−1)η + s1t−1(1 − d) + (ã1t−1 + ā1t−1)η, (16)

where it is understood that s1t have a medical certificate which acts like the test.
Agents that were tested v in the previous period would need to be tested again
(since they interacted and it is not know if their type changed). The only ones
that will not show up to be tested are the ones that ended the previous period with
symptoms. Hence we have that it is as if

ṽt = vt−1 · pt−1 · η · ρ. (17)

7The fundamental aspect of the test is that it discriminates the type of healthy individual. The
fact that the test also tells the maturity of the infection of infected individuals only simplifies to
keep track of them.

98
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 9
1-

11
5



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

With respect to the agents that were detected to be infected but asymptomatic it
holds that

ãjt = (ãj+1
t−1 + āj+1

t−1 )η, (18)

for j = 1, ..., (t0 − 1), with

ãt0t = ṽt−1 · pt−1 · η · (1 − ρ) (19)

and with ãt =
∑t0

j=1 ã
j
t .

Hence the mass of agents that has not been tested is given by

Ãt = (it − ĩt) + (vt − ṽt) + (at − ãt) (20)

and thus the probability of being tested is given by

τt =
τ

Ãt
(21)

if τ ≤ Ãt and τt = 1 otherwise. The mass of newly tested agents in a period t is
given by īt = τt(it− ĩt), v̄t = τt(vt− ṽt) and āt = τt(at− ãt). It follows that the mass
of agents that participate in period t is given by

Mt = φt + (at − ãt − āt), (22)

and the corresponding probability satisfies the usual equation:

pt = π
at − ãt − āt

Mt

N∑
i=1

(
φt
Mt

)i−1

. (23)

3.5 Social distancing

For each of the previous policies the model is able to encompass social distancing
by assuming that agents are able to materialize only n < N interactions. Hence the
value of n can be seen as the severity of social distancing.

Notice that with the exception of unawareness in which Mt = 1 in all t, in the other
scenarios Mt is the sum of the mass of healthy agents plus different fractions of
infected but asymptomatic agents.

4 Output loss in an epidemic episode

A relevant effect of an epidemic episode is observed on the number of workers avail-
able to work. In terms of the different scenarios considered above this restriction
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may have no effect, in the unawareness regime, or represent a more severe limita-
tion in the precaution regime and when tested infected agents are prevented from
participating.

The model does not distinguish between social meetings, that are valuable in terms
of utility but not productive in terms of output, and productive meetings that are
mainly valuable because of the output they make possible. To simplify matters it
will be assumed that all interaction is related to production, thus the N meetings
involve commuting between home and the workplace and interacting with other
peers in order to complete a number of tasks.

A policy such as social distancing introduces an additional output effect through the
fact that the actual number of meetings, n, will be smaller than the “normal” one,
N . That is, for a productive agent I let the value of her output be given by yf(n)
where f(n) is non decreasing in n and i) f(0) = 0, and ii) f(N) = 1 (this is simply
a convenient normalization). With this in mind it is clear that not all occupations
suffer the same loss in the face of the same reduction in n. For instance, in the
services sector many workers are able to keep working from their homes and their
output is very close the “normal” output even if n is severely reduced. However,
production in the industrial and in the primary sectors are nearly impossible to
be moved at home, so even a small reduction in the number of interactions is able
to represent a large reduction in output. I try to take into account this diversity
and assume that there are two types of occupations, in the “services” sector and
in the “industry” sector, such that fj = (n/N)αj for j = s, i and with αs ≤ 1 and
αi ≥ 1. The proportion of workers in each sector is denoted respectively S and
(1 − S), and since all workers are alike in terms of their probability of infection,
the same proportions prevail among healthy and among ill individuals. With these
assumptions output in period t at the aggregate level is given by

Yt = SMtys(n/N)αs + (1 − S)Mtyi(n/N)αi , (24)

where Mt is again the mass of agents that participate and where ys,i is the output
per worker in sector s, i.

5 A quantitative exploration

5.1 Calibration

In the model a period t is a day. I need values for N, π, η, d, t0, ρ, S, ys, yi, αs and αi.
A few of these parameters can be obtained from the literature, but unfortunately
there is substantial uncertainty about their true values. The starting distribution is
such that there is a fraction 0.001% of infected individuals (the rest are all healthy
but vulnerable).
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The value of η is the survival rate in “normal” times on a daily basis. For the
US economy life expectancy is about 78,54 years, so η = 0.999965 is a reasonable
approximation. There is a large variation across countries in the case fatality rate of
Covid-19 (from above 13% in Algeria and Italy to as low as 0,12% in Qatar). There is
evidence that age and pre-clinical condition are relevant. In the US the case fatality
rate is reported to be 5.11%.8 As a starting point I take d = 3.4% as a reasonable
compromise. The recovery period t0 is taken to be 14 days (but in several countries
the recommendation before returning to activity is as large as 30 days). Regarding
the fraction of infected individuals that show up the symptoms, Heneghan, Brassey
and Jefferson (2020) suggest that based on the available evidence a fraction between
5% and 80% of tested infected individuals are asymptomatic.9 As a starting point
we take ρ = 0.8 hence the disease is manifested in 80% of the infected individuals.
With respect to the transmission rate of the infection π, Berger, Herkenhoff and
Mongey (2020) assume it is 0.0091 in their model with periods of 14 hours. I take
this value from that paper and in the current model with periods of 24 hours I
fix π = 0, 0156 (this figure is similar to that in Casares and Khan (2020) in their
calibration for Spain).

I use data from BLS from 2018 (the last year for which the required information
is available) to calibrate S, ys and yi.

10 In 2018 there were 161.037,7 jobs in the
U.S. (in thousands), and the value of total output was 33.241,9 Billions in chained
dollars of 2012. I take employment and output in the “services” sector as including
Services-providing excluding special industries minus: wholesale and retail trade,
transportation and warehousing, Health care and social assistance and minus leisure
and hospitality. The rest of categories are included in the “industry” sector. The
fraction of jobs in the “services” sector is approximately 0.442, so I fix S = 0.442.
The annual value of output per worker in “services” and “industry” is approximately
0.2202 and 0.1954 respectively (in Millions of chained dollars of 2012). On a daily
bases this means that ys = 603.28 and yi = 536.34 Dollars. Finally, I fix the
“normal” number of interactions to N = 30 and in the examples with tests 1.1, 1.2
and 2 I evaluate several options for τ .11

We now evaluate several counterfactual situations.

8See the evidence in Oke and Henghan (2020) which can be found here
https://www.cebm.net/covid-19/global-covid-19-case-fatality-rates/.

9This can be found here https://www.cebm.net/covid-19/covid-19-what-proportion-are-
asymptomatic/.

10The data in these calculations comes from Tables 2.1 and 2.2 from BLS, which
can be found in https://www.bls.gov/emp/tables/output-by-major-industry-sector.htm and
https://www.bls.gov/emp/tables/employment-by-major-industry-sector.htm.

11The value for N is similar to 25 used in Casares and Khan (2020).
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5.2 Counterfactual policies

I evaluate the five different scenarios under the baseline calibration discussed in
the previous section and over a period of 365 days. To facilitate the exposition
I introduce several figures for the fraction of infected and output effects. Figure
1 shows the evolution of the fraction of infected individuals. When the infection
evolves under no control it reaches a maximum infection rate of 15.39% in 41 days,
and then slowly declines: 200 additional days are needed in order to observe an
infection rate below 1%. Compared to this case, the other policies provide: 1) a
much slower increase in infections, 2) a much smaller maximum of infections, and
3) a slower recovery. It is interesting to see that even a simple policy such as
precaution (i.e., stay at home if you do not feel well or if your temperature is higher
than normal), represents a substantial improvement with respect to unawareness.
Tests 1.1 and 1.2 are nearly identical (hence we wont distinguish between them in the
following exercises) and perform slightly better than the precaution scenario. Test
2 is clearly better: it delays substantially the pick of infections which in addition is
only slightly above 2%. Still, this test must be done every day and yet at a 1% level
it seems unable to keep the infection rate below 1%.
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Figure 1: Baseline outcomes.

Figure 2 plots the effects for the infection rate of increasing the number of tests to
3% of the population. This policy has no effect on scenarios 1 and 2 (unawareness
and precaution), but it delays slightly the pick of infections under test 1 (test 1.1
and 1.2 continue to be indistinguishable). Test 1 is now able to lower the infection
pick to 3.1% after 297 days (before it reached 3.6% after 270 days). Increasing the
number of tests to the 3% of the population has its largest effect with test 2. In
this case the fraction of infected is not zero, but it remains always below 0.0021%.
Thus a sufficiently large coverage with test 2 in the initial periods has a positive
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effect in the periods that follow. How much larger should be the coverage under
test 1 to obtain this sort of results? Testing 15% of the population delivers a pick
of infection of 0.92% after 551 days. This result suggests that there are dramatic
differences between the two types of tests.12
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Figure 2: Increasing the fraction of tests, τ = 3%.

Figure 3 plots the effects of social distancing when all agents participate: it is
assumed that the number of contacts is reduced from day 1 to the end of the year to
n = 20, which represents a reduction of 33.3% of interactions. It is clear that social
distancing delays a bit the pick of infections and that it is slightly smaller. This
effect comes directly from the smaller pt. In the other scenarios there is an additional
effect, since not only the probability but the mass of participants will change. As an
example of these effects Figure 4 shows the probability under precaution for various
n’s, and Figure 5 shows the corresponding iat for the first few periods. In the
beginning participation declines until the first generation of healthy and immune
starts participating. After this point the effect of n on pt explains the subsequent
dynamics: with a “light” social distancing participation continues to decline and
the fraction of infected but asymptomatic continues to increase. However, for a
sufficiently severe social distancing it happens the opposite, so after a few more
periods it is as if only healthy agents participate.

Figure 6 represents the evolution of infections under precaution and the two tests
(and assuming that the tests cover up to 1% of the population every day). The effect
of social distancing appears to be dramatic in all cases, even when only precaution is
implemented. As before the evolution of infection is better under the implementation
of test 2, but the pick of infections is in all cases below 0.0018%.

