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A note on long-run persistence 
of public health outcomes in 
pandemics1

Peter Zhixian Lin2 and Christopher M. Meissner3

Date submitted: 30 April 2020; Date accepted: 1 May 2020

Covid-19 is the single largest threat to global public health since 
the Spanish Influenza pandemic of 1918-20. Was the world better 
prepared in 2020 than it was in 1918? After a century of public 
health and basic science research, pandemic response and mortality 
outcomes should be better than in 1918-20. We ask whether historical 
mortality from pandemics has any predictive content for mortality in 
the ongoing Covid-19 pandemic. We find a strong persistence in public 
health performance in the early days of the Covid-19 pandemic. Places 
that performed poorly in terms of mortality in 1918 were more likely 
to have higher mortality today. This is true across countries and 
across a sample of US cities. Experience with SARS is associated with 
lower mortality today. Distrust of expert advice, lack of cooperation 
at many levels, over-confidence, and health care supply shortages 
have likely promoted higher mortality today as in the past. 

1 We thank Haoze Li and Jingxuan Ma for helpful research assistance. Guido Alfani, Matthias Blum, Gregori 
Galofré Vilà, and Alan M. Taylor provided helpful comments.

2 Doctoral Candidate, University of California, Davis.
3 Professor of Economics, University of California, Davis.
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1. Introduction 
 

 The Covid-19 pandemic is the single largest threat to global public health and the 
global economy since the Spanish Influenza pandemic of 1918-1920.  Was the world better 
prepared in 2020 than it was in 1918-20? It might be expected that in the intervening 100 
years societies would have made great progress in predicting, containing, mitigating and 
managing pandemics (Morens and Fauci, 2007). However, public health specialists, even 
prior to 2020, were cautious, citing the threats arising from “hubris, isolationism and 
distrust” (Parmet and Rothstein, 2018).  

The most recent global public health scares such as SARS, MERS, Ebola, and H1N1 
influenza in 2009 were largely successfully contained without extraordinary levels of excess 
mortality at the global level. This track record suggests high preparedness and ability to 
manage pandemics. On the other hand, society has changed in the last 100 years and even in 
the last decade since the 2009 H1N1 pandemic.  

Geographic mobility has increased dramatically over time and significantly so with 
respect to the years 1918-1920. International inter-connections have continued to grow 
even since 2002, but international cooperation is waning as exemplified by recent US policy. 
Modern methods of communication like social media, which have emerged in the last decade, 
complicate the search for accurate content and often create confusion. Distrust of expert 
opinion has also heightened in the last decade. In many western societies, including the US, 
experts have often been replaced with political appointees and civil servants have been 
granted minimal leeway. Moreover, health infrastructure and accessibility in many 
countries, even developed and advanced economies, was widely predicted to be incapable of 
meeting surging demands induced by a pandemic. Such bottlenecks can raise cumulative 
mortality when health care provides viable means of treatment. 

 In this regard, the public health response to the Covid-19 pandemic represents a 
significant test of whether modern public health systems can do better than they have done 
historically. Evidently, SARS-CoV-2 and the 1918 H1N1 influenza have different etiologies 
and epidemiology. Nevertheless, the two pandemics seem to be roughly similar in the 
magnitude of their case fatality ratios. An estimate of the case fatality rate (CFR) for Covid-
19 is 1.34% while the CFR for the 1918-20 influenza has been estimated to be ≥2.5% (Verity 
et al. 2020 and Short et. al, 2018).1  

Given these numbers, and modern levels of knowledge and know how, one might 
strongly expect better performance today. Given the estimated fatality rates, most would 
predict lower mortality at this point in the pandemic than in 1918-20. After all, humanity has 
a century of public health research and practice, along with experience gained from SARS, 
                                                           
1 Case fatality ratios for the 1957 and 1968 influenza pandemics were roughly 0.27 and 0.15 (Centers for 
Disease Control and Prevention, 2007). 
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MERS and Ebola. Contingency plans have been formulated at the behest of the WHO and 
through national initiatives. Non-pharmaceutical interventions designed to lower peak 
mortality have been investigated and shown to be effective (Bootsma and Ferguson, 2007; 
Hatchett et. al, 2007; Markel et. al, 2007). 

Recent data make us less sanguine. Figure 1 illustrates that many countries, especially 
advanced western countries, have had a difficult time in keeping mortality rates below the 
frontier defined by US mortality rates from flu and pneumonia in 1918 at similar stages in 
the pandemic. Similarly, Figure 2 shows a number of US states also witnessed mortality rates 
per 100,000 population above those witnessed in 1918 at a similar stage. These statistics 
give us pause to re-consider the persistence of pandemic mortality.  

We emphasize that our goal in this paper is not to assess the level of mortality in one 
pandemic versus the other. There are obvious problems comparing distinct diseases and 
many data measurement issues. Neither do we wish to argue that Covid-19 will be worse 
than 1918-20. Instead, we compare relative outcomes across time. We ask whether historical 
public health performance has any predictive content for public health performance in a 
recent pandemic. We find that historical experience does help predict recent experience. 

Our main findings correlate population mortality rates for Covid-19 today with 
mortality rates from influenza and pneumonia in the 1918-20 pandemic and with SARS in 
2002-03. We do so in a broad sample of countries and for a large sample of US cities.  

We find a strong persistence in public health performance in the early days of the 
Covid-19 pandemic. Places that performed poorly in terms of mortality during the “Spanish 
flu” were more likely to have higher mortality today. This is true across countries and across 
a sample of US cities.  

On the other hand, there has been some recent success consistent with the possibility 
of learning over time. Countries that were more strongly affected by SARS in 2002-03 are 
likely to have lower mortality rates today, thus far, from Covid-19. These places are mainly 
in East Asia and have a recent memory of a potentially highly lethal pandemic. As we detail 
in the discussion, these successes (and failures) when compared to history depend upon a 
number of deeper social and political determinants. In short “mis-trust, isolationism and 
hubris” matter. These may not be persistent but, whether by coincidence or not, they are 
arguably present now in the case of the many nations, especially in many Western nations. 

 

2. Methods 
 

2.1 Data Collection 

We collect data on country–level population mortality from influenza in 1918-20 and 
from Covid-19. Our baseline sample covers 22 countries. The sample is determined by 
availability of estimated mortality rates from 1918-20 influenza, other control variables, and 
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whether a country had established a first death case or confirmed case for Covid-19. 
Therefore, our sample for cross-country comparison covers those countries subjected to 
Covid-19 relatively early on.  

Data on total deaths from Covid-19 are expressed in numbers per 100,000 (CSSE 
Johns Hopkins University ,2020). Data on mortality in the 1918-20 influenza pandemic are 
also expressed in numbers per 100,000 population (Johnson and Mueller, 2002). These latter 
figures refer to total mortality from influenza between 1918 and 1920. It should be noted 
that these are not always deaths from influenza and pneumonia nor are they excess deaths 
from all causes. Variable quality of underlying official statistics is our key constraint. We 
added several data points for the 1918 pandemic from secondary sources including 
Singapore, Hong Kong and Korea.  Deaths and confirmed cases of Covid-19 were last updated 
for US cities on April 25, 2020 and on April 17, 2020 for our country-data.  Our data begin on 
January 21, 2020. The inter-quartile range of mortality in 1918-20 is 430-710 deaths per 
100,000 population with a median of 610 and a mean value of 649. This compares to the 
interquartile range (as of 17 April, 2020) for reported Covid-19 deaths of 0.39 to 15.44 per 
100,000 and a median of 5.01.  

We supplement the country mortality data with population mortality rates from SARS 
in 2002-03, GDP per capita in 2018, population density in 2019, some measures of cultural 
differences such as an index of individualism in a country, and a dummy variable for a 
tradition of Confucianism. Places coded as Confucianist include mainland China, Taiwan, 
Hong Kong, Singapore, Japan and South Korea. 

We also explore a historical data base of 46 US cities (Collins et. al, 1930). Influenza 
became a ‘reportable’ in September 1918. Prior to this detailed only exist for a small handful 
of states and cities. The total population in these cities is equal to 20.4 million or about 18% 
of US population. Data cover all of the largest cities in the US.  

The mortality from the 1918-1920 influenza pandemic in these cities is expressed as 
monthly or weekly excess mortality per 100,000 population of 1920. We use weekly data for 
the period 10 September 1918 to 13 November 1918, covering the first six weeks of the 
1918-20 pandemic for US cities. The excess mortality rates were the differences between the 
actual mortality rates and median mortality rates from influenza and pneumonia in previous 
non-epidemic years in those cities. We refer to deaths from influenza and pneumonia since 
diagnoses were often inexact at the time with the influenza virus often causing apparent 
death from pneumonia. The excess mortality rate from influenza and pneumonia serves as a 
good measure of the severity of the 1918 pandemic. To make data even more comparable to 
our data from Covid-19, we convert the weekly excess deaths to daily observations by linear 
interpolation within the week and calculated daily cumulative excess deaths since the first 
week of September, 1918.  

We match the cities with continuous historical data to modern city or county-level 
data. One issue associated with the long-run city-level comparison is that deaths and 
confirmed cases of Covid-19 are reported mostly at the county-level. While Covid-19 data 
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are separately reported for some cities in our sample (New York City, St. Louis, Richmond, 
etc.) most data is reported at the county level. For cities in the historical sample without 
separately reported Covid-19 data at the city-level, we use data from today for the 
corresponding counties where the cities are located in. For example, we pair the city of 
Detroit with Wayne County. 

We set a threshold level of mortality at the city level of 0.5 per 100,000 for each 
pandemic. Event time and observations begin as per this threshold mortality rate. This 
threshold was chosen since this is the lowest recorded threshold for excess deaths from 
influenza and pneumonia we have available in the historical city-level data in 1918-20. 

2.2 Data Analysis 

Our first test finds significant persistence of public health performance across 
countries. In Figure 3, we plot the mortality rates from influenza 1918-20 against the average 
daily growth rates of the total reported deaths from Covid-19 in the first five weeks after 
each country reported their first death from Covid-19. We condition only on mortality 1918-
20 finding a positive and statistically significant correlation (robust t-statistic = 2.74, 
adjusted R2 = 0.21)  

The scatter plot reveals that some countries performing poorly in terms of mortality 
in the 1918 pandemic, such as Spain and Italy, also experienced fast mortality growth in the 
recent Covid-19 pandemic. However, the persistence between 1918 influenza and current 
Covid-19 pandemic might not be a universal phenomenon for all countries. We note that 
some places such as Japan, South Korea, and Taiwan, fall well below the regression line, 
suggesting these countries are performing much better than what their 1918 performance 
predicted. 

We carry out more formal regression analysis by controlling for several country-level 
economic, demographic, and cultural characteristics. Besides the country-level mortality in 
the 1918-20 pandemic, we also include these countries’ mortality during the more 2002-03 
SARS pandemic. Our baseline result is reported in column (3) of Table 1.  

Mortality rates in 1918-20 are positively associated with the growth rates of reported 
deaths from Covid-19 in the first five weeks (point estimate: 0.166, p-value: 0.029, 95% C.I. 
0.02 to 0.031). We also find that the mortality rate from SARS is negatively correlated with 
growth rates of reported deaths of Covid-19 (point estimate: -0.162, p-value: 0.003, 95% C.I. 
-0.255 to -0.068). Similar results on persistence emerge (columns 3-6 of Table 1) when we 
switch the dependent variable to be the growth of confirmed cases of Covid-19 in the six 
weeks after the 10th reported confirm case.  

All of these findings suggest that, even after conditioning on a number of observable 
characteristics, countries performing poorly in the 1918-20 pandemic tended to fail to 
control mortality growth of Covid-19 in the first months of the outbreak. On the other hand. 
There is some evidence of learning. The negative correlation between SARS and Covid-19 
performance reveals that the countries hit harder by the more recent epidemic have been 
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more successful in slowing down the development of Covid-19 in the first several weeks and 
months. This is suggestive evidence that countries learned from their more recent 
experience. 

Next, we examine the persistence of public health performance in a group of large U.S. 
cities. We compare the early trajectories of population mortality rates in the 1918 influenza 
and the contemporary Covid-19 pandemic. Data are for 46 cities for which we have high 
frequency data in 1918.  

In Figure 4, we plot the trajectory of the mortality rate (excess deaths per 100,000 
population) from influenza and pneumonia and Covid-19 over the days after total deaths 
crossed the 0.5 per 100,000 people in those cities. 2 The city-by-city comparison of historical 
and contemporary mortality trajectories reveals high similarity of the two epidemics in most 
cities, particular in the early phase.  

Regression results indicate that Covid-19 deaths are positively correlated with total 
excess deaths from 1918 influenza (point estimate: 0.341, p-value: 0.000, 95% C.I.: 0.193-
0.488). Baseline results are presented in column (2) of Table 2. Regressions control for city 
fixed effects, event time and the square of event time.   

We also compare the growth of total deaths from the 1918 flu and total deaths from 
Covid-19 in the early weeks of the latter pandemic. In Figure 5, we plot the average daily 
growth rate of total deaths during the two epidemics in the first three weeks after mortality 
reached 0.5 per 100,000 population. The positive correlation suggests that the cities 
experiencing faster mortality growth in 1918 tend to experience the same issue in the early 
phase of Covid-19. Regressions are reported in Table 3. We find that conditional on 
geographic location and contemporary population density, this positive correlation still 
holds significantly in the first two, three, and four weeks after mortality rates reached the 
given threshold. 

 

3. Discussion 

What factors inhibit prompt response and success in the midst of a pandemic? Let us 
assume that they include “distrust, isolationism and hubris” (Parmet and Rothstein, 2018).  
In our discussion it will become clear that all of these factors mattered for performance in 
both 1918 and in 2020. These factors seem to be correlated over time across countries. It is 
not clear however whether these factors are recurrent features of societies which have been 
unfortunately timed with the outbreak of a new infectious disease like Covid-19 or whether 
these factors indeed persist over time.  

                                                           
2 Excess deaths rates serve as good measurement of the severity of the 1918 pandemic across cities with 
potentially different seasonal influenza patterns. The threshold of 0.5/100,000 is chosen to attain a 
comparable starting mortality rates for two epidemics across cities. Most cities in our sample reached this 
threshold early in both epidemics. Our results are robust to other alternative thresholds such as 1/100,000.  
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Whatever the case may be, history is surely not destiny nor does history repeat itself. 
We do not want to suggest either. The correlations we highlight in this paper emphasize that 
if public health objectives are to be met, societies must substitute innovative efforts to 
overcome adversity when other social and political forces such as “distrust, isolationism and 
hubris” handicap public health responses. 

Still, historical experience has seemingly affected the path of mortality in the Covid-
19 pandemic. First, in a positive sense. Experience with SARS is likely to have promoted 
societal learning and reaction.  Meanwhile, where the mortality of the 1918 influenza was 
high, mortality is likely to be high today. Why? As we discuss below, local public health 
“traditions” may be historically persistent, but the timing of Covid-19 and the flu of 1918 
have been somewhat unfortunate as well. 

3.1 SARS and Recent History 

East Asian nations, the places most affected by SARS in 2002-03 have been more likely 
to act quickly to mitigate spread and to have lower mortality from Covid-19 thus far. The 
searing lessons of SARS, along with particular national characteristics, appear to have 
positively influenced pandemic preparedness. The key national characteristics for success in 
battling a pandemic -- trust, cooperation, and a lack of hubristic over-confidence --- are 
present in these nations and they have provided a favorable environment for learning from 
the past. Are there other explanations? 

It is plausible that experience with SARS obscures national characteristics since SARS 
had a limited geographic reach, largely affecting selected places in East Asia. Indeed, places 
in East Asia like Taiwan, Singapore, Hong Kong, South Korea, Japan, and mainland China have 
kept reported cumulative cases and deaths from Covid-19 at low levels especially when 
scaled by population. The population mortality rate has averaged 0.305 per 100,000 in these 
six places and if we exclude Japan and China it was 0.286. This is well below the average of  
16.65 in other advanced economic nations in western Europe, the Americas and Australia as 
of 25 April ,2020 (Table 1).  

We control for regional fixed effects and some religio-philosohical and cultural 
traditions including “Confucianism” and collectivism. None of these eliminate the statistically 
significant association between past pandemics and Covid-19. Neither of these “deep” 
cultural factors is statistically significant.  Many of these places have been at the epicenter of 
recent pandemics like SARS but also including MERS and the recent Covid-19 pandemic. 
There is strong evidence that these places saw the threat of SARS due to recent experience. 
Meanwhile the western nations less affected by these recent pandemics “saw the threat 
through the lens of influenza” according to the editor of The Lancet Richard Horton. (Ahuja, 
2020). 

E. Asian nations appear to have used their trusted and competent technocratic civil 
services to learn from recent past experience, and to develop a high level of preparedness 
for a pandemic. The pandemic preparedness plans for the East Asian nations most affected 
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by SARS often mention recent local experience with SARS. Pandemic response to Covid-19 
has been swift and forceful. A host of specialized protocols have been followed including 
border checks of travelers for illness, international travel bans from affected regions, high 
rates of testing and contact tracing, social distancing, using masks and raising public 
awareness.  

Another plausible explanation for East Asian success in the recent period may be 
competency and trust in the civil service. China, Taiwan, Hong Kong, Japan and South Korea, 
the countries most affected by SARS, have an average percentage of people having “a great 
deal of trust” or “quite a lot of trust” in civil service of 56.68 % (std. dev. =13.96) according 
to the 2010-2014 World Values Survey. The average of western nations available in the 
sample (Australia, Germany, New Zealand, Spain, Sweden and the USA) was 45.9% (std. dev. 
= 5.06) and that for all other nations in the sample excluding these places was 42.5% (std. 
dev. = 19.18). 