12In the Appendix I report the results of a sensitivity analysis. My results suggest that the
differences between test 1 and test2 tend to decrease as t0 is increased, but test 2 always performs
better than test 1 to control the spread of the disease.
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Figure 3: Introducing social distancing under unawareness.
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Figure 4: Participation (Mt) with social distancing.
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Figure 5: Infected asymptomatic that participate with social distancing.
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Figure 6: The effect of social distancing with precaution and tests.
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I now look at the output effects in each scenario under the previous policies. Figure
7 represents the level of output relative to the case of no epidemic taking place,
so that the output loss in every period is the distance from 1. When all agents
participate there is of course no loss, but in the precaution and in test 1 the losses
can be as large as 3% of daily output. Under test 2 the loss is delayed to the future
and it is only about 1.8% (the tests cover again 1% of the population). When the
fraction of tests covers 3% of the population then test 1 is able to reduce losses to
2.5%, and not surprisingly, under test 2 there are essentially no losses (see Figure 8).
I finally look at the effects of social distancing. It is clear in Figure 9 that reducing
n by 1/3 has a dramatic effect on output, which falls below 50% of its “normal”
level. In terms of output losses precaution is the worst scenario and both tests 1 and
2 show similar effects in the beginning. These results suggest that there is a clear
trade-off between the evolution of the infection and the number of deaths, and the
evolution of output.

The large negative effects on output are likely to disappear as soon as social dis-
tancing ends and n returns to its normal level. If we request the infection rate be
declining and no larger than 1% as the threshold level to return to normal levels
of activity, then under precaution and under all tests the return to normal activity
happens after t0 periods. However, the mass of healthy and immune agents is rather
small, so without further actions the outcomes in terms of infection (st + at) fall
pray again of the epidemic disease. This is shown in Figure 10. It is instructive to
look at the unawareness case, since in this scenario social distancing has positive but
limited effects. Figure 11 shows that at the end of social distancing the fraction of
infected grows again, but it rapidly declines. The reason is that in this scenario, the
fraction of healthy and immune individuals is large. Figure 12 shows the dynamics
of healthy and immune in each scenario. This result suggests that a successful policy
to implement a gradual return to normal levels of activity should not only request
a low fraction of infected, but also a large fraction of immune.

The results of the previous exercises suggest that relaying on a test like test 2 may
be a very effective policy to limit the number of deaths and to preserve the economy
in case of an epidemic. This policy requires to test a large fraction the population
from the very beginning and over time, which may not be feasible specially at early
stages of the episode. Furthermore, under this policy it is likely that a large fraction
of the population remains healthy but vulnerable, which means that the population
remains exposed to new episodes of the same disease in the near future. This is
a dynamic aspect of the whole process that needs to be taken into account. On
the other hand with a “light” social distancing strategy the fraction of healthy and
immune individuals grows rapidly, but it has an enormous cost in terms of deaths
and output losses. Social distancing therefore has costs in the short run but benefits
in the long run, exactly the opposite of massive tests. It seems therefore that a
successful combination of tests and the severity of social distancing could minimize
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Figure 7: Output relative to no epidemic output, baseline calibration.
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Figure 8: Output relative to no epidemic output with a larger number of tests.
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Figure 9: Output relative to no epidemic output under social distancing.
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Figure 10: Infection dynamics with an early end of social distancing.
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Figure 11: Infection dynamics with an early end of social distancing under unawareness.
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Figure 12: Dynamics of the fraction of immune with an early end of social distancing.
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loses in the short run and maximize benefits in the long run.

I investigate this issue by combining social distancing over the first t1 periods fol-
lowed by testing the population for several additional periods. That is, I consider
several lengths of social distancing (a larger t1 period), combined with different lev-
els of its severity (smaller n), and with several values for τ to start being applied
from t1 + 1 onwards. It is not obvious how to evaluate the outcomes of the differ-
ent combinations. I therefore focus the attention on the cumulative deaths due to
the infection and the policy in place, the fraction of the population that is healthy
and immune at the time of ending social distancing, and on the average output
loss per day. I simulate the economy until the mass of agents that participate is
close to 1, the no epidemics level. This is organized as a grid search problem, in
which the grid is t1 = 14, 21, 28, ..., 90, 120, (weeks, and months at the last two hori-
zons), n = N − 1, ..., N − 10 (remember that in the baseline calibration N = 30)
and τ = 0.1, ..., 0, 3 in increments of 0.05. The fraction of hi at the end of social
distancing is a critical variable because it may prevent the disease to spread again.
The threshold level of group immunity that prevents the spread of the disease is
called the Herd Immunity Threshold (HIT). For instance, the HIT for influenza is
between 33%-44%, and that of SARS is between 50%-80%.13 As an approximation,
I will request a level of at least 40% for a policy to successfully end the confinement
without suffering a new epidemic immediately afterwards.

Rather than reporting a table with all the results it is more interesting to describe
three regularities that emerge from this exercise:

R1: The more sever is social distancing (the smaller is n), the larger is the number
of weeks that is needed to achieve hi(t1) ≥ 40%. It does not seem possible to achieve
the previous threshold level before 70 days, and very often requires 90 or 120 days.

R2: Cumulative deaths decrease with the severity of social distancing (the smaller
is n) and given n they increase in the weeks of social distancing, t1. Furthermore,
cumulative deaths decrease the larger is the fraction of the population that is tested.
The positive effects of a larger coverage of tests offset the negative effects associated
to “light” social distancing.

R3: Output losses are larger the more sever is social distancing (the smaller is n)
and the larger is the period of social distancing (the larger is t1).

These regularities are informative: R1 suggests that it is best to implement a “light”
social distancing and R3 reinforces this by suggesting in addition a short period
t1. R2 points to the same direction, provided that there is a sufficiently large
coverage of tests. Given the parametrization of the model, n = 29, t1 = 90 and
τ = 0.03 delivers cumulative deaths of 0.23, a fraction of healthy and immune
agents of 41.12% and an average output loss of 10.58% during the 130 days that

13See Biggerstaff et al. (2014) and Wallinga and Teunis (2004).
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it takes to return to normality.14 From this combination of parameters it follows
that a smaller t1 decreases cumulative deaths slightly, but the fraction of health
and immune decreases very strongly. If instead t1 is increased, then hi(t1) increases
above 50%, but cumulative deaths also go above 0.28. Decreasing τ has no effect
on hi(t1), but it has a negative effect on cumulative deaths. If I consider in stead
n = 28, with the same t1 = 90 and τ = 3%, there is a small improvement in
cumulative deaths (0.228) and a small decrease in hi(t1) = 40.05%. However, in
this case average output losses increase up to 18,40% (over the same 130 days).
These seem to be the best policies, as with a more severe social distancing there is
little to gain in terms of cumulative deaths, and a lot to loose in the fraction on
healthy and immune and output. For completeness Figure 13 plots the outcome of
the best policy (with a reduction of contacts of 0,33%,n = 29).
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Figure 13: Combining social distancing and tests.

The series of cumulative deaths in Figure 13 measures cumulative deaths relative to
the unawareness case, thus the avoided deaths with the policy are measured as the
distance from 1. Figure 13 reveals that the optimal policy essentially substitutes
deaths inter temporally: deaths are smaller in the short and in the long run, but in
between they are nearly identical to the unawareness/no policy case.

In the calculations above the fraction of infected individuals that may attend a
health center has been ignored. This is an important variable from the public
health perspective because it may collapse the public health network. I computed
the fraction of agents that are infected with symptoms and its maximum level is
a bit above 11% in period 45/44. If I assume that only individuals with severe
symptoms attend a hospital and that this fraction is equal to the fraction that will
die (d = 0.034), then I find that the fraction of individuals in the hospital is about

14I checked that with αs = αi = 1 the average output loss per day reduces to 2.6%.
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0.39% of the population. This is well below 1% which is some times taken as the
rough threshold level at which public health may collapse. If, however, I assume that
all individuals with symptoms will attend a hospital, then it is needed a reduction
of about 73% in the number of contacts for 120 periods to obtain a mass of infected
with symptoms of 1.1%. In this case cumulative deaths decrease to 0.034, but the
fraction of healthy and infected at t1 is only slightly above 0.8% and output losses
are above 53%.

The previous policy recommendation rests on the fact that preferences are not lexi-
cographic in the number of current deaths and on the fact that an effective cure or
vaccine does not seem to be available over the next 6 months. Under these premises
any policy exercise conducted in this literature needs to evaluate the trade-off be-
tween deaths today versus deaths tomorrow. This trade-off is in the hands of the
policy-makers and it can only improve if there are decisive medical advancements.

6 Final remarks

This paper proposes a model to evaluate the effect of policy on health distribution
dynamics and on output in an economy that is subject to an epidemic disease. An
important conclusion of this research is that a simple precautionary policy may
have very positive effects to delay and reduce the pick of infections and that poor
quality tests only able to discriminate healthy from infected agents do not represent
a significant improvement. The precautionary policy is as easy as to check the
temperature of all individuals, keeping a registration of the possibly infected and
isolating them for 14 days without further tests.

It is also necessary to emphasize that the use of tests that can only discriminate
between infected and non infected individuals, like the widespread PRC, does not
represent a noticeable improvement upon the precautionary policy when there are
no other significant social distancing measures.

A third important result in this paper is that a high quality test is able to eradicate
the disease in the short run provided that there is a large enough coverage of the
population. The caveat of this test is that it is likely to leave the population without
herd immunity, and thus the possibility of new epidemics in the future remains
positive.

I use the model to characterize an effective policy mix. I find that the best combina-
tion of policies consists of a “light” social distancing for about three months followed
with a large coverage of the population with a high quality test for additional 40
days.

The model in this paper can be improved along several dimensions, including a
discrimination of the interactions between social and productive meetings and a
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precise characterization of individuals along the lines in the immunology literature
(age, gender, pre-clinical condition). The current representation of output losses is
appropriate if the effects of the epidemic extend over a few weeks. Clearly, however,
with a longer horizon not only unemployment will rise but also productive capital
will be destroyed. It would be very interesting to include the health distribution
dynamics of the epidemic in an Aiyagari-Huggett model and evaluate more precisely
the effects of taxes and subsidies. This investigation is left for future work.

7 Appendix

I describe here a few additional results of a sensitivity analysis.

1. The power of test 1. The following Table 1 summarizes the effects on the fraction
of infected individuals as the coverage of test 1 is increased.

τ (%) pick day pick of infections (%)
4 301 3
5 312 2.8
10 394 1.8
15 551 0.91

Table 1: Test 1 with larger coverage.

2. The length of confinement, t0. I check the effect of t0 on the differences between
test1 and test 2. The baseline value for t0 is 14 days which is the recommendation
of the WHO. I find that increasing t0 to 18, 20 or 25 days reduces the differences
between the tests in the magnitude of the pick of infection and it has small effects
on the pick date. Still, the type 2 test performs better than the test type 1. The
results are summarized in Table 2.

t0 TEST 1 pick day pick of infections (%) TEST 2 pick day pick of infections (%)
18 168 9.24 192 7.27
20 160 11.71 181 9.61
25 160 16.83 179 14.59

Table 2: The effect of larger t0.

3. The effects of N and the power of tests 1 and 2: I described in the text that
reducing the number of contacts has a positive effect to delay the pick of infections
and to reduce it. With test 2 covering 3% of the population the epidemic does not
take place when N = 30. When N is increased to 35, 40 and 50 I obtain that
the pick of infections is delayed to day 380, day 226 and day 134 respectively, and
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the pick of infections increases to 1.33%, 3.6% and 4.5% (also respectively). The
epidemic is still far from the unawareness outcome, hence test 2 is still effective at
a 3% coverage of the population. I repeat the same exercise under test 1. With
35, 40 and 50 contacts the pick occurs on days 189, 146 and 105, and reaches 6%,
8.15% and 10.9%. The results when only precaution is in place are pick occurring
at days 177, 136 and 101 and reaching 6.54%, 8.6% and 11.24%. The conclusion is
that the effect of a larger N goes in the expected direction, but it does not change
the conclusion that test 2 is substantially more effective than test 1 to fight the
epidemic. Since there are no differences in the probability of transmission of the
infection across occupations changes in N do not change the shape of the optimal
policy.

4. The curvature in the production function. In the calibration exercise I found
that the value of a job in the “services” sector is only slightly larger than that in the
“industry” sector. The effect of a reduction in n is different in the two sectors because
of the curvature in f(n). When I take the two functions simultaneously closer to the
linear case output losses under the optimal policy decrease at an almost constant rate
from 10.58% to 2.6%, when αs = αi = 1 and thus the loss in output is proportional
to n/N . Changes in the curvature do not change the optimal combination of policies.
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Public response to rising deaths from COVID-19 was immediate and, in 
many cases, drastic, leading to substantial economic and institutional 
costs. In this paper, I focus on mortality from COVID-19. Using cross-
country evidence and controlling for a variety of contributing factors, 
I find that increasing the number of hospital beds has a significant 
and quite substantial impact on mortality rates. Hospital beds likely 
capture the capacity of ICU, laboratories, and other hospital-related 
equipment. Facing a potential second or third wave of infection 
following an exit from lockdown policies, countries short on medical 
infrastructures should increase them immediately.
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Introduction 

As the COVID-19 was striking China in January 2020, most advanced Western 

economies exhibited complacency if not denial. By February 23rd, when Italy recorded 

its first deaths amid a rapid increase in cases, the government closed schools.2 A week 

later, on February 28th, as deaths climbed to 20, Italy was the first European country to 

close workplaces. Media accounts suggest that policymakers reacted very strongly to 

fatality counts. In the U.K, with the Italian data available to policymakers, it wasn't until 

the first deaths on English soil that policy abruptly reversed course.3 It seems that in 

weighing the economic cost of lockdowns, fatalities, rather than infections, played first 

fiddle. Case-fatality ratios became household expressions. 

Figure 1 

Public Interest in COVID-19 Deaths 

(Google Trends: October 2019-April 2020) 
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Data from GoogleTrends on searches on the words: coronavirus, coronavirus deaths, 

in 3 major Western languages (Figure 1), exemplifies the rapidly rising public interest 

in coronavirus deaths. It accelerated and peaked only when deaths hit close to home. 

Interestingly, the interest in deaths from COVID-19 is now relatively higher than the 

interest in the disease. As the economic toll of lockouts rises, the debate between those 

                                                           
2 Data on policy response to COVID-19 us taken from Oxford University's policy response tracker. 
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker 
3  For eample, see the denial by deputy chief medical officer on March 8th and the following day 
discussion in the media that already hints at reversal. 
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arguing for a faster resumption of economic activity and those in favor of continued 

lockdown centers on death rates. Some of the debate is focused on comparisons with 

mortality from seasonal flu and other respiratory illnesses.4 However, ultimately, the 

fatality count is a significant factor in determining policy choices. 

While epidemiologists and medical researchers are studying the factors that account for 

the death toll from the virus, the economists can test for contributing factors that can 

affect the policy discussion regarding the containment of the virus and its impact on the 

economy. In this paper, I focus on mortality from COVID-19. Using cross-country 

evidence and controlling for a variety of contributing factors, I find that increasing the 

number of hospital beds has a significant and quite substantial impact on mortality rates. 

Absent more detailed hospital infrastructure data, the number of beds likely captures 

also the availability of ICU units, testing facilities, laboratories, etc. This result 

substantiates a recent paper by Favero (2020) and the focus on hospital capacity 

constraints. Our analysis offers an interesting twist on the famous 'Reversal of Fortune' 

hypothesis (Acemoglu et al. 2002). In that paper, countries with higher mortality ended 

with inferior institutions. My findings suggest that countries that rank higher on the rule 

of law indices suffered more mortality, and countries with more effective governments 

had lower mortality. 

The policy implications of this paper are that increasing hospital capacity reduces 

mortality in cases of highly contagious diseases. The indirect economic benefit of 

hospital beds' capacity in these situations is to attenuate a costly policy response that 

could also affect future institutional quality. 

Methodology 

Deaths versus Cases 

In this paper, I study deaths from COVID-19. There is an ongoing debate on whether 

we should look at cases or deaths from COVID-19. Most websites record both and 

provide case-fatality ratios and case-per-capita ratios but not per capita death ratios. 

Since testing rates differ from country to country, the use of case-fatality ratios could 

                                                           
4Financial times March 30 https://www.ft.com/content/f3796baf-e4f0-4862-8887-d09c7f706553. 
Washingtom Post, April 10, https://www.washingtonpost.com/politics/2020/04/10/not-that-bad-or-not-
that-high-how-advocates-return-normal-misrepresent-coronavirus-deaths/. 
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be misleading.5 Arguably, the death count is more accurate. Moreover, for comparisons 

with past virus outbreaks, we can only use death rates as we do not have historical case 

data. 

Mortality rates in country i (Mi) are a function of the incidence rate (Ci) times the 

case-fatality ratio: 

(1)𝑀𝑀𝑖𝑖 = 𝐶𝐶𝑖𝑖 ∗ �
𝑀𝑀𝑖𝑖

𝐶𝐶𝑖𝑖� � 

The incidence of the disease is a function of variables that affect contagion. The case-

fatality ratio is a function of variables that determine how deadly the disease is. 

Following the standard discussion in the medical research literature, two groups of 

factors affect contagion and mortality: natural and intervention. We can further classify 

natural causes as those affected by individual characteristics (age, general health 

condition, etc.) and environmental variables. Environmental variables include both the 

geographical environment (temperature, humidity, etc.') and the human environment 

(pollution, population density, norms of hygiene, etc.'). 

Research hypothesis: 

The main hypothesis tested in this paper is whether better medical infrastructure, as 

captured by the number of hospital beds per capita (𝑏𝑏𝑖𝑖), reduces the case-fatality ratio 

in country i.  

Empirical strategy 

Unlike the medical-research literature, I am not interested in determinants of individual 

mortality but rather in the macro case-fatality rate. I defend this approach on two 

grounds: a) given my research hypothesis, capacity constraints in hospitals create an 

externality to the individual probability of survival. b) in the absence of widespread 

daily testing, the policies applied were at the macro level as well. I, therefore, used cross 

country data for the latest mortality ratios (April 14, 2020). 

At the macro level, it is difficult to distinguish between control variables that affect 

contagion and those that cause death. As we see in equation (1), the case fatality ratio 

                                                           
5 See for example World Economic Forum, April 4, 2020 
https://www.weforum.org/agenda/2020/04/we-could-be-vastly-overestimating-the-death-rate-for-
covid-19-heres-why/ 
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is endogenous. Nevertheless, in what follows, I use a set of variables that are exogenous 

to both contagion and deaths. The model in its generalized form is: 

(2)𝑀𝑀𝑖𝑖 = 𝜷𝜷𝑿𝑿𝒊𝒊 + 𝜸𝜸𝑬𝑬𝒊𝒊 + 𝜹𝜹𝑰𝑰𝒊𝒊 + 𝜇𝜇𝑯𝑯𝒊𝒊 + 𝜃𝜃𝑏𝑏𝑖𝑖 + 𝜏𝜏𝑻𝑻𝑖𝑖 

Where: 

𝑿𝑿 is a vector of country-specific general controls. 

𝑬𝑬 is a vector of country-specific economic controls. 

𝑰𝑰 is a vector of country-specific institutional controls. 

𝑯𝑯 is a vector of country-specific health system controls, excluding, b,  the number of 

beds per capita. 

𝑻𝑻 is a vector of country-specific time controls. 

The hypothesis to be tested is whether 𝜃𝜃 ≠ 0? 

 

Data 

While data on the COVID-19 cases and deaths is available for almost all countries, the 

controls used below limit the set of countries used to 66 in the smallest sample. The 

small sample is biased towards more advanced economies, for which more data is 

available. However, the more advanced economies, for now, have more significant 

exposure to COVID-19.6 

Country specific control variables: Since the spread of a COVID-19 is believed to be 

dependent on weather conditions, I control for countries' geographical location by 

including their latitude and longitude position. Mortality from COVID-19 is 

concentrated among the elderly, I, therefore, use as controls the share of the population 

above the age of  80. Another factor that could affect contagion is urbanization. 

Therefore, I also control for the percent of the population living in urban areas. Since 

there could be other country-specific variables that affect mortality from flu viruses, 

such as pollution, hygiene norms, etc., I use as controls, the death rate from influenza 

from 2018. As argued above, I cannot distinguish between the effect of these variables 

on contagion and their effect on deaths. For example, weather can affect the spread of 

the virus, but also the vulnerability of those who catch it. The variation in countries' 

                                                           
6  A short appendix details the data sources used. 
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historical death rates from the flu reflects both the rates of contagion and case-fatality 

rates, etc. Nevertheless, all these are exogenous to COVID-19 death rates. 

Economic Controls: I used GDP per capita as a proxy for the population's well being, 

education, etc. that could contribute to either contagion and/or death rates. I used the 

degree of country openness to trade as a proxy for exposure to imported COVID-19.  

Institutional controls: The media has argued that institutional variables can account 

for the spread of COVID 19 – for example, the reluctance of Western democracies to 

close borders between them, the success of authoritarian regimes in enforcing 

lockdowns, etc. I, therefore, control for several commonly used institutional indices, 

such as the rule of law, protection of private property rights, effectiveness of the 

government, etc. I also control for 'neo-liberal' inclined governments by using 

government spending to GDP ratio. Again, media accounts suggest that more market-

oriented economies tended to postpone the imposition of restrictions. 

Health system controls: I used the health expenditure to GDP ratio and the number of 

physicians per capita and, more important as we shall see, the number of beds per capita. 

Ideally, given that acute COVID-19 treatment requires ICU units and ventilators, I 

would have liked to have more detailed cross-country data on additional medical 

infrastructure variables. I assume that there is a positive correlation between these 

additional variables and hospital beds. In the estimation, I also used the number of beds 

squared to reflect possible nonlinearities in hospital size. 