The salience of events in recent living memory combined with high trust and 
competence in the civil service most likely helped these nations to learn from past 
experience. East Asian success has been built upon the realization that a new pandemic was 
likely given the recent past experience. As one can see in Figure 1, many of these E. Asian 
nations are below the regression line implying better than expected performance during the 
early phases of Covid-19. In western nations pandemics had largely been relegated to history 
with influenza being the most recurrent issue. Population mortality rates from influenza 
have been significantly lower since 1918 and most influenza since then has had a CFR much 
lower than that of Covid-19.  

 

3.2 Influenza Mortality in 1918-20 and Covid-19 Mortality: Countries 

 

What then explains the positive correlation between influenza in 1918 and mortality 
in the early phases of Covid-19? At the country level, our regression analysis rules out 
individualist cultural explanations and geographic/regional unobservables. One explanation 
may rely on deep-rooted tendencies and capabilities of the government and civil service in 
solving the problems of infectious diseases. The issues of distrust, hubris and isolationism 
return to the forefront and are evident in 1918 and now. Unfortunate timing may play a role 
in the persistence of these enabling factors.  Recent research argues that the greater 
mortality in the 1918-20 pandemic generates lower trust in the long-run (Aassve et. al. 
2020).3 This may help explain some of the persistence we see in the data both across 
countries and within the US.  

                                                           
3 The measure of trust is based on the General Social Survey question: “Generally speaking, would you say 
that most people can be trusted or that you can’t be too careful in dealing with people?” 
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Today, many western nations have elected officials that have openly discussed 
abandoning international agreements of the post-World War 2 era. The US is not alone in 
this. So-called populist tendencies have emerged in many western democracies. Electoral 
success has risen, but many countries see this manifested in the strength of opposition 
parties like the AFD in Germany, the FN in France, and UKIP in the UK. These political 
movements also are amplifications of public mis-trust of officials and experts. The 
politicization of public health responses has been highlighted (Eichengreen, 2020). 

In 1918 many countries in the west were involved in all-out war. Reporting on the 
influenza pandemic was minimized as most historians agree. The Italian interior minister 
was not alone in denying the spread of the pandemic (Martini et. al, 2019). In the US, 
politicians downplayed the menace of the flu. Similar responses have been heard today in 
Italy. The mayor of Milan promoted “Milan doesn’t stop” on day 6 of the Covid-19 outbreak 
leaving bars, restaurants, and cafes open (McCann et. al, 2020). In the United States, the 
president declared Covid-19 to be a “hoax” in late February, 2020.    

Another unfortunate similarity between today and in the past was the inadequate 
preparation of many health care systems for surge demand. During World War I, the US 
military had 300,000 physicians on duty which is over 1/5 of the total number of physicians 
in the USA at the time.4 Other nations fighting in the war also had skewed their health 
infrastructure to war efforts.  Today, a nearly constant discussion about equipment 
shortages, lack of PPE and beds in ICUs has been a common theme. Access to health care in 
the United States is problematic especially in places where poverty is high, inequality is high, 
and the social safety net is over-stretched. This characterizes the health care system in New 
York but in other localities in the US as well.  

Finally, politics was on a knife-edge and highly polarized in many western nations in 
1918. Many countries were fighting in the war, facing imminent revolutions or momentous 
political changes or both. Mussolini and fascists in Italy were rising to power, Spain was 
unstable, Russia was recovering from recent revolution.  Even in the US, Woodrow Wilson’s 
political mandate was handicapped by the narrow Republican victory in a New Mexico 
senate race leading to Republican control of the Senate.  

 

3.3 US Cities in 1918 versus Today 

 

 Perhaps the most striking correlation that we have uncovered is the apparent long-
run correlation between mortality in 1918 and today in US cities. Again, the role of politics 
is manifest. Historians have found evidence that that non-pharmaceutical interventions 

                                                           
4 Number of medical personnel in the military as of November 1918 300,000 (Statistical Abstract of the 
United States of America, 1919, p. 728). Number of physicians in the United states in 1920 1.542 million 
according to Carter et. al. (2006).  
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(NPIs) mattered for peak mortality and cumulative death rates. Cities that adopted NPIs 
earlier and/or maintained them longer had some success in keeping these variables lower, 
especially peak mortality. Cities like Philadelphia which delayed and allowed a “Liberty 
Bond” rally to go ahead have been compared unfavorably to St. Louis which limited public 
gatherings and sustained school closures. St. Paul has been compared to Minneapolis and 
San Francisco has been compared to New York. In the former pair St. Paul delayed longer in 
implementing NPIs than Minneapolis suffering the consequences. San Francisco 
implemented a mask ordinance in mid-October 1918 while New York implemented light 
touch social distancing. At the time there was much debate about how far to go with these 
measures and about their effectiveness. For instance, the Anti-Mask League of San Francisco 
was a political force in late 1918. Opponents of William Hassler, the city Public Health Officer 
who promoted mask-wearing, also attempted to murder him such was their mis-trust and 
dislike of his public health policies. Dr. Anthony Fauci, director of the National Institute of 
Allergy and Infectious Disease, and a key proponent of social distancing, was given a security 
detail in late March against “un-specified threats” (Diamond, 2020). 

Across US cities there has been political debate on the effectiveness of social 
distancing and NPIs. It is interesting that the mayors of San Francisco had opposing 
viewpoints in March on how to handle Covid-19. While mayor London Breed of San Francisco 
emphasized pandemic preparedness for a major disruption on 2 March, Mayor Bill de Blasio 
of New York was “encouraging New Yorkers to go on with your lives” on twitter even making 
a recommendation for watching a movie in a cinema. Historian John M. Barry has 
emphasized that Tammany (a corrupted political machine) was in control of New York in 
1918 and had appointed a homeopath as president of the New York City Board of Health. 
Copeland went on to become a US Senator. Hassler would eventually become the president 
of the American Public Health Association.  

None of this is to ascribe the correlations we have found to extreme persistence in 
public health capabilities and the politics of public. However, the coincidence of divergent 
opinions and political and social malaise in the west is notable.  It is impossible to blame the 
disease on these issues. It may however be possible to credit slow response times and 
delayed action to these matters. In other words, while history has not repeated itself, certain 
outcomes are remarkably similar.  The success of East Asian nations in combating the spread 
of Covid-19 so far is testament to the idea that history is not destiny. 
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Figure 1 Mortality Rate per 100,000 Covid-19 and 1918-20 Influenza Pandemics: Cross-Country Evidence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Figure shows the population mortality rates of Covid-19 based on data from CSSE Johns Hopkins. We break the data for the US into three parts: 
mortality for the entire US, mortality rates for the states of New York and New Jersey, the hardest hit states and for the US excluding these two states. 
Data for the Influenza pandemic of 1918 are for total weekly deaths per 100k from influenza and pneumonia for data from 46 cities in the USA (Collins 
et. al. 1930). Data are plotted for countries in 2020 that had reached a threshold of 1.34 deaths per 100,000. This is the first available level of mortality 
the mortality rate in the 1918 for the national level data for the USA.   
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Figure 2  Mortality Rate per 100,000 Covid-19 and 1918-20 Influenza Pandemics: US States 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Figure shows the population mortality rates of Covid-19 based on data from CSSE Johns Hopkins. Data for the Influenza pandemic of 1918 are as 
described in the notes to Figure 1. 

 

 

CA

NY

LA

NJ

WA

FL

TX

ILPA

OH

IN

WI

MS

MA
MI

GA

ALKY

TN

USA-1918

1
10

10
0

10
00

D
ea

th
 R

at
e 

pe
r 1

00
k-

cu
m

ul
at

iv
e

0 5 10 15 20 25 30 35 40 45 50
Days since Cumulative Death Rate/100K > 1.3

                    

         

15
C

ov
id

 E
co

no
m

ic
s 1

5,
 7

 M
ay

 2
02

0:
 1

-2
5



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 3 Mortality of 1918-20 Influenza and Covid-19 Pandemics, 22 Countries 

 
Notes: This graph plots the average daily growth rate of cumulative deaths from Covid-19 in the first 35 days since the first death in each country against 
the country-specific overall mortality rate from the 1918 Influenza pandemic. Data are described in the data appendix. The average growth rate of 
cumulative deaths for Covid-19 is calculated as �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖35 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖1⁄ )34 − 1. We include 22 countries with a sufficiently established mortality 
trajectory in this graph.  The robust t-statistic for the coefficient on deaths from influenza in 1918 is =2.74, and the regression has an adjusted R2 = 0.21.
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Figure 4 Mortality Curves for Covid-19 and Influenza and Pneumonia in 1918 in Selected U.S. Cities  

 

Notes: These charts provide city-by-city comparisons between the trajectory of the population mortality rate from influenza and pneumonia in 
1918 and Covid-19 in 2020..  We plot the logarithm of total deaths per 100,000 (for Covid-19) or total excess deaths per 100,000 (for influenza and 
pneumonia) on the y-axis versus the number of days since mortality rates reached 0.5/100,000 population. The 16 cities are selected here the 
cities with the longest Covid-19 trajectories. Trajectories for other cities are available upon request from authors. 
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Figure 5 Average Daily Growth of Total Deaths from Covid-19 and Influenza and Pneumonia in U.S. Cities: First 21 Days 

 

Notes: Chart shows the unconditional relationship between the average daily growth rate of total deaths during Covid-19 in the first 21 days compared to the average 
growth rate of excess deaths in the first 21 days of the 1918-20 pandemic. The coefficient of the regression (which includes a constant) is 0.355 with a robust t-statistic of 
4.09 and a 95% C.I. of 0.179 to 0.531. The average daily growth rates of total deaths (or total excess deaths for 1918 influenza) in the first 21 days are calculated by 
�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖−20⁄ )20 − 1. The first 21 days refer to the 21 days since the total deaths (for Covid-19) or total excess deaths (for 1918 Influenza) reached 0.5 for 

every 100,000 population.   
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Table 1 Mortality Rates of for Three Pandemics: 1918-20 Influenza, 2002-03 SARS, and Covid-19 

Country 
Mortality Rates of 
1918-20 Influenza 

(per 100,000) 

Mortality Rates of 
2002-2003 SARS 

(per 100,000) 

Mortality Rates of 
Covid-19 by April 

17, 2020 
(per 100,000) 

Austria 330 0 4.81 
Canada 610 0.131 3.62 

Denmark 410 0 5.82 
Finland 580 0 1.48 
France 730 0.002 28.68 

Germany 380 0 5.21 
Ireland 430 0 10.86 

Italy 1070 0 37.56 
Netherlands 710 0 20.23 

Norway 570 0 2.99 
Spain 1230 0 42.80 

Sweden 590 0 13.95 
Switzerland 610 0 15.45 

United Kingdom 586 0 21.61 
United States 650 0 11.11 

Average 676 0.006 16.65 
  
 Asian Countries 

China 1430 0.027 0.32 
India 610 0 0.04 

Indonesia 700 0 0.19 
Japan 700 0 0.15 

Korea, South 838 0 0.45 
Philippines 170 0.002 0.36 
Singapore 706 0.79 0.19 

Taiwan 690 0.799 0.03 
Hong Kong 238 4.448 0.05 

Average 1043 0.03 0.19 
Average  

(ex. China and Japan) 620 0.04 0.09 

Notes: Estimates of mortality rates of 1918 Influenza come from the recalculation and compilation by Johnson and 
Mueller (2002). See their paper for details. Mortality rates of 2002-2003 SARS come from WHO and include the deaths 
from cases from November 1, 2002 to July 31, 2003. Mortality rates for Covid-19 come from the CSSE of Johns Hopkins 
University. Population-weighted averages are presented for each region. Finland and Singapore are listed in this table, 
but not included in the regression in table 2, as these two countries have not reached their 35th day after first death. 
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Table 2 Covid-19 Pandemics and Mortality from 1918 Influenza and SARS, Country-Level Evidence 

 (1) (2) (3) (4) (5) (6) 

 

Average Daily 
Growth Rate of 

Total Deaths 
from Covid-19 

Average Daily 
Growth Rate of 

Total Deaths 
from Covid-19 

Average Daily 
Growth Rate of 

Total Deaths 
from Covid-19 

Average Daily 
Growth Rate of 
Total Cases of 

Covid-19 

Average Daily 
Growth Rate of 
Total Cases of 

Covid-19 

Average Daily 
Growth Rate of 
Total Cases of 

Covid-19 

 35 Days since 
First Death 

35 Days since 
First Death 

35 Days since 
First Death 

42 Days since 
10th Case 

42 Days since 
10th Case 

42 Days since 
10th Case 

Total Mortality Rate 
from 1918-20 Influenza 

0.165*** 0.167*** 0.165** 0.0957*** 0.0867*** 0.0677** 
(0.0265) (0.0354) (0.0666) (0.0135) (0.0106) (0.0226) 

Total Mortality Rate 
from SARS  

-0.199*** -0.169*** -0.161*** -0.143*** -0.130*** -0.153*** 
(0.0463) (0.0276) (0.0420) (0.0290) (0.0295) (0.0260) 

Population Density in 
2019 

0.0515*** 0.0459*** 0.0437*** 0.0367*** 0.0338*** 0.0394*** 
(0.0116) (0.00744) (0.0100) (0.00732) (0.00753) (0.00663) 

Log (GDP per capita in 
2018) 

 -0.0246* -0.0286  -0.0158** -0.0261 
 (0.0131) (0.0415)  (0.00530) (0.0163) 

Confucianism Tradition 
(0/1) 

  0.0116   0.0315 
  (0.123)   (0.0545) 

Individualism Index 
(0/100) 

  0.000305   -0.000531 
  (0.000984)   (0.000609) 

Observations 22 22 22 20 20 20 
R2 0.810 0.843 0.845 0.873 0.905 0.919 

Notes: Dependent variables in columns (1)-(3) is the average daily growth rate of cumulative deaths from Covid-19 in the first 35 days since the first death case. Dependent 
variable in columns (4)-(6) is the average daily growth rate of cumulative cases of Covid-19 in the first 42 days since the 10th confirmed cases. Estimation is by OLS. The 
estimated coefficients and standard errors on the total mortality rate of 1918-20 influenza were multiplied by 1000 for presentational purposes. All regressions control 
for region fixed effects (we categorize countries into 7 regions: East Asia, South Asia, Africa, Europe, North America, South America, and Oceania). Robust standard errors 
reported in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. 
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Table 3 Total Deaths and Confirmed Cases from Covid-19 and 1918 Influenza in 46 U.S. Cities, Daily Data 

 (1) (2) (3) (4) (5) (6) 

 
Log Total Deaths 

per 100,000 
Covid-19 

Log Total Deaths 
per 100,000 

Covid-19 

Log Total Deaths 
per 100,000 

Covid-19 

Log Total Cases 
per 100,000 

Covid-19 

Log Total Cases 
per 100,000 

Covid-19 

Log Total Cases 
per 100,000 

Covid-19 
Log Total Excess Deaths 
per 100,000, 1918 Flu 

0.300*** 0.341*** 0.407*** 0.224*** 0.232*** 0.188*** 
(0.0547) (0.0733) (0.105) (0.0630) (0.0531) (0.0428) 

Event Days 0.121*** 0.108***  0.0544*** 0.0493***  
(0.00968) (0.0121)  (0.0102) (0.0138)  

(Event Days)2 
-0.00150*** -0.00137***  -0.000355*** -0.000290  
(0.000232) (0.000217)  (0.0000848) (0.000294)  

Observations 1244 1244 1235 1244 1244 1235 
R2 0.931 0.962 0.974 0.899 0.964 0.981 
Covid-19 Calendar Date 
Fixed Effects No No Yes No No Yes 

State Fixed Effects Yes No No Yes No No 
City Fixed Effects No Yes Yes No Yes Yes 
# Cities 46 46 46 46 46 46 

Notes: Dependent variables are listed at the top of each column. These and total excess death rates from the 1918-20 influenza are at the daily level.  All 
specifications control for city fixed effects. Event days are defined as the days since cumulative death rates per 100,000 (for Covid-19) and cumulative 
excess deaths (for 1918 Influenza) reached 0.5/100,000 population. The data on Covid-19 were last updated on April 25, 2020. The full list of cities can 
be found in the public health reports by Collins et. al (1930). All regressions are weighted by population in 2019 and standard errors are clustered at the 
state level for column (1) and (4). For the rest of columns, standard errors are clustered at the city level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4 Growth of Total Deaths from Covid-19 and 1918 Influenza in U.S. Cities 

 (1) (2) (3) 
 Average Daily Growth 

Rate of Total Deaths, 
Covid-19 

First 14 Days 

Average Daily Growth 
Rate of Total Deaths, 

Covid-19 
 First 21 Days 

Average Daily Growth 
Rate of Total Deaths, 

Covid-19 
First 28 Days 

Average Daily Growth Rate 
of Total Excess Deaths, 
1918 Flu, First 14 Days 

0.242***   
(0.0576)   

    
Average Daily Growth Rate 
of Total Excess Deaths, 
1918 Flu, First 21 Days 

 0.269***  
 (0.0540)  

    
Average Daily Growth Rate 
of Total Excess Deaths, 
1918 Flu, First 28 Days 

  0.511*** 
  (0.135) 

    

Population Density in 2019 0.214*** 0.170*** 0.0455 
(0.0503) (0.0407) (0.0293) 

# Cities 46 40 20 

R2 0.616 0.682 0.792 

Notes: The average daily growth rates of total deaths for first n days are calculated by �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑖𝑖𝑖𝑖−1⁄ )𝑛𝑛−1 − 1. The first n days 
refers to the number of days since total deaths (for Covid-19) and total excess deaths (for 1918 Influenza) reached 0.5 for every 100,000 
people. All specifications also control for latitude and longitude of cities. All regressions are also weighted by population in 2019. Robust 
standard errors are reported in the parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.  
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Data Appendix  

 

Cross-Country Data, 1918 

Mortality rates: Johnson and Mueller (2002) . Data for UK are for England, Wales and Scotland. Date for 
Ireland are for Eire; Singapore deaths from Lee et. al. (2007); Korea from Hong et. al (2017); Hong Kong data 
from Cheng and Leung (2007). Hong Kong population in 1919 calculated from Swee-Hock and Wing King 
(1975); Singapore, population Dodge (1980) 

Excess mortality: Murray, Lopez, Chin, Feehan, Hill (2006) 

Population density, GDP per capita: Data underlying Clemens and Williamson (2004). All data for 1919. 