Time controls: since COVID-19 did not hit all countries at once and since death rates 

are rising over time, I included a time control – counting the number of days since the 

first recorded death. Since some countries instituted measures to contain the spread of 

COVID-19 – to 'flatten the curve,' I also included a control variable that measures the 

time elapsed since the introduction of these measures. 

Estimation and results 

Basic specifications 

We begin with a simple specification that allows us to use data from 94 countries. The 

specification includes the geographical setting – latitude, longitude, the 2018 death rate 

from influenza, the percent of the urban population, and the percent of the population 
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above 80.7 I also control, as in all regressions, for the time elapsed since the first death 

from COVID-19 was recorded in a country. All regressions were estimated as a cross-

country regression using least squares with errors clustered by World Bank country 

groupings. 

We can see (Table 1, column 1), that this simple specification can account for almost 

60 percent of the variation in death rates in our broad sample. Analytical plots (Figures 

3a-3b) show that the equation is well behaved and that given the higher share of elderly 

in the economy, Italy and Spain and Belgium that recorded high mortality rates, have 

higher mortality then their demographics imply. Japan, on the other hand, stands as an 

outlier with low death rates given its demographics. The coefficient of the percent of 

urbanization is positive but not significant. As we shall soon see, controlling for 

additional variables, the positive effect of urbanization on mortality is reversed. We can 

also see, (Table 1, column 2), that when we decrease the sample to 66 countries for 

which we have all data, the results remain unchanged. 

The effect of economic activity 

I next introduce economic controls: GDP per capita and the degree of openness of the 

economy. The results (Table 1 column 3) show that countries with higher GDP per 

capita and a higher degree of openness to trade are subject to higher death rates. It is 

likely that higher death rates in advanced economies are caused by greater contagion 

rather than by higher case-fatality ratios. Note that when including economic activity 

controls the sign of the coefficient of the degree of urbanization is now negative. We 

interpret this result as suggesting that for a given (a higher) rate of contagion in 

advanced economies, case-fatality ratios are lower in more urbanized economies due to 

better medical infrastructure. Our findings below on health infrastructure confirm this 

hypothesis.  

Effect of quality of institutions 

The long term effect of institutions is captured by GDP per Capita, Urbanization, and 

longevity (Aecmoglu et al. 2002).  Media accounts alluded to the weakness of Western 

democracies, open societies, in dealing with COVID-19 because of reluctance to restrict 

                                                           
7  Controlling for the normal death rate from influenza reduces significantly the sample size. However, 
omitting it would bias our results as it  
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movement and monitor citizens. The inclusion of institutional quality variables 

confirms (Table 1 col. 4.) some of the assertions in the media. Institutional variables 

that are related to upholding the rule of law, allowing for voice and accountability, are 

associated with higher rates of mortality from COVID. In contrast, institutions that 

capture political stability, quality of regulation, and government effectiveness are 

associated with lower mortality rates. However, given that the coefficients are measured 

at the mean of the institutional variables, there is no real constraint to increase 

government effectiveness without having to lower civil liberties.  
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Health infrastructure 

Geographic, economic, and institutional factors account for a substantial proportion of 

the variation in death rates in our sample. I end the analysis with the introduction of 

health infrastructure as captured by the number of beds per 1000 residents and the 

number of physicians per 1000. Table1, column 5, reports the preferred specification 

that uses the number of beds squared (accounting for non-linearities in hospital 

infrastructure). We can readily see that a more abundant supply of hospital beds reduces 

mortality significantly (Fisher et al. 2000). 

Figure 3c shows that the results are not driven by outliers. Figure 3d shows the added 

value plot of the number of beds. The effect of the number of physicians per capita was 

insignificant (Appendix table col 5 ). Hospital bed capacity is also related to the supply 

of other components of medical infrastructures, such as ICU units, testing, and 

laboratory facilities. 

Controlling for other covariates, the number of available beds can account for most of 

the differences in death rates between Italy or Spain and Japan (Figure 3d).  One source 

of concern is the statistic influence of Japan on the coefficient on the number of beds. 

Dropping Japan from the regression reduces the coefficient, but it remains highly 

significant and substantial (see Appendix Figure). Note that the coefficient on 

urbanization declines and becomes insignificant. This result suggests that before 

introducing the supply of hospital beds, the urbanization variable captured the higher 

and often better quality supply of medical care in large cities. 

The introduction of the number of beds variables affects the coefficient on the percent 

of people above 80 significantly. This is because there is a high correlation (0.56) 

between the number of beds and the share of the elderly population. In a regression of 

the number of beds on the percentage of the population above 80 (available from the 

author upon request), we find that Japan is an outlier with a very high ratio of beds to 

the elderly, whereas, tragically, Italy and Spain are opposite outliers with a low number 

of beds. As it happens, COVID-19, which affects mainly the elderly, hit the Achilles 

heel of those countries' medical systems. 

How substantial is the impact of the supply of hospital beds on the death rate from 

COVID-19? A useful example is to take the death rate in Italy, one of the countries with 

the highest number of deaths and the lowest supply of beds (Figure 2b). Using the 
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coefficient estimate on the number of beds squared shows us that, other things equal, if 

Italy had the same number of beds per capita as Japan, the number of deaths would have 

been reduced to Japanese levels – a few hundred. If we exclude Japan, an outlier in the 

number of beds per capita (Appendix table col 4), we get a reduction of deaths to about 

3,600 people (given death rates at the time of writing this paper). 

Table 1 
Dependent variable: Log COVID-19 deaths per capita 

      (1)   (2)   (3)   (4)   (5)   (6) 
Log flu deaths per capita 0.316* 0.381* 0.371** 0.246* 0.282* 0.260* 
   (0.137) (0.171) (0.098) (0.104) (0.124) (0.122) 
Perecent above 80 21.365** 15.935** 10.477* 12.326** 32.295*** 27.007** 
   (5.951) (5.843) (4.813) (4.155) (4.142) (8.549) 
Percent urban 0.469 1.335 -0.816** -0.416* -0.186 -0.022 
   (0.953) (1.011) (0.275) (0.201) (0.500) (0.628) 
Log GDP per capita   0.897*** 1.171*** 1.060*** 0.904** 
     (0.216) (0.141) (0.178) (0.302) 
Imports to GDP   0.769*** 1.935** 1.413* 1.521* 
     (0.119) (0.557) (0.662) (0.735) 
Voice and Accountability    0.638** 0.449** 0.374* 
      (0.161) (0.127) (0.177) 
Government Effectiveness    -0.534 -0.787 -0.822 
      (0.548) (0.585) (0.494) 
Rule of Law    1.248*** 0.766* 0.711** 
      (0.209) (0.316) (0.223) 
Regulatory Quality    -1.275*** -0.755*** -0.700*** 
      (0.240) (0.085) (0.161) 
Political Stability    -0.738 -0.335 -0.282 
      (0.388) (0.286) (0.229) 
Control of Corruption    0.255 0.255 0.501 
      (0.293) (0.388) (0.386) 
Beds per 1000 squared     -0.024*** -0.022*** 
       (0.004) (0.004) 
Obs. 94 66 66 66 66 66 
R-squared 0.596 0.615 0.673 0.729 0.790 0.809 
Time Effects yes yes yes Yes yes yes 
Geo position yes  yes  yes  Yes  yes  yes  
COVID-19 Mitigation      yes 
 
Notes: Data sources see data appendix. All regressions were estimated with errors clustered by the 
World Bank region classification. 
Standard errors are in parenthesis 
*** p<0.01, ** p<0.05, * p<0.1 

 

Mitigation efforts. 

Many countries launched a variety of COVID mitigation policies. These are tracked by 

Oxford University's policy response tracker. Albeit the short time that elapsed since 

their introduction, I controlled for the time elapsed, the squared time, and the index of 

the stringency of the measures. The results (Table1 col 6) did not change significantly. 

Moreover, these controls are determined simultaneously with mortality rates (Jones et 
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al., 2020). Owing to their small marginal contribution to the explanatory power and the 

simultaneity issues, I leave them for Appendix regressions. 

 

 

Figure 3 
Fitted versus residual plot   Added value plot 

Percent above 80 on COVID-19 mortality rates 

a     b 

 

c       d 

Beds squared per capita on COVID-19 mortality rates 

 

Notes: panels a and b based on column 2 in Table 1. Panels c and d based on column 5 in Table 1. 

Discussion and policy implications 

Since the pandemic is recent and its global spread is still in process, the conclusions 

from data available at the time of writing this note should be taken with more than the 

usual caveats. Nevertheless, our regressions confirm that death rates from COVID-19 

are higher in advanced and open economies suggesting higher degrees of contagion due 

to more contact and travel. The results also suggest that controlling for income per 
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capita, countries that rank higher in indices of the rule of law and property rights 

protection exhibit higher death rates, and countries with more efficient and stable 

governments exhibit lower death rates. The degree of government spending in the 

economy, as a proxy of a greater or smaller degree of redistribution policies, does not 

seem to have an impact on death rates (Appendix Table). On a more positive note, our 

findings suggest that other things equal, living in an urban environment, saves lives – 

mainly by providing access to medical facilities. 

Mitigation policies seem to have been, to a large extent, endogenous to rising deaths 

than preventive, and their impact on death rates is yet insignificant. However, due to 

the substantial lags between the imposition of restrictions, their effect on contagion, 

and ultimately deaths,  these results should be taken with a grain of salt. 

 

Figure 3 

Hospital beds per 1000 people 

 

Note: For countries used in the regression analysis. 
Source: World bank Hospital beds per 1000 people 
 

The most important empirical finding is the large and significant role played by hospital 

beds capacity on death rates. Our findings echo horror accounts from the heavily 

affected regions in Italy and Spain. Our results show that hospital capacity is crucial in 

reducing the deaths of infected people. It can also indirectly reduce contagion by 
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removing infected people from their home surroundings to hospitals. A smaller supply 

of hospital beds leads to higher mortality rates that induce governments to take more 

stringent closure measures that have greater economic costs. Higher mortality could 

also affect consumer confidence, bring about panic-driven decisions that also affect the 

economy adversely. 

Our analysis has a clear policy implication – to increase hospital capacity. Given our 

findings that the disease affects more wealthy economies, it seems that these economies 

can afford the cost of increasing the supply. Of course, the economic costs of hospital 

beds' shortages are more significant for wealthier economies. 

An interesting parallel between COVID-19 and "reversal of fortune" (Acemoglu et al. 

(2002)) can be drawn. In that seminal paper, more advanced and urbanized economies 

in 1500 were more prone to deaths from Malaria and Yellow Fever. It seems that 

COVID-19 similarily affects the more advanced economies. In the historical setting, 

settler mortality led to the adoption of inferior institutions that did not uphold the rule 

of law and offered weaker protection of property rights. Inferior institutions led to 

slower rates of economic growth that persist to this day in many of the affected areas. 