Population (000s) and GDP per capita (1990 real US Dollars) from Maddison when unavailable Clemens and 
Williamson (2004). Interpolated where necessary. 

Land Area from google searches when unavailable in Clemens and Williamson (2004). Land area in square 
miles. 

 

Covid-19 Data, 2020 

 

Data for cases and deaths by country for Covid-19 on 16 April 

https://data.europa.eu/euodp/en/data/dataset/covid-19-coronavirus-data/resource/55e8f966-d5c8-
438e-85bc-c7a5a26f4863 downloaded on April 27, 2020. 

 

 

DOL Initial jobless claims: 

https://oui.doleta.gov/unemploy/claims.asp 

 

 

Employment by industry 

 

US Bureau of Labor Statistics. “OES Research Estimates by State and Industry” all occupations. 

Downloaded from https://www.bls.gov/oes/current/oes_research_estimates.htm 

 (not sure about this)  

https://www.bls.gov/oes/current/oes_research_estimates.htm on 4/7/2020 

 

Employment for the following Industries: 

Mining, Quarrying, and Oil and Gas Extraction, NAICS 21 
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Wholesale Trade, NAICS 42 
Retail Trade, NAICS 44-45 
Arts, Entertainment, and Recreation, NAICS 71 
Accommodation and Food Services, NAICS 72 
 
 
 
 
Share of Jobs that can be “worked from home” or via telecommuting 

"How Many Jobs Can be Done at Home?" by Jonathan I. Dingel and Brent Neiman. NBER wp. 26948 

Downloaded from github https://github.com/jdingel/DingelNeiman-workathome 

 

For MSAs spanning state borders we simply use the population weight given by total MSA population in such 
an MSA relative to population all other MSAs including this cross-state MSA. 

Populations for MSA from US Census bureau 

 

https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-metro-and-micro-statistical-
areas.html 

Metropolitan and Micropolitan Statistical Area Population Estimates and Estimated Components of Change: 
April 1, 2010 to July 1, 2019 (CBSA-EST2019-alldata.csv)    

 

Employment by MSA 

https://www.bls.gov/web/metro.supp.toc.htm 

Data file is ssamattab.zip .We use total employment for February 2020 to weight the telecommuting index 
from Dingel and Neiman. 

 

1918-1919 Influenza Pandemic in U.S. Cities 

The mortality date in 47 major U.S. cities come from the public health reports (Collins, 1930). We calculate 
the cumulative deaths. We interpolate the weekly excess deaths and median deaths by linear interpolation. 
The cumulative deaths are calculated from the date of first officially reported case of influenza in the 1918-
1919 influenza pandemic. 

The timing of Nonpharmaceutical interventions across cities are from Markel et al. (2007). 
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Voluntary and mandatory social 
distancing: Evidence on Covid-19 
exposure rates from Chinese 
provinces and selected countries1

Alexander Chudik,2 M. Hashem Pesaran3 and 
Alessandro Rebucci4

Date submitted: 30 April 2020; Date accepted: 1 May 2020

This paper considers a modification of the standard Susceptible-
Infected-Recovered (SIR) model of epidemic that allows for different 
degrees of compulsory as well as voluntary social distancing. It is 
shown that the fraction of population that self-isolates varies with 
the perceived probability of contracting the disease. Implications 
of social distancing both on the epidemic and recession curves are 
investigated and their trade off is simulated under a number of 
different social distancing and economic participation scenarios. 
We show that mandating social distancing is very effective at 
flattening the epidemic curve but is costly in terms of employment 
loss. However, if targeted towards individuals most likely to spread 
the infection, the employment loss can be somewhat reduced. We 
also show that voluntary self-isolation driven by individual's 
perceived risk of becoming infected kicks in only towards the peak of 
the epidemic and has little or no impact on flattening the epidemic 
curve. Using available statistics and correcting for measurement 
errors, we estimate the rate of exposure to COVID-19 for 21 Chinese 

1 We thank Johns Hopkins University for assistance with the data. We also would like to acknowledge helpful 
comments by Ron Smith. The views expressed in this paper are those of the authors and do not necessarily 
reflect those of the Federal Reserve Bank of Dallas.

2 Economic Policy Advisor and Senior Economist, Federal Reserve Bank of Dallas.
3 John Elliot Distinguished Chair in Economics, Director, USC Dornsife Centre for Applied Financial Economics, 

Emeritus Professor of Economics, Cambridge University.
4 Associate Professor, Johns Hopkins University Carey Business School and CEPR Research Fellow.
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Covid Economics Issue 15, 7 May 2020

provinces and a selected number of countries. The exposure rates 
are generally small but vary considerably between Hubei and other 
Chinese provinces as well as across countries. Strikingly, the exposure 
rate in Hubei province is around 40 times larger than the rates for 
other Chinese provinces, with the exposure rates for some European 
countries being 3-5 times larger than Hubei (the epicenter of the 
epidemic). The paper also provides country-specific estimates of the 
recovery rate, showing it to be about 21 days (a week longer than 
the 14 days typically assumed), and relatively homogeneous across 
Chinese provinces and for a selected number of countries.
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1 Introduction

The COVID-19 pandemic has already claimed many lives and is causing an unprecedented and

widespread disruption to the world economy. China responded to the initial outbreak with dra-

conian social distancing policies which are shown to be effective in containing the epidemic, but at

the cost of large short term losses in employment and output. Other countries have responded more

timidly, either by deliberate choice, as in the United States, or due to implementation constraints,

as in some European countries. The purpose of this paper is to evaluate the impact of alternative

mitigation or containment policies on both the epidemic and the so-called recession curves, and to

empirically compare their implementation across countries.

Most importantly we consider both government-mandated social distancing policies, and vol-

untary self-isolation, and endogenize the fraction of the population that remain exposed to the

virus within a standard Susceptible-Infected-Recovered model (SIR). Specifically, we distinguish

between individuals exposed to COVID-19 and those isolated from the epidemic. We decompose

the population, P , into two categories: those who are exposed to COVID-19 in the sense that they

can contract the virus because they are not isolated and they have not been infected yet, PE ; and

the rest, PI , that are isolated and therefore taken out of harm’s way. We denote the strength of the

mitigation policy by 1− λ, where λ is the proportion of population that is exposed to COVID-19,

defined as λ = PE/P . Initially we focus on the relatively simple case where λ is set at the outset

of the spread of the epidemic, close to what we believe China did after the start of the epidemic

in Wuhan. We also consider a variation of the SIR model where λ changes due to the voluntary

decision to isolate at the micro level. Using a simple decision model we show that the proportion of

the population that self-isolates rises with the probability of contracting the disease. We approxi-

mate this probability with the number of active cases and show (by simulation) that the effect of

self-isolation occurs as the epidemic nears its peak, and is relatively unimportant during the early

or late stages of the epidemic. A coordinated social policy is required from the early outset of the

epidemic to flatten the epidemic curve.

We then model the short-term impact of the epidemic on employment. This permits an eval-
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uation of the costs and benefits of alternative societal decisions on the degree and the nature of

government-mandated containment policies by considering alternative values of λ in conjunction

with an employment loss elasticity, α, that allows a given social distancing policy to have different

employment consequences. In the extreme case where the incidence of social distancing is uniform

across all individuals and sectors, a fall in λ results in a proportionate fall in employment, and

α = 1. But by enabling individuals to isolate and to work from home, together with wide spread

targeted testing for the virus plus the use of protective clothing and equipment, it is possible to

mitigate somewhat the economic costs of social distancing policies. We simulate the employment

loss for alternative values of λ and α and find that, for suffi ciently low values of λ required to man-

age the peak of hospitalization and death from COIVD-19, the economic costs could be substantial

even with smart social distancing policies. We also simulate the duration of the epidemic to be

around 120 days, with a sizeable part of the employment loss occurring close to the peak of the

epidemic.

Whilst there is ample medical and biological evidence on the key parameters of the SIR model,

namely the basic reproduction rate, R0, and the recovery rate, γ, to our knowledge there are no

direct estimates of λ. A recent report from the Imperial College COIVD-19 Response Team uses

a Bayesian hierarchical model to infer the impact of social distancing policies implemented across

11 European countries, see Flaxman et al. (2020). They use the number of observed deaths to

infer the number of infections and do not make use of confirmed infections that are subject to

significant measurement errors due to limited testing. Whilst acknowledging the measurement

problems, in this paper we provide estimates of γ and λ using daily data on confirmed, recovered

and death cases from the Johns Hopkins University (JHU) hub.1 Using a discretized version of our

modified SIR model we derive reduced form regressions in confirmed recoveries and the number of

active cases that allow for systematic and random measurement errors. We show that γ can be

identified assuming that confirmed infected and recovery cases are subject to a similar degree of

mis-measurement. We also show that, for a given value of R0, the social distancing parameter, λ,

can be identified up to a fraction which is determined by the scale of mis-measurement of reported

1Available at https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data.

29
C

ov
id

 E
co

no
m

ic
s 1

5,
 7

 M
ay

 2
02

0:
 2

6-
62



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

active cases. We calibrate this fraction using the data from the Diamond Princess cruise ship

reported by Moriarty et al. (2020).

We first use daily data on Chinese provinces with complete history of the course of the epidemic.

The estimates of the recovery rates are very similar across the Chinese provinces and lie in the range

of 0.033 (for Beijing) and 0.066 (for Hebei). We also find that the random measurement in the

underlying data is relatively unimportant for the estimation of γ. The mean estimate of γ across the

Chinese provinces is around 0.046 which corresponds to around 22 days from infection to recovery

(or death). This estimate is substantially larger than the 14 days typically assumed in designing

quarantine policies. Setting γ = 0.046 and R0, we then proceed to estimate λ (up to the scaling

fraction). We find that for Chinese provinces λ is very small even if we allow for a significant under-

recording of infected and recovered cases. We find that, with the exception of Hubei province (the

epicenter of the epidemic), the share of exposed population across other provinces was less than 1

individuals per 100,000! This is an astonishingly low rate and is consistent with dramatically falling

estimates of the effective reproduction rate at the onset of the epidemic in China. In contrast, the

estimates of λ which we have obtained for European countries are significantly higher even when

compared to the relatively high exposure rates for Hubei, with a substantial heterogeneity across

countries. In particular, we estimate exposure rates for Italy and Spain to be almost five times the

rate estimated for Hubei.

To summarize, our theoretical analysis shows that voluntary social distancing is likely to be ef-

fective only when the epidemic begins to approach its peak, and mandated social distancing to flatten

the curve is required from the early phases of the epidemic. Our estimates show that in order to

flatten the epidemic curve very strict mandatory policies are necessary, as in the case of the Chinese

provinces excluding the Hubei epicenter show. Unfortunately, our estimates suggest that, despite

the time-lag in the contagion from China to other countries, an inadequate and uncoordinated policy

response resulted in exposure rates outside of China that are multiples of those documented at the

epicenter of the epidemic in Hubei.

Related Literature

The characteristics and the economic consequences of the COVID-19 outbreak, and of policies
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to contain its spread, are the subject of a fast growing body of research. Scientific evidence based

on more accurate data at the local level has begun to document the rate of transmission and

incubation periods. The literature has also begun to document the role of mitigation policies in

reducing transmission, and the rate of asymptomatic transmission.

Kucharski et al. (2020) estimate that, in China, the effective reproductive rate Rt fell from

2.35 one week before travel restrictions were imposed on Jan 23, 2020, to 1.05 one week after travel

restrictions. They use a SIR model and estimate it to forecast the epidemic in China, extending

the model to explicitly account for infections arriving and departing via flights. Using data from

Wuhan, Wang et al. (2020) report a baseline reproductive rate of 3.86, that fell to 0.32 after the

vast lock-down intervention. They also find a high rate of asymptomatic transmission.

Work on the economic impact of the epidemic is just starting, as the data are only partially

available. Atkeson (2020) explores the trade-off between the severity and timing of suppression

of the disease, for example through social distancing, and the progression of the disease in the

population in simulations of a SIR model like ours with exposed and not exposed population, but

does not provide estimates and does not focus on the share of the exposed population, nor does he

provides estimates of the model parameters.

Berger, Herkenhoff, and Mongey (2020) show that testing at a higher rate in conjunction with

targeted quarantine policies can reduce both the economic impact of the COIVD-19 and peak

symptomatic infections. As noted above, by selectively applying social distancing policies (with

different α parameters) it is also possible to reduce both the economic impact of the epidemic and

the peak symptomatic infections. Related to this, using data on the Spanish flu, Correia, Luck,

and Verner (2020) find that cities that intervened earlier and more aggressively do not perform

worse and, if anything, grow faster after the pandemic is over. These findings thus indicate that

containment policies not only lower mortality, they also mitigate the adverse long term economic

consequences of a pandemic.

Fang, Wang, and Yang (2020) analysis of Chinese efforts to contain the COIVD-19 outbreak

measures the effectiveness of the lock-down of Wuhan and enhanced social distancing policies in

other cities. They produce evidence for all Chinese provinces and show that these policies con-
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tributed significantly to reducing the total number of infections outside of Wuhan.

Stock (2020) focuses on measurement error and explores the benefits of randomly testing the

general population to determine the asymptomatic infection rate.

Eichenbaum, Rebelo, and Trabandt (2020) discuss the trade off between the economic costs of

containment policies – which could include a recession – and the number of lives saved in a model

in which agents optimize and the probability of infection is endogenous. Barro, Ursua, and Weng

(2020) estimate death rates and output losses based on 43 countries during the 1918-1920 Spanish

flu. They find a very high death rate, with 39 million deaths, or 2.0 percent of world population,

implying 150 million deaths when applied to current population. According to their estimates, the

Spanish flue resulted in economic declines for GDP and consumption in the typical country of 6

and 8 percent, respectively.

Linton (2020) uses a reduced form quadratic time trend model in log of new cases and new

deaths to predict the peak of COIVD-19 for a large number of countries.

As far as we are aware, no study has modelled the difference between government-mandated

and self-imposed isolation and their implication for the flattening of the economic and pandemic

curves that we consider in this paper.

The rest of the paper is organized as follows. Section 2 sets out the modified SIR model with

social distancing. Section 3 analyzes the distinction between mandatory and voluntary isolation.

Section 4 discusses the trade off between containing the epidemic and the employment losses that

depend on the share of exposed population. Section 5 sets out the econometric and measurement

models and reports the estimation results. Section 6 concludes.

2 A Discrete-time SIR Model with Mitigation Policy

There are many approaches to modelling the spread of epidemics. The basic mathematical model

used by many researchers is the susceptible-infective-removed (SIR) model advanced by Kermack

and McKendrick (1927). This model, and its various extensions, has been the subject of a vast

number of studies, and has been used extensively over the past few months to investigate the spread
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of COVID-19. A comprehensive treatment is provided by Diekmann and Heesterbeek (2000) with

further contributions by Metz (1978), Satsuma et al. (2004), Harko et al. (2014), Salje et al.

(2016), amongst many others.

The basic SIR model considers a given population of fixed size P , composed of three distinct

groups, those individuals in period t who have not yet contracted the disease and are therefore

susceptible, denoted by St; the ‘removed’ individuals who can no longer contract the disease,

consisting of recovered and deceased, denoted by Rt; and those who remain infected at time t and

denoted by It. Thus

P = St + It +Rt. (1)

As it stands, this is an accounting identity, and it is therefore suffi cient to model St and It and

obtain Rt as the remainder. The SIR model is typically cast in a set of differential equations, which

we discretize and write as the following difference equations (for t = 1, 2, ..., T )

St+1 − St = −βstIt, (2)

It+1 − It = (βst − γ)It, (3)

Rt+1 −Rt = γIt, (4)

where β and γ are the key parameters of the epidemic. β is the rate of transmission and γ is

the recovery rate. In this model it is assumed that an infected individual in period t causes βst

secondary infections, where st = St/P is the share of susceptible individuals in the total population.

The time profile of It critically depends on the basic reproduction number, defined as the expected

number of secondary cases produced by a single infected individual in a completely susceptible

population, denoted by R0 = β/γ. The parameter β is determined by the biology of the virus, and

is assumed to be constant over time and homogeneous across countries and regions. The recovery

rate, γ, can also be written as γ = 1/d, where d denotes the number of days to recover or die

from the infection. We assume that γ is constant over time, but allow it to vary across countries

and regions, reflecting the differences in the capacity of the local health care systems to treat the

infected population.
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The epidemic begins with non-zero initial values I1 > 0 and S1 > 0, and without any mitigation

policies in place it will spread widely if R0 > 1, ending up infecting a large fraction of the population

if R0 is appreciably above unity. We show below that the steady state value of this proportion is

given by π0 = (R0 − 1)/R0. In the case of COVID-19, a number of different estimates have been

suggested in the literature, placing R0 somewhere in the range of 2.4 to 3.9.2

In the simulations, and the empirical analysis to follow, we adopt a central estimate and set

R0 = 3. As we shall see the SIR model predicts that in the absence of social distancing as much

as 2/3 of the population could eventually become infected before the epidemic runs its course—

the so-called herd immunity solution to the epidemic. Such an outcome will involve unbearable

strain on national health care systems and a significant loss of life, and has initiated unparalleled

mitigation policies first by China and South Korea, and more recently by Europe, US and many

other countries. Such interventions, which broadly speaking we refer to as "social distancing",

include case isolation, banning of mass gatherings, closures of schools and universities, and even

local and national lock-downs.

To investigate the economic implications of such policies we first modify the SIR model by

decomposing the total population, P into two categories, those who are exposed to COVID-19 in

the sense that they could catch the virus (they have not been infected yet), PE , and the rest, PI ,

who are isolated and therefore taken out of harm’s way. We denote the strength of the mitigation

policy by 1− λ, where λ is the proportion of population that is exposed to COVID-19, defined as

λ = PE/P . In practice, λ will be time-varying and most likely there will be feedbacks from the

progress of the epidemic to the coverage of the intervention policies. Here we consider the relatively

simple case where λ is set at the outset of the spread of the epidemics, close to what we believe

China did after the start of the epidemic in Wuhan.

In the presence of the social distancing intervention characterized by λ, the equations of the

2Using data from Wuhan, Wang et al. (2020) report a pre-intervention reproductive rate of 3.86. Kucharski et al.
(2020) estimate that, in China, the reproductive rate was 2.35 one week before travel restrictions were imposed on
Jan 23, 2020. Ferguson et al. (2020) made baseline assumption of R0 = 2.4 based on the fits to early growth-rate of
epidemic in Wuhan (and also examined values of 2.0 and 2.6) based on fits to the early growth-rate of the epidemic
in Wuhan by Li et al. (2020) and Riou and Althaus (2020).
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SIR model now become (noting that the population exposed to the virus is now PE):

St+1 − St = −β
(
St
PE

)
It,

It+1 − It =

[
β

(
St
PE

)
− γ
]
It,

λP = St + It +Rt.

Dividing both sides of the above equation by P and using the fractions st = St/P , it = It/P and

rt = Rt/P , we have

st+1 − st = −
(
β

λ

)
stit, (5)

it+1 − it =

[(
β

λ

)
st − γ

]
it, (6)

and

λ = st + it + rt. (7)

Given β, the fraction of total exposed population, λ, determines the effective transmission rate,

θ = β/λ. When λ = 1, the whole population is exposed, and the effective transmission rate

coincides with the biological one, β.

The system equations (5) and (6) can be solved by iterating forward from some non-zero initial

values, with i1 a small fraction and s1 = λ − i1, since at the start of the epidemic we can safely

assume that r1 = 0. Iterating (6) forward from i1 > 0, and for given values of s1, s2, ...st we have

(where we have replaced θ = β/λ = γ (R0/λ))

it+1 =

(
t∏

τ=1

ρτ

)
i1, (8)

where ρτ = 1+γ [(R0/λ) sτ − 1]. Initially, where few are infected and sτ is close to λ, ρτ > 1 and the

number of infected individuals rises exponentially fast so long as R0 > 1. But as the disease spreads

and recovered and/or deceased are removed, at some point in time t = t∗, sτ starts to fall for τ > t∗

such that ρτ < 1 from τ > t∗, and eventually limt→∞
(∏t

τ=1 ρτ
)
= 0. Hence, limt→∞(it) = i∗ = 0.
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Further, limt→∞ (it+1/it) = 1, and from (6) we have limt→∞st = s∗ = λ (γ/β) = λ/R0, and using

the identity λ = s∗ + r∗, we finally obtain the following expression for the total number of infected

cases as a fraction of the population (c∗):

c∗ = r∗ = λ− λ/R0 =
λ(R0 − 1)

R0
. (9)

The choice of λ also has important implications for the steepness and and the peak of the

epidemic curve, and can be used to flatten the trajectory of it. To this end, and also for the

purpose of estimating λ using data realizations from completed epidemics, we first eliminate st

from the equation for it noting from (6) and (5) that

st+1
st

= 1− θit and
it+1
it

= 1− γ + θst. (10)

Since θ > 0, solving for st, we have st = θ
(
it+1
it
− 1 + γ

)
, and hence

st+1
st

=

(
it+2
it+1
− 1 + γ

)
(
it+1
it
− 1 + γ

) = 1− θit,
which yields the following second-order non-linear difference equation in it

it+1 = i2t /it−1 + θ
[
itit−1 (1− γ)− i2t

]
, t = 1, 2, ..., T, (11)

with the initial values i1 and i2 = (1− γ + θs1) i1, where s1 = λ − i1. Realizations on it, for

t = 1, 2, ..., T , can also be used to estimate γ and θ from the above non-linear autoregression,

but it is important to note that β and λ cannot be separately identified without further a priori

knowledge. In the empirical analysis that follows we set R0 a priori and estimate λ from γR0/θ, as

β = γR0 and θ = β/λ.

As an illustration in Figure 1 we show the time profile of it(λ) using the parameter values R0 = 3

and γ = 1/d = 1/14 and the initial values i1(λ) = λ/1000, and i2(λ) = [1− γ + (γR0/λ) s1 (λ)] i1(λ),

where s1(λ) = λ − i1. Consider the following social distancing coeffi cients, λ = 1, 0.75, and 0.50.
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The time profiles of the infected (as the fraction of population) peak after 52 days and does not

seem to depend much on the choice of λ. But the choice of λ is clearly important for flattening the

curve and reduces the peak of infected from 31 percent when λ = 1, to 23 per cent for λ = 0.75,

and to 15 per cent for λ = 0.50.

Figure 1: Simulated values of it(λ) for different social distancing coeffi cients: λ = 1 (blue), 0.75

(red), and 0.5 (green)

3 A voluntary model of social isolation: case of time-varying λ

So far we have assumed that λ, the proportion of population that can be infected is fixed and

set exogenously by central authorities. In practice, the degree of social distancing also depends

on the extent to which individuals follow the rules, which could depend on the fear of contracting

the disease and most likely will depend on the number of those who are already infected, and

an individual’s perception of the severity of the epidemic and its rate of spread. Even central

authorities can be slow to respond when the number of active cases is small and they might delay

or start with a low level of social distancing and then begin to raise it as the number of infected

cases start to increase rapidly. In the context of our modified SIR model we can allow for such

time variations in λ by relating the extent of social isolation in day t, measured by 1− λt, to the

probability of contracting the disease.
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More formally, consider an individual j from a fixed population of size P in the day t from the

start of an epidemic, and suppose the individual in question is faced with the voluntary decision of

whether to isolate or not. Under self-isolation the individual incurs the loss of wages net of transfers,

amounting to (1 − τ j)wj , plus the inconvenience cost, aj , of being isolated. For those individuals

who can work from home τ j is likely to be 1 or very close to it. But for many workers who are

furloughed or become unemployed, τ j is likely to be close to zero, unless they are compensated by

transfers from the government. On the other hand, if the individual decides not to self-isolate then

he/she receives the uncertain pay-off of (1−djt)wj−djtφj , where djt is an indicator which takes the

value of unity if the individual contracts the disease and zero otherwise. φj represents the cost of

contracting the disease and is expected to be quite high. We are ruling out the possibility of death

as an outcome. In this setting the individual decides to self-isolate if the sure loss of self-isolating

is less than the expected loss of not self-isolating, namely if

(1− τ j)wj + aj < E
[
djtφj − (1− djt)wj |It−1

]
, (12)

where It−1 is the publicly available information that includes it−1, the proportion of population be-

ing infected in day t−1. We assume that the probability of anyone contracting the disease is uniform

across the population and this is correctly perceived to be given by πt−1. Hence E (djt |It−1 ) = πt−1,

and the condition for self-isolating can be written as

(2− τ j)wj + aj < πt−1(wj + φj),

or as
2− τ j + (aj/wj)
1 +

(
φj/wj

) = µj < πt−1. (13)

Since πt−1 ≤ 1, then for individual i to self-isolate we must have µj < 1, (note that µj ≥ 0, with

µj = 0 when φj →∞) or if

φj/wj > aj/wj + (1− τ j). (14)

Namely, if the relative cost of contracting the disease, φj/wj is higher than the inconvenience cost
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of self-isolating plus the proportion of wages being lost due to self-isolation. Also, an individual

is more likely to self-isolate voluntarily if the wage loss, measured by τ j , is low thus providing an

additional theoretical argument in favor of compensating some workers for the loss of their wages,

not only to maintain aggregate demand but to encourage a larger fraction of the population to

self-isolate.

The above formulation also captures the differential incentive to self-isolate across different age

groups and sectors of economic activity. Given that the epidemic affects the young and the old

differently, with the old being more at risk as compared to the young, then φold > φyoung, and

the old are more likely to self-isolate. Similarly, low-wage earners are more likely to self-isolate as

compared to high-wage earners with the same preferences (φj and αj), and facing the same transfer

rates, τ j . But the reverse outcome could occur if low-wage earner face a higher rate of transfer

as compared to the high-wage earners. These and many other micro predictions of the theory can

be tested. But here we are interested in the aggregate outcomes, in particular the fraction of the

population that voluntarily self-isolates.

Denote the fraction of the population in day t who are self-isolating voluntarily by vt(P ) and

using (13) note that

vt(P ) = P−1
P∑
j=1

I
(
µj < πt−1

)
.

Suppose now that condition (14) is met and 0 ≤ µj < 1. Further suppose that the differences in

µj across j can be represented by a continuous distribution function, Fµ(.). Then assuming that

µj are independently distributed across j, by the standard law of large numbers we have

vt = limP→∞([vt(P )] = Pr
(
µj < πt−1

)
= Fµ (πt−1) . (15)

In practice, although P is fixed, it is nevertheless suffi ciently large (in millions) and the above result

holds, almost surely.3

In the case where a fixed fraction, 1− λ, of the population are placed under compulsory social
3This limiting result holds even if µj are cross correlated so long as the degree of cross correlation across µj is

suffi ciently weak.
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distancing, and the remaining λ fraction of population decides to self-isolate voluntarily, the overall

fraction of the population that isolates either compulsory or voluntarily is given by

1− λt = (1− λ) + λFµ (πt−1) ,

which yields the following expression for the fraction of population in day t that is not self-isolating

λt = λ [1− Fµ (πt−1)] . (16)

Assuming that µj is distributed uniformly over 0 ≤ µj < 1, we have λt = λ(1 − πt−1). Other

distributions, such as Beta distribution can also be considered. But, as to be expected, it is clear

that λt is inversely related to πt−1. The higher the probability of contracting the disease the lower

the fraction of the population that will be exposed to the disease.

In order to integrate the possibility of time variations in λ to the SIR model, we need to provide

an approximate model for πt−1, noting that πt−1 is not the true probability of contracting the disease

(which itself depends on λt in a circular manner), but the subjective (or perceived) probability by

individuals. As a simple, yet plausible approximation, we suppose that πt−1 = κit−1, where κ > 0,

and κ supt(it) < 1, and write the modified SIR model as

st+1 − st = −
(
β

λt

)
stit, (17)

it+1 − it =

[(
β

λt

)
st − γ

]
it, (18)

λt = λ(1− κit−1), (19)

which can be solved iteratively from the initial values i1 and s1. This formulation clearly reduces

to the time-invariant case when κ = 0. Since it−1 ≥ 0, then λt ≤ λ and the proportion of the

population who are in harm’s way declines as the epidemic spreads, and rises towards λ, as the

epidemic starts to wane. Following a similar line of reasoning as before, it is easily established that

i∗ = limt→∞(it) = 0, and λ∗ = limt→∞λt = λ, with the rest of the results for the case of fixed λ

holding in the limit.
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Figure 2 below shows the simulated values of λt from iterating equations (17), (18) and (19)

forward with parameters R0 = 3, γ = 1/14, λ = 0.5 and κ = 1.5. The differences in the time profiles

of it without feedback effects (λ = 0.5, and κ = 0) and the ones with feedback effects (λ = 0.5,

and κ = 1.5) are shown in Figure 3. As can be seen, by relating λt to vary inversely with it−1,

it is possible to flatten the peak of infected cases curve, and reduce the adverse public health and

economic implications of the epidemic. But voluntary social distancing starts to have an effect only

once the epidemic is already widely spread, and some coordinated social policy is clearly needed

from the out-set, and before the epidemic begins to spread widely.

Figure 2: Simulated values of λt in the case of the SIR model with parameters

R0 = 3, γ = 1/14, λ = 0.5 and κ = 1.5.

Figure 3: Time profiles of it with a fixed λ = 0.5 and time-varying lambda with κ = 0 (blue) and

κ = 1.5 (red)
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4 The Economic Cost of Mitigating Epidemics

The choice of λ plays a critical role in establishing a balance between the height of the infection

and the associated economic costs. The reduction in λ can be achieved through social distancing.

There is a clear trade off between the adverse effects of reducing λ on the employment rate and its

positive impact on reducing the fraction of the population infected, it(λ), and hence removed from

the work force. There is also the further trade off between the employment rate and the death rate

due to the spread of the epidemic for different choices of λ. However, we do not model the death

rate or take into account its economic or social cost.

Since the duration of the epidemic is expected to be relatively short, 3 to 4 months at most, it

is reasonable to assume that the immediate economic impact of the epidemic will be on the rate

of employment. In the absence of the epidemic, we assume that the rate of employment in day t is

given by et = Et/P where Et is the counterfactual level of employment during day t, and P is the

population taken as given. For the US economy the current value of et is around 60%, which we

take to be the counterfactual employment rate.

Consider now the rate of employment during the spread of the epidemic, t = 1, 2, ..., T , under

the social distancing policy λ (0 < λ ≤ 1). The effect of the epidemic on the employment level is

two-fold. First it reduces the number in employment directly by f(λ), where f(1) = 1, and f(λ)

is an increasing function of λ, with f ′′(λ) ≤ 0, for λ in the range 0 < λ ≤ 1. In the extreme

scenario where the incidence of social distancing is uniform across all individuals and all sectors of

the economy, we have f(λ) = λ. But in practice the fall in employment is likely to be less than

proportional since some who work from home are less affected by social distancing as compared

to those who are fired because of down-sizing and firm closures. It is also possible to mitigate the

negative employment effects of social distancing by focussing on sectors of the economy that are

less affected by social distancing, by embarking on intensive and targeted testing, contract tracing,

and by more extensive use of protective clothing and equipment. To capture such effects we set

f(λ) = 1− (1−λ)α, with α ≥ 1. As required f(1) = 1, and f ′(λ) = α(1−λ)a−1 > 0. We refer to α

as the elasticity of employment loss with respect to the degree of social distancing, λ. The direct
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employment effect of social distancing will be less adverse for values of a > 1. In what follows, in

addition to the baseline value of α = 1, we also consider α = 2, under which a reduction of λ from

1 to 1/2, for example, reduces the employment rate by 1/4 as compared to 1/2 if we set α = 1.

In addition to this direct effect, the employment level also falls directly due to the number of

infected individuals, It(λ), which also depends on λ. Recall that It(λ) is increasing in λ. There

will be more infected individuals the higher the level of exposure to the virus. Overall, the rate of

employment during the spread of the epidemic is given by

et(λ) = f(λ)et − it(λ). (20)

The associated employment loss is then

`t(λ) = et − et(λ) = [1− f(λ)] et + it(λ), for t = 1, 2, ..., T. (21)

This relationship represents a trade off between the opposing effects of high and low exposures to

the epidemic on the rate of employment. In the event of a high exposure the first term of (21) will

be small relative to the second term, and when exposure is low the direct employment loss is much

higher than the indirect loss due to the spread of infection. It is also important to bear in mind

that employment losses can vary considerably over the course of the epidemic.

Figures 4 shows the time profile of the simulated values of employment losses, `t(λ), for selected

values of λ = 0.5, 0.25 and 0.1, with α = 1. We focus on exposure rates of 50% and less, since

our estimates of λ to be discussed tend to be rather small. The losses are computed with daily

employment rates set to et = 0.6, which is approximately equal to the mean ratio of employment

to population in the US during the last quarter of 2019. As before, the simulated values for it(λ)

are obtained using the SIR model with the parameters R0 = 3, γ = 1/d = 1/14, and the initial

values i1(λ) = λ/1000, and i2(λ) = [1− γ + (γR0/λ) s1 (λ)] i1(λ), where s1(λ) = λ− i1(λ).

As to be expected, employment losses mount up as the rate of exposure to the disease is reduced

from 50% to 25% and right down to 10%. It is also evident from Figure 4 that with the flattening of

the infection curve, as λ is reduced, employment losses stabilize and remain high for the duration
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of the epidemic. However, as noted earlier, the extent of the losses from reducing λ very much

depends on α. As can be seen from Figure 4, when a = 1 the losses can be quite substantial, as

everyone who is isolated has a full charge on the economy. When a = 2, the adverse effects of

social distancing are somewhat mitigated, but could still be considerable for values of λ below 25%.

See Figure 5 which shows the simulated employment losses for a = 1 (blue) and a = 2 (red) with

λ = 0.25.

Figure 4: Simulated employment losses for α = 1 and the values of λ = 0.5 (blue), 0.25 (red)

and 0.10 (green)

Figure 5: Simulated employment losses for λ = 0.25 and the values of employment loss elasticity,

a = 1 (blue) and a = 2 (red)
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A summary of average simulated employment losses for different values of λ and α is provided

in Table 1. In this table we also give estimates for λ = 1 (case of no social distancing) and

λ = 0.75 representing a moderate degree of social distancing. We also computed the simulated

losses allowing for voluntary social distancing, but the results in Table 1 were not much affected.

The results confirm that average losses over the duration of the epidemic (simulated to be 120

days) can be significant, but can be somewhat mitigated by working from home and by enabling

a select group of workers to take part in productive activities under medical supervision (through

regular testing for the disease) and by providing the necessary protective equipment for their own

and other people’s safety.