Some policy reactions to COVID-19, such as sending the military to enforce lockdown 

in Italy and more tracking and monitoring in more authoritarian regimes, may have 

similar consequences as in the historical 'settler mortality' environment– to weaken the 

institutions that contributed to economic growth. 

While the pandemic could be short-lived, institutional responses to it could be long-

lived. Investment in medical capacity becomes, therefore, even more crucial. Increasing 

hospital capacity, availability of testing, and protective equipment does not only save 

lives but may also save us from long-term consequences of taking measures that affect 

institutional quality. In the likely event of a second or even third wave of the pandemic, 

countries in need of medical capacity should start doing so with no delay. 
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Appendix 

Data:  

Countries (countries dropped from the final sample because of missing data in italics): 

Albania, Argentina, Armenia, Australia, Austria, Azerbaijan, Barbados, Belarus, Belgium, 
Belize, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Chile, Colombia, Costa Rica, 
Croatia, Cuba, Cyprus, Czech Republic, Denmark, Dominican Republic, Ecuador, Egypt, El 
Salvador, Estonia, Finland, France, Georgia, Germany, Greece, Guatemala, Guyana, Haiti, 
Honduras, Hong Kong SAR,  Hungary, Iceland, Iran (Islamic Rep of), Iraq, Ireland, Israel, 
Italy, Jamaica, Japan, Kazakhstan, Kuwait, Kyrgyzstan, Latvia, Lithuania, Luxembourg,  
Mexico, Montenegro, Morocco, Netherlands, New Zealand, Norway,  Oman,  Panama, 
Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Republic of Korea, Republic of 
Moldova, Romania, Russian Federation, Saudi Arabia, Serbia, Singapore, Slovakia, Slovenia, 
South Africa, Spain, Sri Lanka, Sweden, Switzerland, Syrian Arab Republic, TFYR 
Macedonia, Thailand, Tunisia, Turkey, Ukraine, United Arab Emirates, United Kingdom, 
United States, Uruguay, Uzbekistan,  Venezuela (Bolivarian Republic of),  West Bank 
and Gaza, Zimbabwe. 

Sources: 

COVID-19 mortality data: COVID-19 Dashboard by the Center for Systems Science and 
Engineering (CSSE) at Johns Hopkins University (JHU) (April 14th, 2020) 

GDP per capita at PPP, Imports as a percent of GDP, Urbanization rate, Percent of 
government expenditures of GDP, Hospital beds per 1000 people, Physicians per 1000 
people: World Bank database  

Population and population 80 years and above: United Nations, Department of Economic and 
Social Affairs, Population Division (2019). World Population Prospects, 2019, Online 
Edition. Rev. 1. 

Mortality from Influenza: WHO Causes of death database. 

Institutional quality indices: World Bank Governance Indicators. 

Mitigation policies, timing, and stringency: Oxford University's policy response tracker.  
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Table Appendix 

Dependent variable: Log COVID-19 deaths per capita 
      (1)   (2)   (3)   (4)   (5) 

Log flu deaths per capita 0.285*** 0.107 0.248* 0.297* 0.260 
   (0.048) (0.092) (0.101) (0.136) (0.177) 
Perecent above 80 14.541** 8.303 10.579** 34.584*** 21.193** 
   (5.277) (6.174) (3.155) (5.649) (6.662) 
Percent urban -1.409* -1.092 -0.676 0.097 -0.417 
   (0.682) (0.823) (0.420) (0.329) (0.731) 
Log GDP per capita 0.754*** 0.700* 1.184*** 0.968*** 0.912 
   (0.128) (0.337) (0.119) (0.154) (0.480) 
Imports to GDP -0.080 0.365 1.922** 1.373* 1.580 
    (0.365) (0.582) (0.580) (0.797) 
Voice and Accountability  0.694* 0.601*** 0.273* 0.311 
    (0.337) (0.127) (0.133) (0.280) 
Government Effectiveness  -0.117 -0.477 -0.818 -0.882 
    (0.623) (0.558) (0.607) (0.682) 
Rule of Law  0.593** 1.198*** 0.848* 0.707* 
    (0.192) (0.225) (0.370) (0.297) 
Regulatory Quality  -0.885** -1.208*** -0.720*** -0.525** 
    (0.326) (0.227) (0.104) (0.184) 
Political Stability  -0.512 -0.699 -0.331 -0.240 
    (0.321) (0.387) (0.257) (0.281) 
Control of Corruption  0.354 0.193 0.299 0.379 
    (0.377) (0.236) (0.290) (0.304) 
G to GDP  1.071 2.308  2.955 
  (3.268) (3.175)  (4.288) 
Beds per 1000 squared    -0.017*** -0.022*** 
      (0.004) (0.003) 
Doctors per 1000 

 
    0.073 

(0.092) 
Health expen. to GDP     0.037 

(0.136) 
Obs. 91 90 66 65 66 
R-squared 0.635 0.682 0.730 0.796 0.813 
Time Effects yes yes yes yes yes 
Geo position yes yes yes  yes yes 
COVID-19 Mitigation     yes 

      

Figure Appendix 
Added value plot of beds squared per capita on COVID-19 mortality rates  

Table Appendix, column (4), excluding Japan 
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COVID-19, fiscal stimulus, and 
credit ratings1
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The COVID-19 pandemic has rattled the global economy and has 
required governments to undertake massive fiscal stimulus to prevent 
the economic fallout of social distancing policies. In this paper, we 
compare the fiscal response of governments from around the world and 
its main determinants. We find sovereign credit ratings as one of the 
most critical factors determining their choice. First, the countries with 
one level worse rating announced 0.3 percentage points lower fiscal 
stimulus (as a percentage of their GDP). Second, these countries also 
delayed their fiscal stimulus by an average of 1.7 days. We identify 
22 most vulnerable countries, based on their rating and stringency, 
and find that a stimulus equal to 1 percent of their GDP adds up to 
USD 87 billion. In order to fight the pandemic, long term loans from 
multilateral institutions can help these stimulus starved economies.

1 We thank the editor Charles Wyplosz, one anonymous referee, and Viral Acharya for their valuable comments 
and feedback on the paper. This paper is preliminary.  We have used the most updated data on fiscal stimulus, 
which might get updated over time, and some results can change.  The views and opinions expressed in this 
paper are those of the authors and do not necessarily represent the views of CAFRAL or other affiliated 
institutions.

2 Research Associate, CAFRAL, Mumbai.
3 Assistant Professor, Indian School of Business, Hyderabad.
4 Research Director, CAFRAL, Mumbai.
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1 Introduction

The new decade has started with weak economic growth due to the COVID-19 pandemic.

The virus has hit advanced and emerging countries alike, and governments around the world

are scrambling for funds to prevent a breakdown of their health infrastructure and economy.

The enforced shutdown around the world is helping to contain the spread, but at substantial

economic costs.1

In this paper, we evaluate the fiscal response of governments2 around the world to

COVID-19. Our exercise is motivated by the different constraints faced by rich and poor

countries. These constraints determine their behavior. For instance, we find countries that

are constrained by credit ratings are unable to spend. In contrast, others such as Saudi

Arabia have already spent significant amounts, but may also face debt overhang problems

in the future. To allay these concerns, the International Monetary Fund (IMF) has recently

announced debt-relief to twenty-five member countries, most of them from the African con-

tinent, totaling about USD 500 billion (IMF [2020]).3 We provide our analysis around this

issue and identify countries that are under-spending due to macroeconomic concerns.4

We argue that credit rating downgrade is a critical macroeconomic concern faced by

countries at the border of the investment-grade rating category. The risk of credit rating

downgrade can have a significant negative impact on the capability of a country to raise

resources to fight COVID-19. For instance, Moody’s recently downgraded the sovereign

credit rating of South Africa on March 27, 2020.5 It was then followed by a similar downgrade

for four of its banks four days later. In its analysis, Moody’s cited high fiscal deficit in

1Health crises of the scale of epidemics and pandemics can have substantial costs. Noy et al. [2019] study
a pre-COVID-19 period and establish that the economic costs are particularly high in most of Africa, the
Indian Subcontinent, China, and Southeast Asia.

2Fornaro and Wolf [2020] evaluates the optimal fiscal policy response for the US to fight COVID-19.
3According to IMF, investors have already pulled out USD 83 billion from emerging markets since the

start of the crisis. The problem can be further exacerbated by rating downgrades or countries not spending
enough to protect their ratings. Nearly 80 countries have already requested help from the IMF.

4Elgin et al. [April 2020] construct a COVID-19 Economic Stimulus Index (CESI) index to summarize
the overall economic responses by governments around the world.

5Moody’s downgrade South Africa.
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the current financial year, possibly reaching 8.5 percent of GDP, as well as debt overhang

problems as a reason behind the downgrade. Such events of rating downgrade are associated

not only with an increase in credit spread (Cantor and Packer [1996]), but also a flight of

capital as many institutional investors are not allowed to invest in non-investment grade

securities (Becker and Milbourn [2011]). We explore if downgrade concerns are, therefore,

affecting countries’ responses to the current pandemic.6

To undertake this exercise, we prepare cross-sectional country-level data on credit ratings

and other COVID-19 related variables from OxCGRT (Oxford COVID-19 Government Re-

sponse Tracker). In our sample of 116 countries, only 67 have declared a stimulus till April

9, 2020. Even out of these 67, many countries have pledged minimal amounts. The average

stimulus stands at 2.9 percent of GDP, with a standard deviation of 4.2 percent.

So what determines the level of fiscal stimulus? To evaluate these factors, we regress total

fiscal stimulus against country-level exogenous variables, including a measure of economic

stringency7 during the pandemic, the sovereign bond rating, confirmed cases count, and

country-level controls. We find that both economic stringency and rating determine fiscal

spending, but not the number of confirmed COVID-19 cases. More stringent measures

constrain economic activity and cause severe disruptions. We find that one percent higher

stringency results in 0.11 percentage points higher fiscal spending. On the rating side, our

estimates suggest that a one-level upgrade in credit rating increases fiscal stimulus by 0.3

percentage points of GDP. This suggests that countries around the world are concerned

about the effect of fiscal stimulus on their credit ratings, which inhibits them from reacting

to the stringent measures they have imposed on the economy. Since the pandemic is an

exogenous event and countries have to allocate unanticipated funds to fight the economic

stringency, our results capture the risk associated with rating downgrade.

We also find that countries with credit-rating risk imposed harsher lockdowns much

6Economic stimulus required to fight COVID-19 can lead to a large fiscal deficit in the current year.
Balajee et al. [2020] estimate that it can go up to 8.8 percent of GDP for India.