Table 1: Simulated average employment loss (in per cent per annum) due to epidemic under

different social distancing (λ) and economic impact (α) scenarios

Employment loss elasticity Social distancing coeffi cient (λ)

α 1.0 0.75 0.50 0.25 0.10

1.0 3.6 7.7 11.8 15.9 18.4

1.5 3.6 5.2 8.9 13.9 17.4

2.0 3.6 4.0 6.8 12.2 16.6

Notes: This table reports results of a simulation of the epidemic under different social distancing (λ) and economic impact (α)

scenarios. The epidemic is simulated using SIR model with R0 = 3 and γ = 1/14. λ is the fraction of the population exposed

to the virus. α determines the economic cost of the isolation measures, as defined by (1− λ)a. The losses are given in per cent
per annum over 120 days which is the simulated length of the epidemic.

The calibration of λ is a complicated undertaking and could differ across economies. In the case

of the U.S., it is possible to estimate λ from the recently stated aims by US administration to limit

the number of fatalities due to the COIVD-19 to less than 200, 000. Assuming a death rate of 1%,this

requires limiting the cumulative number of infected cases to C∗ = 200, 000/0.01 = 20, 000, 000. For

a given λ and the reproduction ratio of R0 = 3, we have C∗/PUS = 2λ/3, which gives the estimate

λUS = (20/320)(3/2) = 0.094, assuming a US population of 320 million. The implied value of λUS
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would need to be even lower if a higher death rate is assumed, as the current US data suggests.4

With λUS at 10%, the employment loss over the duration of the epidemic (estimated to be around

120 days), could be as much as 18.4% at an annual rate when α = 1, but gets reduced to 16.6 per

cent per annum when α = 2.

5 Fitting the modified SIR model to the data: estimation of re-

moval and exposure rates

Whilst calibration can be helpful in counterfactual analysis, it is also desirable to obtain estimates

of λ from realized outcomes. This is fortunately possible using data on COIVD-19 from Chinese

provinces over the period January to March 2020. We also report estimates for a selected number

of countries, but these estimates should be considered as preliminary since at the time of writing

many of these epidemics are still unfolding. The attraction of using data from Chinese provinces is

two-fold. First we have complete daily time series data that cover the full duration of the epidemics

with slightly different start dates. Second, we can investigate the differences in parameter estimates

(particularly λ) for the Hubei Province, the epicenter of the epidemic in China, as compared to the

estimates for other provinces.

Our focus is on estimating the removal rate, γ, and the social distancing coeffi cient, λ. We

base our estimation on equations (4) and the solution for it given by (11). However, it is widely

acknowledged that in the absence of large scale testing and given the asymptomatic nature of the

disease in the case of many infected individuals, the recorded numbers of infected and recovered

cases of COIVD-19 most definitely underestimate the true numbers of such cases. Before proceeding

therefore we need to address this challenge.

5.1 Adjusting for under-reporting and other measurement errors

To allow for under-recording of infected cases, and other related measurement errors, we distinguish

between the true and reported (confirmed) measures. We denote the true measures of infected and

4At the time of writing the death rate of COIVD-19 in the U.S. is around 4% using reported number confirmed
cases. But as argued below, due to under reporting of infected cases the true death rate is likely to be around 2%.
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recovered cases by C̃t and R̃t, respectively, and denote the corresponding reported statistics by Ct

and Rt. Let πt be the ratio of confirmed to true cases, and suppose that

πt = πevt−0.5σ
2
, (22)

where π (0 < π < 1) is a fixed fraction, and vt is IIDN(0, σ2). The assumption that πt follows a

log-normal distribution is made for convenience and can be relaxed, and ensures that E(πt) = π.

It is also worth noting that V ar (πt) = π2(eσ
2 − 1). The inverse of π measures of the degree

of under-reporting and is referred to as the multiplication factor (MF) in the literature—see, for

example, Gibbons et al. (2014). It is also reasonable to expect that the same fraction, πt applies

to recovered cases. Under these assumptions we have

Ct = πtC̃t = πevt−0.5σ
2
C̃t, and Rt = πtR̃t = πevt−0.5σ

2
R̃t, (23)

which also yield

It = Ct −Rt = πevt−0.5σ
2
Ĩt, (24)

where It and Ĩt are the reported and the true number of active cases, namely the number of

individuals that remain infected in day t.

The theoretical equations (4) and (11) are derived in terms of the true measures, ı̃t = Ĩt/P ,

and r̃t = R̃t/P , but for estimation purposes they need to be cast in terms of the reported statistics,

namely it = It/P and rt = Rt/P . Using (23) and (24) in the equation for the recovery rate, (4),

we have

rt+1 = evt+1−vt (rt + γit) ,

which yields the following estimating equation

rt+1 = ρ rt + (γρ) it + εt+1, (25)

where ρ = eσ
2
, and under the assumption that vt are IIDN(0, σ2), it follows that E (εt+1 |rt, it ) = 0.
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It is interesting to note that the MF, 1/π, does not enter the equation for rt+1, and both of the

unknown parameters, σ2 and γ can be estimated from the OLS regression of rt on rt−1 and it.

Similarly, using (24) to replace the true values ı̃t in (11) we obtain

it+1 =
(
i2t /it−1

)
ρ3 +

(
ρ2γR0
πλ

)[
itit−1 (1− γ)− ρi2t

]
+ ξt+1, (26)

where ρ = eσ
2
, E

(
ξt+1 |it, it−1

)
= 0. For a given value of ρ, γ and R0 the above non-linear

regression can be used to provide estimates of πλ. Thus, to estimate λ we need to make an

assumption regarding, π, which we address below.

5.2 Estimates of recovery and social distancing rates

We allow recovery rates, γj , to differ across Chinese provinces reflecting possible differences in their

demographics and the availability of medical facilities. Let γj be the recovery rate in province j,

and consider the regressions5

rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1, for j = 1, 2, ..., N, (27)

where rjt and ijt are measured as

rjt = (REjt +Djt)/Pj , and Ijt = Cjt −REjt −Djt,

in which Cjt, REjt and Djt are daily time series data obtained from Johns Hopkins University

Coronavirus Resource Center, corresponding to the cumulative number of confirmed, recovered

and deceased cases for province/country j, respectively.6

5Here the recovery rate includes both the recovered and the deceased, and strictly speaking should be referred to
as the removal rate. But in line with the literature we use "recovery rate" in place of the "removal rate".

6Available at https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data. Cjt is the
number of confirmed cases taken from file time_series_covid19_confirmed_global.csv, REjt is the number of recov-
ered taken from file time_series_covid19_recovered_global.csv, and Djt is the number of deceased taken from file
time_series_covid19_deaths_global.csv.
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5.2.1 Estimates for Chinese provinces

The estimates of γj for 21 Chinese provinces are summarized in Table 2.
7 As noted above, the

estimation of γ does not depend on under-recording of infected cases, but could depend on the

random component of the measurement equations (23) and (24). The extent of this type of mis-

measurement is given by the estimates of σj which we also report in Table 2. Recall that σ2j = ln(ρj),

and ρj , for j = 1, 2, ..., 21 are identified from regressions, (27). As can be seen, the estimates of

recovery rates, γj , do not differ much across the provinces and lie in the range of 0.033 (for Beijing)

and 0.066 (for Hebei), with the mean across all the provinces given by γ̂MG = 0.046, with a

standard error of 0.17%.8 The random measurement errors are also relatively unimportant, with

the estimates of σj falling within the range (0.06 − 0.10) across the 21 provinces.9 The mean

estimate, γ̂MG = 0.046, corresponds to around 22 days on average from infection to recovery or

death, with the rather narrow 95% confidence interval of 20 to 23 days. Hubei and Beijing have

the lowest recovery rates, and Hebei, Hunan and Guinzhu provinces the highest. These estimates

are all longer than the 14 days typically assumed in designing quarantine policies and, as we shall

see, this has important implications for the estimates of the social distancing coeffi cient, λ.10

Next, we report estimates of λj by running the non-linear regressions in (26) for each province

separately. We consider two choices for ρ and γ, namely the province-specific estimates, ρ̂j , γ̂j ,

reported in Table 2, and the pooled estimate, ρ̂j = 1.0072, γ̂MG = 0.046. Regarding the choice

of R0, we consider 2.5 and 3, which are in the range of values reported in the recent report from

Imperial College, Ferguson et al. (2020). But we only report the results for R0 = 3, to save space.

The estimates of λ for other values of R0 differ only in scale and can be easily obtained if desired.

7We dropped those provinces where the number of active cases did not exceed 100 during the period up to the
end of February. This leaves 21 provinces: Hubei, Guangdong, Henan, Zhejiang, Hunan, Anhui, Jiangxi, Shandong,
Jiangsu, Chongqing, Sichuan, Heilongjiang, Beijing, Shanghai, Hebei, Fujian, Guangxi, Shaanxi, Yunnan, Hainan,
and Guizhou.

8The standard errors for the mean group estimator, γ̂MG = n−1
∑n
j=1 γ̂j , is computed using the formula given in

Pesaran and Smith (1995), and as shown in Chudik and Pesaran (2019), they are robust to weak cross correlations
across the provinces.

9 It is indeed reassuring to note that all the 21 estimates of ρj , computed from separate regressions, are all larger

than 1, and yield reasonable estimates for the standard error of the measurement errors, defined by σj =
√
ln(ρj).

10The medical evidence documented in Ferguson et al. (2020) implies a value for γ in the range 0.048 to 0.071,
with our empirical evidence suggesting that values at the lower end of this range might be more appropriate.
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Note from equation (26) that using time series data on it, we are only able to identify πλ/R0, and

other data sources must be used to set R0 and π.

Finally, we calibrate the proportion of under reporting, π, or its inverse, 1/MF , using the

data from the Diamond Princess cruise ship reported in Morbidity and Mortality Weekly Report,

Moriarty et al. (2020). This case could be viewed as quasi-experimental. It is reported that out

of 3,711 passengers and crew 712 had positive test results for SARS-Cov-2, with only 381 being

symptomatic with the remaining 311 asymptomatic at the time of testing. Since all of those on

board are tested, it is reasonable to assume that the true number of infected individuals is C̃ = 712,

and in the absence of complete testing the confirmed number of symptomatic cases C = 381, since

those without any symptoms would have been overlooked in the absence of complete testing. These

statistics suggest π̂ = C/C̃ = 381/712 = 0.535 or MF = 1.9, which we round to MF = 2. This

estimate is preliminary but seems plausible when we consider the death rate reported for China

and the death rate on Diamond Princess. It is widely recognized that the death rate of COIVD-19

based on confirmed infected cases could be grossly over-estimated, again due to under testing, and

under estimation of C̃. It is therefore interesting to see if we can obtain a death rate for China

which becomes closer to the death rate observed on Diamond Princess of 1.3%, if we adjust upward

the number of confirmed cases by MF = 2. Based on confirmed cases and the number of deaths

in China (at the time of writing) the crude death rate is dChina = C/D = 3, 335/81, 865 = 4.07%.

But assuming that D = D̃, and setting MF = 2, the true death rate in China reduces to

d̃China =
D̃

C̃
=
D

C
.
C

C̃
= 2.03%.

This is still somewhat larger than the death rate of 1.3% reported for Diamond Princess, but could

still be close to the truth, noting that on average access to medical facilities for the passengers

and crews on Diamond Princess might be better as compared to China where most of the fatalities

occurred at the epicenter of the epidemic in Hubei province without much warning or preparation

at the start of the epidemic. In view of these results we set π = 0.5 and compute province-specific

estimates of λj with R0 = 3 by running the regressions.11

11The death rate of COIVD-19 in other countries where the epidemic is still at its early stages is likely to be further
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Estimates of λj (per 100,000 of population) for Chinese provinces are reported in Table 3 using

the full sample and a subsample. Initially, we focus on the full sample estimates. The left panel

of Table 3 gives the results when the province-specific estimates of ρj and γj are used, whilst

the right panel reports the estimates of λj based on the pooled estimates of ρ and γ, namely

ρ̂j = ρ̂MG = 1.0072, and γj = γ̂MG = 0.046. The reason for including the pooled estimates is

to investigate the robustness of the exposure rates, λj , to the choice of the recovery rate and the

extent of measurement errors. As it turns out, both sets of estimates are quite close, with the

ones based on the pooled estimates slightly larger. The largest difference between the two sets

of estimates is obtained for Hubei province (the epicenter of the epidemic), namely 16.31 (1.76)

when we use province-specific estimates of ρj and γj , and 23.74 (2.74), when we use the pooled

estimates (ρ̂MG and γ̂MG).
12 Despite this difference, both estimates of λ for Hubei province have a

high degree of precision and are statistically highly significant, with their 95% confidence interval

overlapping. What is striking is the large difference between the estimates for Hubei and the rest of

the Chinese provinces. Outside the epicenter the estimates of λ are much smaller in magnitude and

range between 0.09 and 0.87, irrespective of whether we use province-specific or pooled estimates of

ρ and γ. In fact the mean group estimates of λ across these provinces (excluding Hubei) are almost

the same, namely 0.393 (0.05), and 0.389 (0.05), respectively. Thus on average the exposure rate in

Hubei is estimated to be some 40−60 times higher than the average exposure rate of the provinces

outside of the epicenter. This makes sense, since it is likely that it took the Chinese authorities

some time before they managed to put into effect very stringent social distancing polices that were

required to reduce λ substantially across China. Looking at the estimates of the province-specific

exposure rates outside Hubei, we also see a remarkably low degree of heterogeneity consistent with

a firm and homogenous imposition of social distancing policies, following what had been learned at

the epicenter of the epidemic.

As can be seen from Figure 6, the regressions for ijt fit reasonably well and trace the epidemic

curves accurately for all 21 Chinese provinces that we consider. Here, it is also notable that the time

to the peak of the epidemic curve is about 4 weeks for most provinces, and the time to completion is

biased upward due to the long delay (4 weeks or more) between infection and death.
12The figures in brackets are standard errors of the estimates.
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around 8 weeks. It is clear that epidemic curves this flat could not have materialized if it were not

for the very stringent social distancing policies implemented by the Chinese authorities, as reflected

in the very low estimates of λj that we obtain, particularly once we consider provinces outside of

the epicenter of the epidemic.

Thus far, we have focussed on Chinese data since they represent completed epidemic cycles

across all 21 provinces. In contrast, at the time of writing, the peak of the epidemic has not been

reached for other countries, where the first reported cases came a few weeks after China. So we

now turn our attention to other countries, considering only those countries for which we have a

suffi cient history for a reliable estimation of λ. Before proceeding, for an accurate comparison with

China, we report estimates of γ and λ for the same 22 Chinese provinces over a subsample ending

on 20th of February (covering the initial stages of the epidemic before reaching its peak). For this

subsample the estimates of γ (and ρ) are summarized in Table 4, which are directly comparable to

the full-sample estimates in Table 2. As can be seen, for γ we obtain much smaller estimates when

we use the subsample as compared to the full sample, with a mean estimate of 0.018 compared to

the full-sample estimate of 0.046, possibly reflecting the fact that before the peak of the epidemic

the data do not capture the recoveries and deaths that will materialize in the following three weeks.

It is therefore reasonable to expect that removal rates in other countries will converge to the very

precise estimates for China that we have already reported for the full sample in Table 2.

Subsample estimates of λ are presented in Table 3. For λ the point estimates based on the

two samples are very close, in line with the news reporting/anecdotal evidence of stringent and

consistent implementation of social distancing. Remarkably, these estimates continue to be very

precisely estimated. A visual comparison between the estimates of λ based on the full and the

subsamples is given in Figure 7. As can be seen, the estimates of λ are essentially the same for the

two sample periods, with the exception of the estimates for Shandong province where the subsample

estimate of λ is larger than the full-sample estimate. This could be due to the fact that outside the

epicenter, Shandong is the only province to experience a second wave in mid course, as is evident

from the plot of active cases for Shandong in Figure 6.
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Table 2: Estimates of the recovery rates (γj) for Chinese provinces

γ̂j (s.e.) ρ̂j (s.e.) σ̂j

Hubei 0.035 (0.0030) 1.0088 (0.0018) 0.09

Guangdong 0.042 (0.0032) 1.0070 (0.0018) 0.08

Henan 0.054 (0.0054) 1.0072 (0.0025) 0.08

Zhejiang 0.044 (0.0038) 1.0073 (0.0019) 0.09

Hunan 0.056 (0.0039) 1.0055 (0.0017) 0.07

Anhui 0.049 (0.0052) 1.0081 (0.0026) 0.09

Jiangxi 0.047 (0.0049) 1.0081 (0.0025) 0.09

Shandong 0.046 (0.0060) 1.0084 (0.0030) 0.09

Jiangsu 0.055 (0.0045) 1.0063 (0.0021) 0.08

Chongqing 0.043 (0.0039) 1.0077 (0.0021) 0.09

Sichuan 0.040 (0.0034) 1.0081 (0.0019) 0.09

Heilongjiang 0.043 (0.0052) 1.0086 (0.0030) 0.09

Beijing 0.033 (0.0042) 1.0053 (0.0028) 0.07

Shanghai 0.043 (0.0065) 1.0034 (0.0034) 0.06

Hebei 0.066 (0.0058) 1.0060 (0.0023) 0.08

Fujian 0.039 (0.0051) 1.0078 (0.0029) 0.09

Guangxi 0.037 (0.0051) 1.0093 (0.0031) 0.10

Shaanxi 0.044 (0.0051) 1.0074 (0.0027) 0.09

Yunnan 0.041 (0.0068) 1.0085 (0.0038) 0.09

Hainan 0.052 (0.0078) 1.0080 (0.0037) 0.09

Guizhou 0.056 (0.0079) 1.0049 (0.0038) 0.07

MG estimates 0.046 (0.0017) 1.0072 (0.0003) 0.08

Notes: Estimation is based on regression rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1, where σj =

√
ln(ρj). See also (27). Sample is

Jan-22 to March-31, 2020 (T = 70) with the exception of Hubei which is estimated using the sample Jan-22 to Apr-6 (T = 76).
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Table 3: Estimates of exposure rates (λj) per 100,000 population for Chinese provinces

(π = 0.5, R0 = 3)

Using province-specific estimates ρ̂j ,γ̂j Using pooled estimates ρ̂MG, γ̂MG

Full sample Subsample Full sample Subsample

λ̂j (s.e.) λ̂j (s.e.) λ̂j (s.e.) λ̂j (s.e.)

Guangdong 0.441 (0.042) 0.431 (0.044) 0.491 (0.044) 0.484 (0.046)

Henan 0.610 (0.099) 0.571 (0.115) 0.501 (0.085) 0.457 (0.093)

Zhejiang 0.610 (0.079) 0.599 (0.110) 0.643 (0.084) 0.633 (0.117)

Hunan 0.663 (0.108) 0.677 (0.146) 0.468 (0.072) 0.472 (0.095)

Anhui 0.734 (0.159) 0.692 (0.157) 0.722 (0.168) 0.675 (0.164)

Jiangxi 0.846 (0.166) 0.770 (0.176) 0.868 (0.180) 0.786 (0.190)

Shandong 0.087 (0.008) 0.200 (0.034) 0.088 (0.008) 0.216 (0.040)

Jiangsu 0.389 (0.065) 0.399 (0.075) 0.297 (0.049) 0.300 (0.057)

Chongqing 0.586 (0.106) 0.583 (0.133) 0.644 (0.118) 0.642 (0.150)

Sichuan 0.166 (0.021) 0.165 (0.026) 0.211 (0.027) 0.213 (0.035)

Heilongjiang 0.364 (0.050) 0.364 (0.057) 0.414 (0.060) 0.420 (0.072)

Beijing 0.412 (0.077) 0.444 (0.127) 0.586 (0.096) 0.644 (0.163)

Shanghai 0.498 (0.106) 0.524 (0.156) 0.451 (0.079) 0.472 (0.115)

Hebei 0.215 (0.050) 0.205 (0.070) 0.126 (0.029) 0.115 (0.037)

Fujian 0.211 (0.042) 0.194 (0.041) 0.266 (0.053) 0.251 (0.054)

Guangxi 0.106 (0.030) 0.104 (0.045) 0.156 (0.049) 0.156 (0.076)

Shaanxi 0.213 (0.040) 0.199 (0.050) 0.227 (0.043) 0.213 (0.054)

Yunnan 0.108 (0.020) 0.095 (0.019) 0.130 (0.026) 0.116 (0.025)

Hainan 0.461 (0.079) 0.463 (0.108) 0.396 (0.069) 0.395 (0.094)

Guizhou 0.131 (0.034) 0.133 (0.046) 0.096 (0.023) 0.096 (0.031)

MG estimate 0.393 (0.050) 0.391 (0.047) 0.389 (0.050) 0.388 (0.047)

Hubei 16.306 (1.764) 16.164 (2.765) 23.743 (2.720) 23.584 (4.395)

Notes: Estimation is based on regressions ij,t+1 =
(
i2jt/ij,t−1

)
ρ3j + ρ2j

(
γjR0
πλj

) [
ijtij,t−1

(
1− γj

)
− ρji2jt

]
+ ξjt+1, for

j = 1, 2, ..., 21 (provinces), with ρj , γj imposed equal to the country-specific estimates from Table 2 or their MG estimates

from Table 2. The full sample is the same as in Table 2. The subample is Jan-22 to Feb-20 (T = 30).
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Figure 6: Number of active cases in Chinese provinces (Ijt) and fitted values
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Table 4: Subsample estimates of recovery rates (γj) for Chinese provinces using the sample

ending Feb-20

γ̂j (s.e.) ρ̂j (s.e.) σ̂j

Hubei 0.013 (0.0038) 1.0656 (0.0226) 0.25

Guangdong 0.022 (0.0037) 1.0587 (0.0104) 0.24

Henan 0.025 (0.0052) 1.0636 (0.0135) 0.25

Zhejiang 0.024 (0.0047) 1.0492 (0.0115) 0.22

Hunan 0.031 (0.0064) 1.0581 (0.0124) 0.24

Anhui 0.009 (0.0042) 1.1391 (0.0161) 0.36

Jiangxi 0.006 (0.0037) 1.1422 (0.0150) 0.36

Shandong 0.019 (0.0045) 1.0739 (0.0140) 0.27

Jiangsu 0.019 (0.0049) 1.1020 (0.0129) 0.31

Chongqing 0.019 (0.0038) 1.0840 (0.0109) 0.28

Sichuan 0.013 (0.0062) 1.0823 (0.0208) 0.28

Heilongjiang 0.016 (0.0077) 1.0785 (0.0373) 0.27

Beijing 0.014 (0.0063) 1.0681 (0.0231) 0.26

Shanghai 0.020 (0.0089) 1.0819 (0.0226) 0.28

Hebei 0.026 (0.0073) 1.0830 (0.0164) 0.28

Fujian 0.012 (0.0050) 1.0916 (0.0199) 0.30

Guangxi 0.009 (0.0079) 1.1034 (0.0373) 0.31

Shaanxi 0.010 (0.0042) 1.1194 (0.0156) 0.34

Yunnan 0.002 (0.0080) 1.1609 (0.0382) 0.39

Hainan 0.027 (0.0144) 1.0621 (0.0373) 0.25

Guizhou 0.038 (0.0140) 1.0434 (0.0349) 0.21

MG estimate 0.018 (0.0019) 1.0862 (0.0067) 0.29

Notes: Estimation is based on regression rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1. See also (27). Sample is Jan-22 to Feb-20

(T = 30).
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Figure 7: Full sample and subsample estimates of exposure rate (λ) per 100,000 population

across Chinese provinces (π = 0.5, R0 = 3)

Note: Full sample results are based on the same samples as in Table 2. The subsample estimates are based on the sample

Jan-22 to Feb-20, 2020. ρj , γj are country-specific as estimated in Table 2.

5.3 Estimation results for selected countries

Bearing in mind the preliminary nature of these estimates using a subsample that covers the first

phase of the epidemic, we now provide estimates for a selected number of countries with at least 30

days of reported active cases. Specifically, we consider South Korea, Iran and a selected number of

European countries (Spain, Italy, France, Germany, United Kingdom, Belgium, Switzerland, and

Austria).13 Additional countries can be included as the epidemic spreads and moves to its later

stages in the rest of the world.

The estimates of γ and ρ for these countries are summarized in Table 5. Estimates of γ are

generally lower than the ones we obtain for Chinese provinces, using the full sample, implying longer

removal times. In some cases, they are also less precisely estimated. Nevertheless, these country

estimates are remarkably close to the estimates we obtained in Table 4 for Chinese provinces, when

13The fitting of epidemic curves for the United States or its counties is hampered by the lack of data for recovered
cases. Due to the absence of minimally reliable data on recoveries, JHU stopped reporting these statistics at the US
state level on March 9, 2020. Given the large variation in social distancing policies across US states and counties, it
would be misleading to report a country-wide estimate of λ for the country as a whole.
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we used the subsample. It is therefore reasonable to conjecture that the mean estimate of γ across

European countries and elsewhere will end up converging to the mean estimate of γ = 0.046 that

we have provided for China using the full samples.

The estimates of exposure rates, λ, for the selected countries are summarized in Table 6, with

the left panel giving the estimates using country-specific estimates of ρ and γ from Table 5, and the

right panel using the pooled estimate of ρ and γ from Chinese provinces, namely ρ̂MG = 1.0072,

γ̂MG = 0.046, which are arguably closer to their true values. This choice is driven by our belief

that the pooled estimates based on the full set of data from Chinese provinces provide a more

reliable benchmark for these parameter values for countries with advanced scientific and medical

capabilities and are possibly less likely to be biased as compared to the MG estimate for the selected

countries in Table 5.

As can be seen, there is a great deal of heterogeneity in the estimates of λ across the selected

countries, partly reflecting differences in the mitigation polices adopted. However, most of these

estimates are much larger than those obtained for Chinese provinces ex-Hubei. Strikingly, and

unfortunately, these estimates are 3-6 times larger than in Hubei, reflecting a massive failure at

learning from the Chinese earlier experience with firm and uniform social distancing. With the

exception of Iran, South Korea, and Austria the estimates of λ for the European countries in our

sample are all either comparable or much higher than estimates we have obtained for the Hubei

province. In particular, Italy, Spain and Belgium stand out with the largest estimates, all more

than multiple times as high as Hubei. Again, remarkably, even though less precisely estimated than

in the case of Chinese provinces sub-samples, these estimates continue to be relatively precise. We

therefore have confidence that, as more data will become available, a very precise estimate of the

actual degree of social distancing adopted will be measurable from the data.
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Table 5 Estimated values of recovery rates (γj) for a selection of countries

γ̂j (s.e.) ρ̂j (s.e.) σ̂i Sample T

Spain 0.054 (0.0015) 1.000 . . 25-Feb to 12-Apr 46

Italy 0.026 (0.0010) 1.000 . . 20-Feb to 12-Apr 51

France 0.035 (0.0025) 1.000 . . 26-Feb to 12-Apr 45

Germany 0.045 (0.0124) 1.023 (0.022) 0.15 24-Feb to 12-Apr 47

United Kingdom 0.016 (0.0006) 1.000 . . 24-Feb to 12-Apr 47

Iran 0.007 (0.0171) 1.081 (0.020) 0.28 20-Feb to 12-Apr 51

Belgium 0.041 (0.0056) 1.003 (0.013) 0.05 02-Mar to 12-Apr 40

Switzerland 0.037 (0.0098) 1.039 (0.018) 0.20 28-Feb to 12-Apr 43

Austria 0.023 (0.0037) 1.077 (0.010) 0.27 28-Feb to 12-Apr 43

South Korea 0.022 (0.0071) 1.020 (0.010) 0.14 19-Feb to 12-Apr 52

MG estimate 0.031 (0.0043)

Notes: Estimation is based on regression rj,t+1 = ρj rjt +
(
γjρj

)
ijt + εj,t+1.

Table 6: Estimated values of exposure rate (λj) per 100,000 population for a selection of

countries (π = 0.5, R0 = 3)

Using country-specific Using pooled

estimates ρ̂j ,γ̂j estimates ρ̂MG, γ̂MG

λ̂j (s.e.) λ̂j (s.e.)

Spain 457.9 (256.9) 117.8 (19.5)

Italy 252.4 (153.8) 117.8 (12.7)

France 25.8 (4.6) 34.5 (5.5)

Germany 23.6 (1.7) 43.9 (6.6)

United Kingdom 47.2 (18.2) 79.6 (13.0)

Iran 0.8 (0.1) 17.3 (2.9)

Belgium 172.9 (52.7) 120.8 (20.9)

Switzerland 24.8 (1.5) 65.4 (10.9)

Austria 6.8 (0.3) 47.7 (6.9)

South Korea 1.6 (0.2) 5.5 (0.8)

MG estimate 101.4 (37.4) 65.0 (23.7)

Notes: Estimation is based on regression ij,t+1 =
(
i2jt/ij,t−1

)
ρ3j + ρ2j

(
γR0
πλ

) [
ijtij,t−1 (1− γ)− ρi2t

]
+ ξt+1, using the same

sample as in Table 3. The left part of this table reports results using country-specific estimates ρ̂j ,γ̂j , and the right part of

this table uses pooled estimates ρ̂MG, γ̂MG from Table 2
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6 Conclusions

This paper makes two related contributions. At the theoretical level, it integrates social distancing

polices in a standard SIR model in order to evaluate their impact on both the COVID-19 epidemic

and the associated employment costs. The framework distinguishes between mandatory and vol-

untary isolation. Critically, it is shown with simulations that, while targeted mandated policies

can be very useful in flattening the epidemic curve, voluntary policies are relatively ineffective.

Self-isolation can affect the epidemic curve, but only when it is close to its peak. We also show that

mandating social distancing is very effective at flattening the epidemic curve, but is costly in terms

of employment loss. However, if targeted towards individuals most likely to spread the infection,

the employment loss can be somewhat reduced.

At the empirical level, using JHU daily COVID-19 statistics corrected for measurement errors,

the paper provides estimates of province-specific recovery (γ) and exposure (λ) rates in China and

in a selected number of countries, and shows that the rate of exposure to COVID-19 was around

40− 60 times higher in Hubei at the epicenter of the epidemic compared to the rest of China. We

find a very high degree of effective isolation, stable over time, and homogeneous across Chinese

provinces. In contrast, we document lower and more heterogeneous degrees of effective isolation

across European countries, and the degree of effective isolation turns out to be the lowest in Italy

and Spain with an exposure some five times larger than our estimate for Hubei province, the

epicenter of the epidemic in China.

As more and more reliable data becomes available, extending the empirical analysis to the

United States and its metropolitan areas, as well as other countries worldwide, is an essential area

of further research.

A further challenge is to relate the elasticity of employment loss, α, to the way social distancing

policies are implemented, including intensive testing and contact tracing. These are important

topics of current and future research.
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The coronavirus crisis hit fast all around the world. Its unprecedented nature and the response
to it through social distancing led to massive reduction in economic activity. In Norway, where our
data comes from, the measures were announced on March 12th and during the following few weeks
360,000 people (approximately 12% of the labor force) signed up for unemployment benefits, as
Figure 1 demonstrates.

Figure 1: Unemployment benefits applications in Norway 3/1-4/19/2020
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Note: Temporary and permanent layoffs refer to persons who have applied for unemployment benefits under the temporary or
regular schemes of the UI program. Regular claims may include, in addition to dismissals, persons who have completed a fixed
term employment contract. For each applicant we classify the person as temporarily or permanently laid off based on the latest
filed application.

In the Norwegian context, workers filing for unemployment benefits may be laid off temporarily
or permanently. Approximately 90 percent of the layoffs during the period covered here are tempo-
rary. That means that most of those applying for benefits retain employment relationships. There
is, of course, a risk that temporary layoffs may turn into permanent layoffs later on. Berg et al.
(2015), for example, shows that during the recession of 1993-95, about 15% of temporary layoffs
did not return to the previous job. Previous studies also show that those exposed to unemployment
during a temporary economic crisis have higher risk to be out of work in the longer term; see e.g.
Yagan (2019).

On March 16, the Norwegian parliament agreed to change the rules for layoffs with immediate
effect. Laid off workers will be paid full wages (up to an income limit of approximately NOK
600,000 — about USD 56,000) for the first 20 days. Afterwards, the benefits will be equal to 80%
of income under NOK 300,000 and 62.4% for income between NOK 300,000 and 600,000. There is
no compensation for lost income above NOK 600,000. Additionally, employers’ responsibility for
the first period of full pay was reduced from 15 to 2 days.

These changes in layoff regulations have been followed by additional crisis responses aimed at
preventing bankruptcies, maintaining activity in municipalities and increased support for temporary
training of laid off and unemployed.

We use almost real-time unemployment claims information linked to administrative registry data
on past characteristics of individuals and firms to characterize which individuals and businesses were
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most affected, how the effect unfolded over the first few weeks, and the role that policy played in
the process.

In this article, we take a closer look at who was most affected by the crisis during the first
few weeks, both by loss of work through temporary or permanent layoff, and by being exposed
to infection risk through work with socially critical functions. The article delves into a research
literature that has studied heterogeneous effects of economic crises; see, for example, Hoynes et al.
(2012), who find that the financial crisis in the United States has particularly affected minority
groups, youth, and those with low education. Studies from Germany, Britain and Norway have
also shown that immigrants are particularly vulnerable to economic fluctuations (Dustmann et al,
2010; Bratsberg et al, 2010; 2018). However, the crisis we are facing now is unique, both in terms
of how quickly it has occurred, how many are affected, and not least in its underlying origins. It
is thus far from obvious that studies of previous economic fluctuations provide a good basis for
assessing the distributional effects of the crisis we are currently experiencing.

This paper also contributes to emerging literature on the impact of the crisis on the labor
market and it does so with real-time administrative data rather than relying on survey-based or
partial industry-based information (see for example Adams-Prassl et al, 2020, Bartik et al 2020,
and Coibion, Gorodnichenko and Weber, 2020).

We have six main findings. First, layoffs started in sectors of the economy directly affected
by the policy measures but then quickly spilled over to the rest of the economy so that after 4
weeks 2/3 of layoffs are accounted for by businesses that were not directly targeted. Second, close
to 90% of layoffs are temporary rather than permanent and while this classification may change
as the crisis progresses, that is one glimmer of hope in the data. Third, while permanent layoffs
are a minority, they still correspond to a 1.5 percentage point increase in unemployment — an
unprecedented monthly change. Fourth, the layoffs have a strong socio-economic gradient and
hit financially vulnerable populations. Fifth, there are hints of the important role of childcare
— within firms, layoffs appear to be skewed toward workers with younger children, in particular
toward women. Finally, layoffs are more common in less productive and financially weaker firms so
that the employment loss may be overstating total output loss (although, the potential unobserved
offsetting consideration is the possibility of underemployment of those that remained on the job).

1 The data

The primary database for this article is all individual unemployment benefit applications in Norway
during the period from March 1st to April 19th 2020, with information on whether the applications
concerned ordinary unemployment or temporary layoffs. This means that in practice the analysis
will include wage earners, entitled to unemployment benefits. As the annual income limit for en-
titlement to unemployment benefit was lowered from approximately NOK 125,000 to NOK 75,000
in connection with the current crisis, some applicants are very low income. We do not have infor-
mation on financial problems among self-employed persons and persons whose main income comes
from contract work.
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The population includes all persons residing in Norway as of January 1st 2019, and provides in-
formation about the employer (including industry), occupation, salary, previous income, education,
age, sex, and country of birth, with links to spouse, children, and parents.

The employer has been identified on the basis of the so-called a-form, filed by all employers to the
tax authority, in December 2019. The a-form includes information on occupation, current wages,
and hours worked. Information on education is updated until October 2018, while information
on previous income from all sources covers the period 1967-2017. The latter means that we can
calculate total professional income so far in life quite precisely for the entire population.