7We compute the average level of stringency index from the index defined in OxCGRT.
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earlier and provided fiscal stimulus only much later. In other words, they delayed fiscal

stimulus in an environment where strict lockdown measures had made such stimulus all the

more necessary. Figure 4 shows these patterns graphically. Each sub-figure plots economic

stringency (blue) and fiscal stimulus (red) over time for a given country. Starting from

January 1, 2020, we see that the blue lines rise much earlier than the red ones. The gap

between the two is our measure of the delay in fiscal stimulus. An overview of the figures

shows that there is substantial heterogeneity in stimulus delay. This is confirmed by Figure

5, which plots the density of our primary delay variable. Most countries announced fiscal

stimulus only a few days after imposing a 50% level of stringency. Some countries at the

extreme waited more than 25 days after imposing a 50% stringency (like the Philippines),

while some announced fiscal stimulus even before imposing harsh containment (like the

United Kingdom). We formally test this proposition in a regression framework and find that

countries with a low credit-rating waited longer to announce their fiscal stimulus package.

Our results thus suggest that the vulnerable population in countries with low credit rat-

ings may face considerable economic hardship due to a lack of support from their government.

The fiscal response of governments in such countries is both small as well as delayed. Based

on our indicators (mean credit rating and mean stringency), we identify twenty-two countries

that are extremely vulnerable and might need external support to fight the crisis. In terms

of the policy, long-term loans from multilateral institutions such as the World Bank and

the International Monetary Fund (IMF) at low-interest rates will ensure that fiscal stimulus

will have minimum impact on government budget in the current fiscal year. If each of these

countries receives 1 percent of their GDP as loans, it will amount to a total of 87 billion

USD. Thus, an international emergency finance package can help bridge the funding gap for

these countries.

Our paper contributes to the broad literature on the importance of credit ratings. Sovereign

credit ratings contain information beyond observable macroeconomic indicators (Dell’Ariccia

et al. [2006] and Eichengreen and Mody [1998]). Sovereign credit rating downgrades result
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in a rise in sovereign risk premium, which spills over to private sector credit markets (Uribe

and Yue [2006], Almeida et al. [2017]). Credit rating downgrades thus have real economic

implications. In contrast, our study documents reduced spending by governments to prevent

potential rating downgrades. It has important policy implications as countries need large

funds to support the economy during COVID-19, but they are probably unable to do so

for fear of inviting a rating downgrade. More generally, our work also highlights the role of

global economic cooperation perspective during the pandemic. For instance, Bahaj and Reis

[2020] study the role of swap lines extended by the US Fed to other central banks.

In the next section, we describe our data. In section 3, we provide the impact of credit

ratings on fiscal stimulus and delay in stimulus announcement. In section 4, we provide the

list of most vulnerable countries and the quantum of support required to fight COVID-19.

Finally, section 5 concludes.

2 Data

We have used three primary sources of data for our analysis. First, we use crisis-related data

from the Oxford COVID-19 Government Response Tracker(OxCGRT) as of April 9, 2020

(Hale and Webster [2020]). It gives us country-wise statistics on COVID-19 related variables,

both health and economy. We use the information on the stringency index (normalized

between 0-100), which captures the level of containment of economic activities by a country.

An index of 0 corresponds to a business-as-usual scenario, while 100 corresponds to maximum

disruption. For instance, the United States has an index of 66 on April 9, 2020, while Italy

has 95, pointing to a higher disruption in Italy. We also use the information on fiscal stimulus

collected by OxCGRT, both on the level and timing of stimulus (as on April 9, 2020). Second,

we hand collect fiscal stimulus numbers from the IMF policy response tracker (as on April

16, 2020).8 To calculate the fiscal stimulus, we aggregate all the payments which increase

government expenditures in the current financial year. We exclude loan guarantees and tax

8IMF policy response tracker
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deferrals. Our methodology is similar to the one used by OECD Country Policy Tracker.9

The fiscal stimulus numbers in the IMF and OxCGRT datasets broadly match each other

(Figure 7).

The third set of data consists of most recent economic variables, like GDP and GDP per

capita, from the IMF. Most importantly, we collect data on the most recent sovereign bond

ratings from S&P, Moody’s, and Fitch rating agencies as on April 9, 2020. The sovereign

ratings capture the general macroeconomic health of a country.

3 Rating affects the fiscal response of countries

In this section, we study how credit ratings influence the level and timing of fiscal stimulus

announced by countries. We first describe our methodology and then present the results.

3.1 Size of a fiscal stimulus depends on credit ratings

To test whether the level of a fiscal stimulus depends on sovereign ratings, we regress the

government response - measured as government spending as a share of GDP - against a slew

of measures on a cross-section of countries. First is the severity of the crisis. We average daily

stringency index for each country between January 1 - April 9, 2020. The average measure,

therefore, takes into account the loss in economic output since January 1. It is a better

measure than using the daily index measure because it takes into account the aggregate

economic loss since the beginning of the year. We substitute for fiscal health by the distance

of sovereign bond ratings from the junk category. For instance, India has a Baa2 rating

from Fitch, which is two categories above junk (non-investment grade), so India receives a

distance score of two. The minimum distance from the junk rating is 0, and the maximum

is 10. We use the average distance from non-investment grade for the three rating agencies

9OECD Country Policy Tracker. OECD also uses the data from IMF Policy Response Tracker for fiscal
stimulus calculation.
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in our primary analysis.10 We finally estimate the following equation:

Stimulusi = β0 +β1 ∗Stringencyi +β2 ∗ log(COVID cases)i +β3 ∗Ratingi +Controlsi +εi (1)

where Stimulusi is the ratio of fiscal spending to GDP ratio for country i. The variable

Stimulusi is the sum of all stimulus packages announced by the country i till April 9, 2020.

The independent variables include Stringencyi, the mean stringency, and log(COVID cases)i,

the log of the number of confirmed cases in country i till April 9, 2020. The variables,

log(COVID cases)i and Stringencyi, can be correlated because the severity of COVID-19

spread influenced the level of economic shutdown measures announced by the government.

A country more impact by COVID-19 should spend more, and thus the expected sign on

the two coefficients, β1 and β2, should be positive. Finally, our primary variable of interest,

Ratingi, should have a positive coefficient. A country with a better credit rating is better

placed to undertake high government spending, as it can issue higher debt with less risk.

Before we discuss the results, it is essential to mention that the variable Stringencyi is

better defined compared to the total number of confirmed COVID cases. The total number

of COVID cases has been influenced by country-specific health policies and the availabil-

ity of testing kits. Hence, it is not uniformly measured across countries and suffers from

measurement error issues. In comparison, once announced, the economic stringency index is

more uniformly measured across countries.

Results : We present the raw correlation between Stringencyi and Stimulusi in Figure 1

through a binscatter. It shows that for every 10 percent increase in stringency, the stimulus

goes up by 2 percent of GDP. Similarly, we find that stimulus has a positive correlation with

mean ratings and log(COVID-19 cases), as shown in Figure 2 and 3 respectively.

We report the results from estimating the equation 3 in Table 2. In column (1), when we

10For some countries, rating information is only available from one or two agencies, in which case we take
the average over the available ratings.
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regress stimulus only on mean stringency, we find that the coefficient β1 = 0.19. It shows

that the correlation between stimulus and repression is positive and significant. A 10 percent

increase in mean stringency (roughly equal to one standard deviation) increases the fiscal

stimulus by 1.9 percent of GDP. Our results differ from Elgin et al. [April 2020] in that

they do not find stringency to be a statistically significant factor driving overall economic

response by a country. This is because they consider the correlation of stringency with an

index constructed from an array of economic measures and not just fiscal stimulus. Also,

they use the recently reported stringency index instead of a mean stringency index like us.

In column (2), we report the results when the stimulus is regressed only on Ratingi. Here

again, we find that countries with higher rating have a higher stimulus. We find that a

one-level decrease in a credit rating is also associated with a 0.47 percentage point decrease

in the stimulus. Similarly, in column (3), we find that stimulus is also higher in countries

with a high number of COVID-19 cases.

In columns (4), (5), and (6), we report results based on using two of the independent

variables together. When we include mean stringency and mean ratings as in column (4),

we find both have a positive and significant correlation with stimulus. Similarly, both mean

stringency and log of COVID-19 cases are positive and significant in column (5). In column

(7), when we include all three of these variables, only the coefficients on mean stringency

and mean ratings stay positive and significant. Finally, in column (8), we also include other

country-specific controls like GDP in our regression. Even in this case, we find that the

coefficient on mean stringency and mean credit rating stays positive and significant. In this

case, a one-level fall in mean ratings decreases the fiscal stimulus by 0.32 percentage points

of GDP. In column (9) we also include log(GDP per capita) in the regression. In this case

the coefficient on the mean ratings variable through positive is not significant. This could be

because log(GDP per capita) and mean ratings are highly correlated (correlation coefficient

= 0.8), which makes collinearity a possible concern.11 However, the two variables are jointly

11GDP per capita is an important fundamental variable determining sovereign credit rating. Hence, it is
not surprising that the two are highly correlated.
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significant. The hypothesis that both log(GDP per capita) and mean ratings are zero is

rejected with an F-statistic of 4.21 and has an associated p-value of 0.018. In general, our

results show that the mean ratings is one of the most significant factors that determine

the fiscal stimulus of a country. The stimulus also seems to be correlated with the mean

stringency of the country in most cases.

Robustness : We also test the robustness of the above results based on fiscal stimulus

data from the IMF. These results are reported in Table 3. The results on mean ratings are

robust to using alternate fiscal stimulus measures. We find sovereign credit rating is the most

important determinant of stimulus package (column (9)), even after the inclusion of log(GDP

per capita). In this case, the results are different from column (9) in Table 2 because the

IMF numbers are less dispersed for countries with low credit ratings. This change can be

noticed by comparing the binscatter in Figure 9 with Figure 2. The binscatter in Figure

9 has a better fit for the mean ratings closer to zero. Overall, the coefficient on Rating is

positive and significant in all the specifications in Table 3.

3.2 Credit ratings correlated with the delay between containment

and stimulus announcement

The fight against COVID-19 has involved both health and economic response at the same

time. However, countries have differed in their reaction horizon when it comes to these two

responses. As mentioned in the introduction, we plot the time series of raw daily stringency

measures and normalized fiscal stimulus package announced until given date t in Figure 4.

For most of the countries, the health response becomes more stringent before the stimulus

package is declared. For instance, India declared a 100 percent lockdown on March 24, 2020,

but the main stimulus package was announced on March 26, 2020. On the other hand, there

are some outlier countries like the UK whose economic response preceded the containment

announcement by 12 days.

Another way to look at it is to compute the difference in the number of days between
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the first day of threshold stringency and stimulus package. We compute this difference for

threshold stringency of 50, 60, and 70 percent and the day of the first stimulus package. The

density function for stimulus delay is shown in Figure 5. We find that the three distributions

overlap with each other as countries quickly increased the intensity of stringency measures

once the number of cases started rising quickly. The median delay between the date of 50

percent stringency and the date of the fiscal announcement is three days. However, there is a

large heterogeneity in the response of countries. It is also important to highlight that many

countries did not announce any fiscal measures and are thus not captured in this figure. Out

of 95 countries in our final sample, 29 did not declare any stimulus package. We report the

average rating and whether a country declared stimulus in Table 1. We find that out of 29

countries that did not declare any fiscal stimulus, 22 have a non-investment grade or junk

rating.

We now formally test whether the time gap between imposing containment measures

and the stimulus package is correlated with any country-specific parameters. We use the

following estimation equation based on the cross-section of countries that have announced a

non-zero stimulus:

Stimulus Delayi = β0+β1∗Stringency
Ti

i +β2∗log(COVID cases)Ti

i +β3∗Ratingi+Controlsi+εi

(2)

where, Stimulus Delayi is the number of days between the two announcements, threshold

containment, and first fiscal package by country i. The variable Stringency
TS

i corresponds to

the mean stringency level in country i on the day, Ti, first stimulus package was announced.

Each country has a different date Ti corresponding to the day of the first stimulus for country

i. We also control for the log number of cases on date Ti. Once again, our main variable

of interest is Ratingi, which captures whether countries with lower ratings delay their fiscal

response.
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A priory, we expect that countries should have a reason to delay their economic response

to the crisis. An early fiscal stimulus, relative to stringency, is a measure of an economy with

strong fundamentals that can support fiscal expenditure and vice-versa for a country with

weak fundamentals. It should be reflected through a negative coefficient on the mean credit

ratings in equation 3, i.e., β3 should be negative. We present the binscatter for these two

variables in Figure 6 and find a negative correlation. The coefficient on mean stringency,

Stringency
Ti

i , is more difficult to predict. The countries can announce mild stringency mea-

sures very early to contain the spread of the virus. This can reduce the expected number of

days of total containment and, thus, total economic cost. In this case, the mean stringency

on Ti can allow for a delay in the fiscal stimulus. Conversely, a high level of Stringency
Ti

i

can also push governments to announce fiscal stimulus sooner rather than later. Finally, we

also include the log(COVID Cases) on the day of the stimulus announcement. If more days

have passed between the threshold stringency and fiscal stimulus, it means more days for

the COVID-19 to spread. So, these two can be positively correlated, without signifying any

direction of causation.

We present the OLS estimates for this regression in Table 4. In column (1), we report

the results by regressing the delay in stimulus on mean stringency on the day of the fiscal

announcement. We find that there is a positive correlation between the two. A 10 percent

higher mean stringency leads to a delay of 7.9 days in the stimulus. We also find that a

higher sovereign rating reduces the delay in the fiscal stimulus (column (2)). A country with

five steps away from junk bond status announces stimulus 6.5 days in advance, relative to

a country with a rating of 0. We also find that coefficient on log(COVID cases)Ti

i is also

positive and significant in column (3). In the rest of the columns (4)-(7), we use different

combinations of these variables, and we find that the coefficient on the mean rating is always

negative and significant. In column (7), which includes all the independent variables, we

find every single step of rating is associated with 1.7 days of delay. The coefficient on the

mean rating in column (7) is also more negative than the one reported in column (1). The

142
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 1
32

-1
64



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

results are similar when we include log(GDP) in the regression, as reported in column (8).12

We also find that these results are robust for other threshold levels of stringency, 60 or

70 percent. It is not surprising since the densities in Figure 5 overlap with each other as

most countries went from an almost negligible level to a very high level of stringency in one

step. The results for mean rating hold for a battery of other definitions for mean stringency

and number of COVID-19 cases. Overall, these results suggest that sovereign ratings are an

important ingredient in determining the timing of fiscal stimulus. Furthermore, these results

do not even account for countries, which did not declare any stimulus until now despite

imposing strong stringency measures. The results will look starker once these countries

announce some level of stimulus in the future. In the next section, we discuss the countries

that are most vulnerable to COVID-19 due to their inability to respond to the crisis using

fiscal measures.

4 Vulnerable countries

Our arguments have shown so far that countries with low credit ratings are stuck in a

ratings-COVID-19 crisis trap. Based on the results from the previous section, we now identify

countries that are vulnerable based on two characteristics - mean stringency and mean credit

rating. The countries with above-median stringency and below-median credit rating are those

that need immediate assistance. There are twenty-two such countries, ranging from South

Africa with a mean stringency of 20 to Burkina Faso, which has a mean stringency of 49

as of April 9, 2020. The fiscal stimulus in these countries has been low, ranging from zero

(Burkina Faso, Russia, Costa Rica, Iraq, Lebanon, Venezuela, Vietnam, and Ecuador) to the

highest among these countries at 4.7 percent of GDP (Peru). Portugal is also included in

the list, although its ability to access Euro bonds makes it less susceptible. Indeed, Portugal

has spent 4.4 percent of GDP by the end of our sample period and does not need immediate

12We cannot use the IMF policy response tracker to construct a measure of stimulus delay because the
IMF does not report fiscal stimulus announcement dates for all countries.
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assistance.

The full list of countries and their characteristics is provided in Table 5. We calculate the

financial support needed by these countries under three different scenarios. The columns (9),

(10) and (11) give the difference (USD billion) between threshold stimulus package (1, 2, and

5 percent of GDP) and the announced fiscal stimulus (percent of GDP) by a country until

April 9, 2020. The numbers are zero if a country has already announced its stimulus above

the threshold level. Based on our calculations, these countries need USD 36 billion support

in the 1 percent stimulus scenario, while the number jumps to USD 98 and 342 billion for 2

and 5 percent stimulus scenario. If one excludes India and Russia, the loans needed for a 5

percent stimulus support drop from USD 342 billion to 138 billion. These numbers are well

below the USD 1 trillion lending capacity that the IMF is willing to deploy if needed (IMF

[2020]).

As a note of caution, our sample only includes those countries that have imposed higher

stringency and provided low fiscal stimulus. So it excludes those vulnerable countries that

might not have imposed any stringency measures fearing economic slowdown. Thus, a

broader international support policy will also need to cover the countries that are not present

in Table 5.

5 Conclusions

The COVID-19 pandemic continues to impact the global economy. In this backdrop, fiscal

stimulus is seen as one of the few ways to support the economies during a period of forced

containment. Fiscal spending at this juncture can support households that have lost their

jobs and firms that are in dire need of liquidity. However, as documented above, not all

countries have been able to raise the necessary funding required for support. Using a cross-

section of countries, we find that fear of rating downgrades is an important driver that

is preventing countries from providing stimulus. Furthermore, countries that face tighter
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funding conditions due to fear of credit downgrades also delay the fiscal stimulus. This delay

can happen despite the stringent containment measures imposed by them to contain the

virus, thereby exposing their most vulnerable population to economic hardships in addition

to the health risks. Finally, we provide the list of most vulnerable countries based on our

measures and the funding support needed to help them provide a threshold level stimulus.
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Figures

Figure 1: Fiscal Stimulus vs. Mean Stringency Index
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Notes: The figure shows the cross-country binscatter between fiscal stimulus and mean
stringency index. It corresponds to the regression specification (1) in Table 2. Fiscal stimulus
is the sum of stimulus announced (as a percentage of 2019 GDP), while mean stringency
index is the simple average of the daily stringency index until April 9, 2020. (Data Source:
OxCGRT)
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Figure 2: Fiscal Stimulus (OxCGRT) vs. Mean Rating
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Notes: The figure shows the cross-country binscatter between fiscal stimulus and mean
rating. It corresponds to the regression specification (2) in Table 2. Fiscal stimulus is the
sum of stimulus announced (as a percentage of 2019 GDP) until April 9, 2020. The mean
rating is the simple average of the sovereign credit ratings from Moody’s, Fitch and S&P as
on April 9, 2020. (Data Source: OxCGRT and countryeconomy.com)
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Figure 3: Fiscal Stimulus vs. Log(COVID-19 cases)
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Notes: The figure shows the cross-country binscatter between fiscal stimulus and
Log(COVID-19 cases). It corresponds to the regression specification (3) in Table 2. Fis-
cal stimulus is the sum of stimulus announced (as a percentage of 2019 GDP) until April 9,
2020. The Log(COVID-19 cases) is based on the reported COVID-19 cases as on April 9,
2020. (Data Source: OxCGRT)
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Figure 4: Time Series of Fiscal Stimulus vs. Stringency Measures
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Notes: Each panel in the figure shows the time series evolution of stringency (blue) and fiscal
stimulus (red) for countries that have declared fiscal stimulus between January 1-April 9,
2020. The stringency measure is the raw index, while the fiscal stimulus is the percentage
of stimulus declared by the country until date t. For most countries, fiscal measures only
follow after the announcement of strong stringency measures. (Data Source: OxCGRT)
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Figure 5: Number of Days Between Stimulus Declaration and Threshold Stringency Level
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Notes: The figure shows the kernel density plot of delay (number of days) in the announce-
ment of the first fiscal stimulus after the imposition of a threshold stringency level. Each line
corresponds to a different threshold stringency level, 50, 60, and 70 percent. (Data Source:
OxCGRT)
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Figure 6: Delay in Stimulus Declaration vs. Mean Ratings
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Notes: The figure shows the cross-country binscatter between stimulus delay (number of
days) and mean ratings. It corresponds to the regression specification (2) in Table 4. Stim-
ulus delay is calculated w.r.t. to a threshold stringency level of 50. The mean ratings is the
simple average of the sovereign credit ratings from Moody’s, Fitch and S&P as on April 9,
2020. (Data Source: OxCGRT and countryeconomy.com)

155
C

ov
id

 E
co

no
m

ic
s 1

1,
 2

9 
A

pr
il 

20
20

: 1
32

-1
64



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 7: Comparison of OxCGRT and IMF Stimulus Data - Full Sample
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Lebanon Madagascar
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MongoliaMoroccoMyanmar
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New Zealand

Nigeria

Norway

Pakistan
Panama

Papua New Guinea

Paraguay

Peru
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Poland

Portugal
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Russia
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Saudi Arabia

Serbia
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Slovak Republic
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Notes: This figure compares the fiscal stimulus (%) from the IMF and OxCGRT for all
countries in our sample. We could not calculate the fiscal stimulus for some countries using
the IMF policy response tracker data. There was no data available for Venezuela. The
information was unclear to calculate a precise number for fiscal stimulus in the case of
the following countries: Guatemala, Croatia, Uzbekistan, El Salvador, Qatar, Kazakhstan,
Spain, Hungary, Jordan, Greece, and Seychelles. (Source: IMF policy response tracker as
on April 16, 2020 and OxCGRT as on April 9, 2020)
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Tables