As part of characterizing employees’ occupations, we use information from O*NET (see www.
onetonline.org), which, based on US data, provides a detailed description of the characteristics
of various occupations. This information is then linked to the Norwegian standard for occupational
classification (Hoen, 2016). In this article, one particular characteristic is of interest, namely the
degree to which the job requires physical proximity to other people. Professions are described on
a scale from 0 (do not work in the vicinity of others) to 100 (profession involves direct physical
contact with others). This variable is standardized (in the US data), so that the average is equal
to 0 and standard deviation is equal to 1.

Since our information on occupation and hourly wage is based on information somewhat back
in time, some of the employed will be “misplaced.” This will happen for people who have switched
jobs after December 2019. There are also some unemployment benefit applicants who cannot be
matched to other data. This may be because they were not resident on January 1, 2019, or did not
have a “normal” contract with an employer during 2019. Table 1 gives a more detailed description
of the data. The analysis sample, described in column 1, consists of all wage recipients registered in
2019. Our data links enable us to capture a total of 330,492 of the 362,539 unemployment insurance
applicants (91.2%) in the period in question; see columns (2) and (3). Among the approx. 32,000
applicants that we do not match, one half are not residents in the country as of January 1, 2019
(column 5). The rest fall out of our analysis because we cannot connect them to an employer in
2019 (column 4).

2 The Dynamics of the Crisis

Even though the crisis hit widely, it did not hit at random. In this section we look more closely at
which employees had to bear the negative consequences in the first few weeks. We will first and
foremost focus on who lost the job, through temporary or permanent layoffs. But we will also look
at who might bear the brunt by continuing to work in jobs with the risk of incurring infection.
This latter group consists of people in “socially critical” professions with a great deal of physical
proximity to other people, such as health personnel, nursing and care staff, and staff in grocery
stores.∗

Figure 2 shows the composition of layoffs by different types of policies. The initial measures
requiring social distancing were announced on Thursday, March 12, and the layoffs responded
immediately, with a big spike in claims immediately after the weekend on Monday March 16 when
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Table 1: Summary statistics

UI benefit applicants 3/1 - 4/19/2020
Analysis
sample

Analysis sample Not included in
analysis sample

Temporary
layoff

Permanent
layoff

Resident Non
resident

(1) (2) (3) (4) (5)
Age 40.7 38.6 35.6 39.8 37.5
Female(%) 48.5 45.7 46.6 44.9 22.8
Norwegian-born(%) 82.7 75.7 65.6 74.8 7.6
Western Europe(%) 3.6 4.5 4.2 4.4 28.4
New EU country(%) 5.0 7.8 12.3 6.2 59.4
Other countries(%) 8.7 12.0 17.9 14.5 4.6
Education (years) 13.8 12.9 12.7 12.7 12.3
Income rank 56.1 52.6 41.4
Hourly wage(NOK) 305.1 287.6 261.7
Physical proximity index 0.307 0.275 0.474

Observations 2,672,044 295,848 34,644 16,005 16,042

more generous rules (from both employee and employer’s point of view) were announced.
We decompose this increase into four different categories. Group 1 includes individuals working

in industries that were subject to the direct ban of activity (e.g., hairdressers, tattoo salons, bars).
Group 2 includes workers of businesses that were subject to an implicit ban, typically from dis-
tancing restrictions (dentists, restaurants, etc), while Group 3 are workers of businesses that were
subject to restrictions that prevented consumers from using those services, such as for hotels and
airlines. Just 1% of workers were in Group 1, 5.7% in Group 2, 4.4% in Group 3, and 88.8% of
workers were not subject to any direct regulation.
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Figure 2: Layoffs by the type of restrictions
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As a share of the group, layoffs in Group 1 were the largest, with close to 70% of the group
laid off by the end of the period; the majority of them in the first few days. Groups 2 and 3
behaved similarly — a sizable immediate increase, a slower increase afterwards, reaching over 40%
by the end of the period. These responses are not particularly surprising — they correspond to
explicit or implicit restrictions on the activity. All three of these groups add up to a bit over 10%
of employment but account for close to 1/3 of layoffs.

The remaining 2/3 of layoffs are accounted for by industries that did not face direct restrictions
on their activity. Layoffs in that group were more spread out over time — they lagged layoffs in
directly affected industries, but started building up a bit more gradually (although still with more
than half of the layoffs over the whole period happening during the first week).

Figure 3 shows decomposition of layoffs into temporary and permanent ones. They do not
follow the same time pattern — permanent layoffs build up more slowly over time. Of course,
the size of the two groups is dramatically different. Permanent layoffs can be taken as a lower
bound of employment ties that were severed permanently. In particular, the Norwegian system
does not discourage temporary layoffs, so it is unlikely that permanent layoffs would revert to an
employment relationship with the same employer at a later date. Viewed in that way, 1.5% of
employment relationships in the whole economy ended permanently in the course of four weeks
after March 12 — this would be a very large increase in unemployment at any time. In particular,
a 1.5 percentage point increase is larger than any single month change in unemployment during the
financial crisis.
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Figure 3: Temporary and permanent layoffs by the type of restrictions

0

20

40

60

80

0

1

2

3

4

3/2 3/9 3/16 3/23 3/30 4/6 4/13 4/20 3/2 3/9 3/16 3/23 3/30 4/6 4/13 4/20

A. Temporary layoffs B. Permanent layoffs

regtype 1 regtype 2 regtype 3 no regulation overall

Pe
rc

en
t l

ai
d 

of
f

Speculating somewhat, permanent layoffs are likely to be revealing businesses in severe distress
that are unlikely to survive the shock. One group of workers that may be permanently laid off
are those on fixed term contracts that expire, but it is unlikely that they constitute the majority
of the short-term effect. Otherwise, a permanent layoff in Norway requires the employer to pay
severance, so that firms are expected to prefer temporary layoffs unless they are going bankrupt
and this should be especially true at the time of a liquidity shock.
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Figure 4: Layoffs by firm size and the type of restrictions
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Figure 4 shows that the behavior of small and large firms (below/above the median of 63
employees) in industries affected directly by restrictions is quite similar, with about the same level
of layoffs and their composition into temporary and permanent ones. The main difference between
larger and smaller firms comes from the “no regulation” group in which small firms reacted much
more strongly.

3 Production loss

How large is the magnitude of the shock in terms of lost output? While direct information on
this is not yet available, we can provide a guess based on employment loss and measures of worker
productivity. Worker productivity is measured as value added (profits plus total wage bill) per
man-year. Figure 5 shows the production loss based on the assumption that all workers are equally
productive, such that the percentage loss in production corresponds to that of employment (yellow
line). This is likely an overestimate of the production loss because industries that are affected
are likely less productive. Reweighting employment loss by the average industry-level productivity
implies output loss of about 15% by the end of the period. Using a firm-specific measure of produc-
tivity allows for accounting for selection within industries. As expected (because less productive
firms are more likely to lay off employees), it attenuates the effect somewhat further.
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Figure 5: Production loss based on employment loss
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Is change in labor employed a good proxy for production loss? Of course, this is not a prediction
of the loss of output in general. It does not account for the fact that even workers who remain
employed may be less productive than they would have been otherwise. Going in the other direction,
in Norway workers may be laid off for a fraction of their time and some temporarily laid off workers
may have returned to work by April 19. At this point, our data does not allow for observing that.

4 The “social gradient” of the crisis

Figure 6 shows the incidence of socially critical risky work among all wage earners in Norway,
based on their position in the age- and gender-specific distribution of total employment income
throughout the professional career. Socially critical risky work is then defined as having a job
of critical importance, in combination with a profession that requires physical closeness beyond
the average in the whole economy. We divide the wage earners into ten equal groups by gender,
according to their position in the age- and gender-specific income distribution.

The likelihood of holding an essential job with a high degree of physical proximity to others falls
markedly with income levels, especially for men. There is also a remarkably large gender difference:
Women are far more than men exposed to the combination of critical tasks and physical closeness
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to others. As many as 24.5 percent of the female workers have such jobs, which is about twice the
corresponding proportion for men.

Figure 6: Share of employees in socially critical risk work, according to rank in age- and gender-
specific distribution of lifetime income
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Note: Critical function with a high degree of physical proximity is based on the coding of the ministries’ list of personnel groups
/ positions covered by the exception to the main rule that children should be kept home from childcare and school to prevent
the spread of infection, interacted with an indicator that the profession involves more physical closeness with others than the
average. We have removed from this category 14,995 people classified as having an essential job, who were actually laid off or
terminated in our data window. 63 percent of them come from one of the three professions salesperson in grocery / pharmacy
/ gas station, “other care worker,” or bus and tram driver. The proportion with essential work with close physical proximity
to others is 8.7 percent for men and 24.5 percent for women.

Figure 7 shows the extent of permanent and temporary layoffs for men and women by their
position in the age and gender specific income distribution. We see that the likelihood of being
hit by layoffs or termination falls sharply with income rankings. This social gradient is even more
marked for permanent than for temporary layoffs. The probability of having permanently lost work
during the first weeks of the coronavirus crisis is more than six times higher for people in the lower
income deciles than at the top. The likelihood of being laid off is a little bit higher for men than
for women.
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Figure 7: Percentage of temporarily and permanently laid-off workers according to rank in age-
and gender-specific distribution of lifetime income
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Note: The percentage of temporary layoffs in our data is 11.7 percent for men and 10.4 percent for women. Corresponding
shares of permanent layoff are 1.3 percent for men and 1.2 percent for women. The income rank is based on lifetime income. It
is calculated by summing up all income earned in the period 1967-2017 for all residents in Norway. Subsequently, all employees
are divided into ten equal groups by ranking in the income distribution. This is done within each birth cohort and separately
for men and women.

We will now take a closer look at who, in the period from March 1st to April 19th, lost the
job on a temporary or permanent basis, and who applied for unemployment benefit. We will not
separate between temporary and permanent unemployment benefits in what follows unless stated
otherwise. The distinction between these two outcomes over the longer haul is not clear, as some
of the temporary unemployed may end up being permanently dismissed

Figure 8 gives a broader idea of the socioeconomic composition of all the new claims during
the first stage of the coronavirus crisis. We see that the social gradient is clear no matter how we
capture socio-economic background. There is an overrepresentation among new unemployed people
of low-income, low-education, and low hourly wages.
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Figure 8: Layoffs by socioeconomic status
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Note: Panel A shows the number of school years associated with the highest completed education on the horizontal axis. In
panel B, the scale is the parent’s income rank, and the location of the data points is determined by a division into 10 equal
cells. Parents’ income is measured at age 52-58 for all employees born before 1983, then the measurement window is shifted
one year forward for each year the person is born after this. In Panel C, the income rank is based on their own “so far-in-life”
professional income (up to 2017) and each birth cohort and gender are ranked separately. Both in panels B and C, the rankings
were made within the entire population residing in Norway, while the division into 10 equal cells was made within the group of
workers included in our analysis.

There is also a systematic pattern by age and country of birth. This is illustrated in Figure
9. There is a clear pattern that young people have been hit harder than the elderly, and that
immigrants are more vulnerable than Norwegian-born.
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Figure 9: Layoffs by gender, age and country of birth
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Note: Native includes children born in Norway by immigrant parents. In the group “Western Europe etc.,” Sweden, Germany
and Denmark are the three largest country groups in the analysis sample. “New EU countries” includes countries with mem-
bership since 2004; Poland and Lithuania are the two largest country groups in the analysis sample. In the “Other” group, the
Philippines, Thailand, Eritrea, Somalia and Iraq are the five largest country groups.

Within our data period, few wage earners have lost income during the crisis, since the laid off
are secured full pay for the first 20 days up to an annual income of approximately NOK 600,000
(USD 56,000). However, if the crisis persists, there is a risk of significant loss of income for the
laid-off and their families. The ability of families to manage a period of reduced (or lost) income
will depend on how much income they used to have and access to liquid financial reserves. Figure 10
shows clear indications that the likelihood of being laid off or dismissed is higher for less financially
secure households. This pattern is most clearly seen in panel A (household income) and B (the
size of bank deposits), but there is also a clear systematic pattern when we look at the household’s
interest burden relative to income. Those with the greatest interest burden are at the highest risk
of being laid off or terminated. The U-shape is due to the fact that many people with particularly
low financial resources also do not have debt, primarily because a large proportion of them do not
own their own housing.
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Figure 10: Layoffs by household income and total bank deposits
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Note: Household income is adjusted for family composition (household income divided by the square root of the number of
family members) .

Having children is another important dimension of socioeconomic differences between families,
both because of the implications for the behavior of parents and because of the potential of adverse
outcomes for children. Figure 11 illustrates that families with children experienced a little bit
higher rate of layoffs at the bottom of the distribution and a bit lower at the top. Figure 11
focuses on children under 13, because this is a group for which childcare considerations are very
important. The interaction of the crisis with childcare is complex — on one hand, school closures
have an obvious consequence of creating a childcare crisis as well. The crisis package in Norway
adjusted the care benefit parents normally receive to look after their sick children to fit the current
circumstances. The days were doubled for each parent, there was no requirement of the child being
sick, and it allowed parents to transfer the days to the other parent in cases where one parent
had socially critical work. This alleviated this problem somewhat. However, laid off workers by
definition are not the ones that used the care benefit. At the same time, workers that can work
from home have a (costly, but still) ability to take care of their own children while continuing to
work. These considerations may be contributing to a different direction of the effect for lower and
higher income individuals.
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Figure 11: Layoffs depending on the presence of a child under 13 at home. By position in the age-
and gender-specific lifetime earnings distribution
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The discussion so far makes it clear that layoffs are strongly associated with a number of
socioeconomic characteristics and result in a “social gradient” of the crisis. The social gradient
mainly arises as a result of the underlying social gradient in the professional structure in Norway.
The first phase of the coronavirus crisis affected people in occupations involving close physical
contact with other people, but without essential jobs. This pattern follows, to some extent, directly
from the authorities’ decision to close or restrict some types of businesses that involve the risk of
spreading the virus, such as hairdressing salons and restaurants. The result of this is shown in Figure
12, where we show the proportion of laid-off workers by occupation, with occupations placed on the
horizontal axis according to the extent to which they involve physical proximity with other people.
The size of each data point is proportional to the size of the occupational group in our data, and
for some of the largest occupational groups we have applied a professional designation in the figure.
Figure 12 illustrates a clear positive correlation between physical proximity in the profession and
the proportion of layoffs among both women and men.
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Figure 12: Layoffs by occupation and the profession’s tendency to involve physical proximity with
others
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Note: Physical proximity at work is based on information provided by O*NET; see further description in section on data. The
data is limited to occupations in the private sector; occupation - gender combinations with fewer than 2,500 individuals are
excluded from the figure. The figures also show the regression fit of industry-gender-specific unemployment claims on physical
proximity, weighted by the number of workers in the occupation. The regression coefficient is 3.73 [0.69] for men and 4.97 [0.83]
for women.

Do industry and occupation specific impacts fully account for the presence of the gradient? We
investigate this question by regressing the likelihood of layoffs on individual characteristics and a
set of progressively more detailed fixed effects in Table 2. The sample is restricted to private sector
employees only. Without accounting for any firm or occupational characteristics, the multivariate
analysis confirms the relevance of education and hourly wage. It also indicates that younger workers
and those with shorter tenure were more strongly affected. There is an indication here that women
were more affected (this is in contrast to Figure 7 that includes both public and private sector
employees), and so were parents. Adding occupational or industry fixed effects attenuates gender,
education, tenure and wage effects, but they remain statistically significant. Accounting for industry
or occupation characteristics flips the sign of the age effect, suggesting that within industries or
occupations it may be older workers that are more strongly affected, for a given tenure. Firm and
combined firm and occupation effects attenuate most of these further somewhat.

An intriguing finding is the effect of having young children that remains almost unaffected once
firm and job fixed effects are controlled for. Furthermore, while the gender difference for those
without children disappears, the gender interaction with children becomes stronger. Once firm and
occupational differences are accounted for, the gender effect is only associated with the presence of
young children: women with young children are more likely to be laid off and this is a within-firm
and within-occupation effect. This potentially points to the employers accounting for childcare
in making layoff decisions, either unilaterally or in cooperation with employees who may prefer
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temporary layoff in the presence of childcare obligations. It may also reflect employers´ belief that
the productivity of female workers would be most strongly affected by child care obligations due to
school and kindergarten closures, although it remains puzzling why temporary layoffs rather than
the adjusted care benefit would be used.

Table 2: Socio-economic characteristics and layoffs. Private sector.

(1) (2) (3) (4) (5)
Fixed Effects

OLS Occupation Industry Firm Firm and
occupation

Female 5.246*** 1.264*** 0.518*** 0.348*** 0.158
(0.345) (0.209) (0.156) (0.125) (0.107)

Child under 13 1.012*** 1.016*** 1.102*** 0.908*** 0.844***
(0.134) (0.108) (0.106) (0.0901) (0.0874)

Female and 0.103 0.800*** 1.346*** 1.256*** 1.242***
child under 13 (0.232) (0.178) (0.163) (0.159) (0.154)
Age -0.0265** 0.0317*** 0.0644*** 0.0495*** 0.0490***

(0.0108) (0.00755) (0.00660) (0.00590) (0.00608)
Education -1.106*** -0.343*** -0.357*** -0.122*** -0.0882***
(years) (0.0559) (0.0255) (0.0249) (0.0180) (0.0174)
Tenure -0.185*** -0.143*** -0.124*** -0.103*** -0.0967***

(0.0246) (0.0160) (0.0130) (0.00994) (0.00966)
Log hourly -4.649*** -3.114*** -2.366*** -1.147*** -1.038***
wage (0.275) (0.182) (0.165) (0.122) (0.119)
N 1723833 1723833 1723833 1723833 1723833
# Fixed effects 349 571 149963 149963+349
R2 0.020 0.129 0.184 0.434 0.439
Note: The sample is restricted to private sector workers. Dependent variable is an indicator variable set to 100 if laid off
between 3/1 and 4/19. The sample mean of the dependent variable is 18.1%. Standard errors are clustered within firms and
reported in parentheses. Significance level of 1% is denoted by ***, 5% by ** and 10% by *.