Table 1: Average Rating and Fiscal Stimulus Status (By country)

Mean Fiscal Stimulus

Rating Yes No NA
< 1 26 22 3
1-2 9 2 0
2-3 4 1 0
3-4 2 1 1
4-5 3 0 0
5-6 5 1 1
6-7 3 0 0
7-8 4 0 0
8-9 2 1 1
9-10 11 1 0
Total 69 29 6

Notes: The mean rating is the simple average of the sovereign credit ratings from Moody’s,
Fitch and S&P as on April 9, 2020. The mean rating is the distance from non-investment
grade rating and varies from 0-10, where 0 is equal to junk and 10 is equal to prime status.
(Data Source: OxCGRT and countryeconomy.com)
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Table 2: Fiscal Stimulus (OxCGRT) vs. Mean Ratings

Stimulus (percent of GDP)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Stringency 0.199*** 0.138** 0.099 0.109 0.110 0.116
(0.050) (0.054) (0.074) (0.074) (0.074) (0.074)

Rating 0.474*** 0.379*** 0.286* 0.307** 0.326** 0.213
(0.132) (0.139) (0.153) (0.147) (0.148) (0.188)

log(COVID-19 Cases) 0.691*** 0.494** 0.436*** 0.214 0.451* 0.343
(0.129) (0.215) (0.149) (0.235) (0.247) (0.262)

log(GDP) -0.463 -0.374
(0.369) (0.378)

log(GDP per capita) 0.456
(0.351)

Constant -1.130 1.833*** -3.223*** -0.825 -3.476*** -1.641 -1.963* 1.366 -2.702
(0.847) (0.416) (0.924) (0.916) (0.948) (1.040) (1.077) (3.199) (4.516)

Observations 94 87 94 87 94 87 87 87 87
R-squared 0.153 0.159 0.187 0.218 0.210 0.198 0.225 0.236 0.242

Notes: The table is based on regression equation 2. All variables are based on the infor-
mation released until April 9, 2020. The stimulus (percent of GDP) is the percentage of
aggregate fiscal stimulus to GDP declared by country i to fight COVID-19. The Stringency
is the cumulative level of economic repression in country i as measured until April 9, while
log(COVID-19 Cases) is based on the number of reported cases until April 9. The Rating is
the average distance from junk rating. We report robust standard errors. ***- p < 0.01, **-
p < 0.05 and * - p < 0.1

Estimation equation:

Stimulusi = β0 + β1 ∗ Stringencyi + β2 ∗ log(COVID cases)i + β3 ∗ Ratingi + Controlsi + εi
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Table 3: Fiscal Stimulus (IMF) vs. Mean Ratings

Stimulus (percent of GDP)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Stringency 0.156** 0.034 -0.052 -0.012 -0.015 -0.015
(0.062) (0.053) (0.078) (0.071) (0.070) (0.069)

Rating 0.726*** 0.710*** 0.621*** 0.618*** 0.588*** 0.375**
(0.104) (0.105) (0.117) (0.122) (0.114) (0.163)

log(COVID-19 Cases) 0.842*** 0.932*** 0.273 0.296 -0.006 -0.177
(0.184) (0.240) (0.211) (0.270) (0.427) (0.462)

log(GDP) 0.564 0.675
(0.534) (0.547)

log(GDP per capita) 0.826*
(0.489)

Constant -0.477 1.348*** -4.934*** 0.567 -4.554*** -1.067 -0.986 -4.655 -11.171*
(1.391) (0.317) (1.712) (1.206) (1.713) (1.922) (1.890) (3.840) (6.469)

Observations 83 76 83 76 83 76 76 76 76
R-squared 0.071 0.426 0.270 0.429 0.274 0.442 0.442 0.460 0.479

Notes: The table is based on regression equation below. All variables are based on the
information released until April 19, 2020. The stimulus (percent of GDP) is the percentage
of aggregate fiscal stimulus to GDP declared by country i to fight COVID-19. The Stringency
is the cumulative level of economic repression in country i as measured until April 19, while
log(COVID-19 Cases) is based on the number of reported cases until April 19. The Rating
is the average distance from junk rating. We report robust standard errors. ***- p < 0.01,
**- p < 0.05 and * - p < 0.1

Estimation equation:

Stimulusi = β0 + β1 ∗ Stringencyi + β2 ∗ log(COVID cases)i + β3 ∗ Ratingi + Controlsi + εi
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Table 4: Delay in Stimulus vs. Mean Rating

Stimulus delay (number of days)

(1) (2) (3) (4) (5) (6) (7) (8)

Stringency
T

0.79*** 0.74*** 0.76*** 0.62** 0.57*
(0.25) (0.25) (0.28) (0.31) (0.29)

Rating -1.30*** -1.09** -2.07*** -1.68*** -1.32**
(0.44) (0.47) (0.45) (0.56) (0.60)

log(COVID-19 Cases)T 1.10** 2.49*** 0.55 1.79** 2.45***
(0.44) (0.55) (0.43) (0.70) (0.72)

log(GDP) -2.34***
(0.76)

Observations 78 72 78 72 72 78 72 72
R-squared 0.282 0.132 0.046 0.382 0.304 0.293 0.465 0.516

Notes: The table is based on regression equation 3. All variables are based on the information
released until April 9, 2020 by OxCGRT. Stimulus delay (number of days) is calculated w.r.t.
to a threshold stringency level of 50 and first announcement of fiscal stimulus on date T .

The Stringency
T

is the average of economic stringency and Log(COVID-19 Cases)T are the
number of reported cases in country i on date T . The Rating is the average distance from
junk rating. We report robust standard errors. ***- p < 0.01, **- p < 0.05 and * - p < 0.1

Estimation Equation:

Stimulus Delayi = β0+β1∗Stringency
Ti

i +β2∗log(COVID cases)Ti

i +β3∗Ratingi+Controlsi+εi
(3)
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Table 5: List of Vulnerable Countries

Country Confirmed Stringency Nominal GDP GDP per Fiscal Stimulus Moody’s S&P Fitch Stimulus (USD bn)

Cases (USD bn) (2019) Capita (USD) (2019) (% of GDP) Ratings Ratings Ratings (1%) (2%) (5%)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

BURKINA FASO 2824 49 15 718 0.0 NA B NA 0 0 1
COSTA RICA 6114 23 61 12015 0.0 B2 B+ B+ 1 1 3
ECUADOR 45054 23 108 6249 0.0 Caa3 CCC- CC 1 2 5
EGYPT 14909 20 302 3047 0.4 B2 B B+ 2 5 14
HUNGARY 9089 25 170 17463 2.3 Baa3 BBB BBB 0 0 5
INDIA 54155 37 2936 2172 0.9 Baa2 BBB- BBB- 4 33 122
INDONESIA 29704 33 1112 4164 2.2 Baa2 BBB BBB 0 0 31
IRAQ 10267 31 224 5738 0.0 NA NA B- 2 4 11
JORDAN 4841 23 44 4387 1.6 B1 B+ BB- 0 0 2
LEBANON 7610 28 59 9655 0.0 Ca SD RD 1 1 3
PAKISTAN 31650 29 284 1388 2.7 B3 B- B- 0 0 7
PANAMA 16566 23 69 16245 2.0 Baa1 BBB+ BBB 0 0 2
PERU 26083 23 229 7047 4.7 A3 BBB+ BBB+ 0 0 1
PORTUGAL 133431 23 236 23031 4.4 Baa3 BBB BBB 0 0 1
ROMANIA 17028 22 244 12483 2.0 Baa3 BBB- BBB- 0 0 7
RUSSIA 55405 25 1638 11163 0.0 Baa3 BBB- BBB 16 33 82
SOUTH AFRICA 17772 20 359 6100 0.0 Ba1 BB BB 3 7 18
SRI LANKA 2593 35 87 3947 0.6 B2 B B 0 1 4
TUNISIA 4686 22 39 3287 2.1 B2 NR B+ 0 0 1
UKRAINE 16063 24 150 3592 0.0 Caa1 B B 1 3 8
VENEZUELA 2495 21 70 2548 0.0 C B- WD 1 1 4
VIETNAM 4739 42 262 2740 0.0 NA NA BB 3 5 13
Total 36 98 342

Notes: The vulnerable country list is based on mean stringency index ≥ 20.1 (cross-country median), and mean credit rating ≤
5. We drop all countries whose stimulus already exceed 5 percent of GDP as on April 9, 2020. The columns (9), (10) and (11)
give the difference (USD bn value) between threshold stimulus package (1, 2, and 5 percent of GDP) and the announced fiscal
stimulus (percent of GDP) by a country until April 9, 2020 according to OxCGRT. If this difference is negative, we report it as
zero.
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Table 6: Data Sources

Variable Source
Daily Stringency Index Oxford COVID-19 Government Response Tracker (OxCGRT)
Daily confirmed cases Oxford COVID-19 Government Response Tracker (OxCGRT)
Daily fiscal measures Oxford COVID-19 Government Response Tracker (OxCGRT)
Fiscal Measures IMF Policy Response Tracker

Sovereign credit rating countryeconomy.com & tradingeconomics.com

Nominal GDP (2019) IMF
GDP per capita (2019) IMF

Notes: This table lists the sources of data used in this paper.
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Appendix

Figure 8: Difference between IMF and OxCGRT Fiscal Stimulus - Full Sample
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Notes: This figure reports the histogram of the difference between % Fiscal stimulus (IMF)
and % Fiscal Stimulus (OxCGRT). Many of the countries with positive value of the difference
corresponds to those which have declared additional stimulus after April 9, 2020 (our original
sample end period). There are a few countries with significant discrepancies, which arises for
two reasons. First, in OxCGRT, some of the loan guarantees were counted as stimulus (for
instance, Bulgaria and China), which we exclude while aggregating the numbers from the
IMF. Second, some countries have announced additional fiscal stimulus since our calculations
based on OxCGRT data on April 9, 2020. (Source: IMF policy response tracker as on April
16, 2020 and OxCGRT as on April 9, 2020)
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Figure 9: Fiscal Stimulus (IMF) vs. Mean Rating
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Notes: The figure shows the cross-country binscatter between fiscal stimulus and mean
rating. It corresponds to the regression specification (2) in Table 3. Fiscal stimulus is the
sum of stimulus announced (as a percentage of 2019 GDP) until April 16, 2020 (IMF data).
The mean rating is the simple average of the sovereign credit ratings from Moody’s, Fitch
and S&P as on April 16, 2020. (Data Source: IMF and countryeconomy.com)
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