Figure 13 illustrates that this gender and parental effect is not an artifact of the choice of
controls. It shows the deviation of the likelihood of layoffs from firm-specific means (residuals from
regression of the layoff indicator on firm fixed effects) for men and women, separately for those
with and without children under 13. The effect of having a child under 13 is stronger for women
than for men and in each case it is driven by workers at the bottom of the distribution.
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Figure 13: Within-firm relationship between having children under 13 and layoffs. By position in
the age- and gender-specific lifetime earnings distribution
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Note: The Figure shows the average residuals from regression of layoff indicator on firm fixed effects and should be interpreted
as a deviation from firm-specific layoff rate.

5 The driving forces behind lay off decisions

The relevance of physical proximity for layoff decisions is natural, but it masks the dynamics that
these considerations played. As Figure 14 demonstrates, this association applies to the immediate
effect of the lockdown measures. The top panels show the relationship during the first 9 days after
lockdown measures were introduced, the bottom ones show it in the weeks that followed. The
association is much stronger in the initial weeks. A one standard deviation increase in physical
proximity requirements of an occupation is associated with a very significant 2.75 percentage point
increase in layoffs for men (t-stat of over 5) and 4.82 percentage point increase for women (t-stat
of over 6). The effect weakens afterwards to 0.92 for men (still significant with t-stat of 4) and a
small and insignificant one for women. While physical proximity plays a large role in the initial
impact, it becomes less of a factor over time, suggesting the presence of spillovers to other parts of
the economy.
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Figure 14: Layoffs by occupation and the profession’s tendency to involve physical proximity with
others, over time
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Note: See Figure 12. The regression coefficients are 2.75 [0.50] and 0.92 [0.23] for men and 4.82 [0.67] and 0.15 [0.23] for women.

As the economic crisis spreads both internationally and through the economy through falling
demand for goods and services from the first affected businesses, we expect jobs with low physical
proximity and contagion risk to be affected as well. This is also what we find in the data. In Figure
15 we visualize how the composition of the new unemployment insurance applicants has changed
day by day after the layoff wave took off in earnest on Friday 13 March. While physical proximity
was a driving factor in the early days, the importance of this was greatly diminished in just a few
days. As the crisis spread through the economy, we also see that the average age is increasing and
the proportion of women is falling. In particular, while in the first few days of the crisis layoffs
were skewed toward females, this initial effect reversed quickly and by the end of the period more
men than women were laid off altogether.

When it comes to indicators of the social gradient, the picture is more mixed, and the variations
from day to day are rather moderate (note the scales on the vertical axes). We still see signs that
the average hourly wage among the laid-off increased somewhat during the first week. For all
socio-economic indicators, the affected individuals fall below the mean of the characteristic in the
analysis sample.
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Figure 15: Characteristics of laid-off workers - day by day 3/3-4/19
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Note: The size of the circles is proportional to the number of layoffs on each day. The definitions of “physical proximity at
work” are described in more detail in the section on databases. See also note to Figure 8. The figures also show the mean value
of each characteristic as a dashed line.

Which firms responded most strongly? Figure 16 shows the relationship between layoffs and a
set of firm characteristics: productivity, equity and employment. In each case there is a very strong
negative relationship between these proxies for the strength of a firm and layoffs.
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Figure 16: Characteristics of firms and layoffs
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Note: Each point corresponds to a decile of the distribution. Productivity is measured by value added. Employment represents
the number of full-time equivalent workers.

Table 3 shows that this association is strong and statistically significant and it persists even
within industries.

Table 3: Characteristics of firms and layoffs

(1) (2) (3) (4)
OLS Industry FE OLS Industry FE

Log productivity -10.13*** -3.86*** -6.90*** -3.00***
(0.54) (0.39) (0.61) (0.38)

Log equity -1.17*** -0.74***
per worker (0.20) (0.17)
Log employment -2.13*** -1.52***
(No. FTE) (0.21) (0.14)
N 1,415,131 1,415,131 1,343,602 1,343,602
R-sq 0.023 0.169 0.040 0.176
#Industry FE 536 532

Note: The sample is restricted to private sector workers working for firms that can be linked to the 2017 accounting data.
Dependent variable is an indicator set to 100 for workers laid off between March 1st and April 19th. Productivity is calculated
as operating profit plus labor costs divided by the number of man-years, where man-years are calculated on the basis of a-forms
filed in 2019 and accounting figures are based on the annual accounts for 2017. Employment is measured as the number of man-
years (FTE) and calculated fromf a-forms filed in 2019. Standard errors are clustered within firms and reported in parentheses.
Significance level of 1% is denoted by ***, 5% by ** and 10% by *.

Figure 17 shows a timeline focusing on the characteristics of the companies that are laying off
employees. In Panel A we see that the problems affect companies with higher and higher labor
productivity (measured by total wages and profits per full-time equivalent), in Panel B that they
affect larger and larger companies, and in Panels C and D that fewer and fewer of the laid-off
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workers come from companies with low equity and high debt.

Figure 17: Characteristics of private-sector enterprises laying off workers - day by day in the period
3/3-4/19
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Note: The size of the circles is proportional to the number of layoffs on each day. In Panel A, productivity is calculated as
operating profit plus labor costs divided by the number of man-years, where man-years are calculated on the basis of a-forms in
2019 and accounting figures are based on the annual accounts for 2017. In panel B, the number of man-years is calculated from
a-forms filed in 2019. In Panel C, low equity is defined as equity below NOK 40,000 per full-time equivalent. In Panel D, high
debt is high debt defined as debt that exceeds eight times equity. The figures also show the mean value of each characteristic
as a dashed line.

Figure 18 shows the extent of layoffs in selected industries, affected by the crisis in very different
ways. Hotels and restaurants were among the first industries directly affected, and during the first
days they accounted for 30-35% of the new unemployment benefit applications. In just over a week,
this percentage dropped to about 10%. Soon after, layoffs in the retail sector followed. They were
accompanied by layoffs among wholesalers that then continued in the following weeks. Layoffs in
construction were not as important initially, but then continued at a level about proportional to
the industry share. It appears that the petroleum industry has been more indirectly affected by
a dramatic fall in oil prices than the domestic response to the crisis, as indicated by the absence
of extensive layoffs during the first weeks of the crisis. The sector accounted for only 0.7% of new
unemployment claims during the initial nine days of the crisis, and 1.8% of all layoffs between
March 21 and April 19.

84
C

ov
id

 E
co

no
m

ic
s 1

5,
 7

 M
ay

 2
02

0:
 6

3-
87



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 18: Layoffs in different industries over time
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Note: The petroleum industry with 3.6 percent of total private-sector employment comprises extraction of crude oil and natural
gas, drilling and other services related to extraction, construction of platforms and modules, furnishing and installation work
and supply bases. The horizontal line represents the share of employment accounted for by a given industry

6 Summary and conclusion

The coronavirus crisis struck broadly, but not randomly. There are clear systematic patterns in
which workers are most affected. The public sector is so far shielded from layoffs, but there are
many public employees in socially critical and risk-exposed professions, especially in the health and
care sectors. Here, women are far more exposed than men, and people with low incomes are more
exposed than those with high incomes.

Among all employees, we find that the risk of layoffs or dismissals during the first phase of
the crisis is higher the lower the education, income, hourly wage and social class background of
an employee. While initially, women bear the brunt of the layoffs due to their over-representation
in sectors explicitly targeted by social distancing policy measures, over time this effect was more
than offset as the rest of the economy responded. Males are more exposed to layoffs than women,
because more men work in the private sector. Within the private sector, the gender effect is
associated with the presence of young children: women with young children are more likely to be
laid off comparing workers within the same firm and occupation by means of fixed effects. This
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points to the importance of childcare in understanding the labor market impact of the crisis (see
also Dingel, Patterson and Vavra, 2020).

As the crisis spreads, both internationally and across sectors domestically, we see signs that
unemployment seekers are coming from ever-increasing occupations in the private sector. The
companies that are laying off have also changed over time. While industries such as tourism and
businesses with low productivity and equity dominated the first few days, we see a trend towards
more “average” businesses being affected.

The Norwegian context is also useful in judging the extent to which the crisis is expected to be
permanent. In the short term, about 1/10th of layoffs are classified as “permanent” and correspond
to severing employment relationships. The remaining layoffs are temporary. While the incentives
to lay off workers permanently are not strong even for firms in distress, as temporary layoffs may
be converted to permanent later on and permanent layoffs may trigger severance obligations, this
decomposition gives at least some reasons for hope that the great majority of layoffs in countries
where this choice is not as easily available (such as the US) may in fact be reversible.
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1 Introduction

In March 2020, the US entered a “lockdown” so as to prevent the spread of the novel coronavirus. The

vast majority of residents of the United States have been ordered to stay at home. Most retail businesses

have been ordered to shut down. Most workers have been ordered to stay away from their place of work.

Not surprisingly, during March and April of 2020, the number of claims for unemployment benefits has

sky-rocketed, exceeding in two months only the total from the entirety of the Great Recession. Is the

enormous number of workers entering unemployment going to flow back into the ranks of the employed

once the lockdown restrictions are lifted? Or are these workers going to remain unemployed long after the

lockdown is removed? In this paper, we develop and quantify a framework to analyze and forecast the

evolution of the labor market during and after the coronavirus pandemic. We find that, under reasonable

parametrizations of the model, even a 3-month long lockdown is going to have long-lasting negative effects

on unemployment.

Our framework is a search-theoretic model of the labor market in the spirit of Pissarides (1985) and

Mortensen and Pissarides (1994). Workers endogenously transition across states of employment and un-

employment, as well as from one employer to another. Workers search for jobs when they are unemployed.

Workers search for more productive jobs when they are employed, albeit with a lower intensity. Workers

move from employment into unemployment when their productivity falls below some threshold. If the

productivity is low for transitory reasons, some workers and firms may suspend production but maintain

the option of resuming it, albeit at some cost and imperfectly. As in Gregory, Menzio and Wiczer (2020),

workers are ex-ante heterogeneous with respect to their baseline productivity, the distribution of the com-

ponent of productivity that is idiosyncratic to their match with a particular employer, and with respect

to their ability to search the labor market. The search process that brings workers and vacant jobs into

contact is directed by wages, as in Moen (1997) and Menzio and Shi (2011).

According to our model, the lockdown—which we describe as a temporary decline in labor productivity—

causes some employment relationships to be terminated, some to be suspended, and others to continue.

Intuitively, terminated relationships are those in which the surplus becomes negative because of the lock-

down. Continuing and suspended relationships are those in which the surplus remains positive in spite of

the lockdown. A relationship is suspended rather than continued if its productivity during the lockdown is

low enough that the firm and the worker prefer collecting unemployment benefits rather than continuing

production and maintaining strong ties.

Once the lockdown is lifted, the speed of the recovery, depends on three factors: (i) the fraction of

workers who, at the beginning of the lockdown, enter unemployment while maintaining a relationship with

their employer; (ii) the rate at which inactive relationships dissolve during the lockdown; (iii) the rate at

which workers who, at the end of the lockdown, are not recalled by their previous employer can find new,

stable jobs. In turn, factors (i) and (ii) depend on the costs associated with maintaining and reactivating a

temporarily inactive relationship, on the ability of the employer to survive the lockdown without revenues,

and on the rate of decay in the quality of a temporarily inactive relationship. Factor (iii) depends on the

job-finding rate of the non-randomly selected group of workers who are permanently laid off during the

lockdown.

Depending on parameters, the model can generate either a V-shaped recession—one in which the
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unemployment rate quickly returns to its baseline level once the lockdown restrictions are lifted—or an

L-shaped recession—one in which the unemployment rate takes several years to return to its pre-lockdown

level. As a matter of theory, a V-shaped recession occurs if: (a) workers who enter unemployment are in

a suspended relationship with their previous employer and maintain it throughout the lockdown; or (b)

workers who, by the end of the lockdown, have no relationship to their previous employer can quickly find

a new, stable job. In contrast, an L-shaped recession occurs if: (a) many workers flow into unemployment

without maintaining ties to their previous employer; and (b) these workers cannot quickly find a new,

stable job.

We calibrate the model using data from the Longitudinal Employer and Household Dynamics (LEHD)

and the Survey of Income and Program Participation (SIPP) to capture three features of the labor market:

(i) the fact that workers differ systematically with respect to the duration of their unemployment spells,

and with respect to the tenure length of their jobs; (ii) the prevalence of different types of workers in

different industries; (iii) the increase in unemployment across industries in March and April 2020. We

find 3 distinct types of workers. At one extreme, there are ”stable” workers with high productivity, short

unemployment spells, and a high probability of staying on a job for more than 2 years. At the other

extreme, there are ”fickle” workers with low productivity, long unemployment spells, and a low probability

of staying on a job for more than 2 years. We find that the prevalence of “fickle” workers varies a lot across

industries and happens to be concentrated in some of the industries hit hardest by the lockdown.

Using the calibrated framework, we measure the shape of the pandemic recession. We model the reces-

sion as 3-months lockdown—which affects differently the productivity of workers in different industries—

followed by a 12-month period of uncertainty—during which productivity is back to normal but there is a

risk of a second lockdown. Throughout the lockdown and uncertainty phases, unemployment benefits are

augmented by special federal programs. We find that the recession has an L-shape. The finding is easy to

explain. First, even when the cost of maintaining and reactivating a suspended employment relationship

is fairly small—in the order of less than a month of the worker’s value added—the fraction of workers

whose employment relationship is permanently terminated is about 35%. This is consistent with survey

evidence, which finds that between 40 and 50% of the workers who have entered unemployment during the

first month of the lockdown have no expectation of being recalled to their previous job (see, Adams-Prassl

et al. 2020 and Bick and Blandin 2020). Second, the workers who are permanently laid-off are dispro-

portionately of the ”fickle” type, who need to search for several years in order to find a long-lasting job.

Interestingly, increasing the length of the lockdown from 3 to 6 months does not significantly affect the

behavior of unemployment 4 years out.

We believe that our simulation represents a lower bound on the effect of the pandemic on unemploy-

ment. Indeed, we abstract from several important channels that are likely to slow down the recovery of

unemployment. First, it is unlikely that the lockdown will be entirely lifted after 3 months and that, once

lifted, productivity will immediately return to its normal level. Second, even employment relationships

that are kept active throughout the lockdown are likely to break down at a rate higher than normal due

to bankruptcies. Third, contractual frictions may cause some viable employment relationships to break

down during the lockdown. A leading example of contractual frictions are rigid wages (see, e.g., Hall 2005,

Gertler and Trigari 2009, or Menzio and Moen 2010), minimum wages, or costs to renegotiate contracts in

the face of unforeseen contingencies.
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The paper contributes to recent work on the economic consequences of the pandemic. A non-exhaustive

list of this line of work is Alvarez, Argente and Lippi (2020), Atkeson (2020), Berger, Herkenhoff and Mon-

gey (2020), Eichenbaum, Rebelo and Tradandt (2020), Fernandez-Villaverde and Jones (2020), Garibaldi,

Moen and Pissarides (2020), Glover et al. (2020), Guerrieri et al. (2020), Kapicka and Rupert (2020),

Kaplan, Moll and Violante (2020), Jones, Philippon and Venkateswaran (2020). Compared with this lit-

erature, the focus of our paper is on forecasting the aggregate dynamics of the labor market starting from

the disaggregate and heterogeneous dynamics of individual workers. Compared with this literature, we

are also silent about optimal policy. We believe that a derivation of the “optimal” unemployment rate

during a pandemic would require calculations that, while surely important, fall well outside the scope of

our expertise.

2 Environment and Equilibrium

In this section, we present our model of the labor market. The basic structure of the model is the

same as in Menzio and Shi (2010, 2011). Firms and workers come together in the labor market through

a search process directed by the terms of employment contracts. Firms search the market by posting

employment contracts for their vacancies. Workers search the market by seeking vacancies offering the

desired employment contract. Matches between firms and workers are heterogeneous with respect to their

quality, which gives employed workers a motive for searching not only off but also on the job. We add

two new ingredients to this basic structure. First, we allow for the possibility that workers are ex-ante

heterogeneous. In particular, different types of workers are heterogeneous with respect to their productivity,

the distribution of match quality from which they sample, and their ability to search. As documented in

Ahn and Hamilton (2019), Morchio (2020), Kudlyak and Hall (2019) and Gregory, Menzio and Wiczer

(2020), there are systematic differences across workers in their UE (unemployment to employment), EU

(employment to unemployment) and EE (employer to employer) rates. Second, we allow for the possibility

that workers and firms might temporarily deactivate their match, while retaining the option of resuming

production at a later date. As documented in Fujita and Moscarini (2017), workers frequently return to

their previous job after a spell of unemployment. As we shall see, these two new ingredients are critical to

understand the aggregate dynamics of the labor market.

2.1 Environment

The labor market is populated by a positive measure of workers and firms. Workers are ex-ante heteroge-

neous with respect to their type i = 1, 2, ...I, which affects their productivity, unemployment income, and

their search and learning processes. A worker of type i maximizes the present value of income, discounted

at the factor β ∈ (0, 1). A worker of type i earns some income bi when he is unemployed, and some income

wi when he is employed. The unemployment income bi is a combination of unemployment benefits, trans-

fers, and income value of leisure. The employment income wi is determined by the worker’s employment

contract. The measure of workers of type i is µi ≥ 0 and the total measure of workers is 1.

Firms are ex-ante homogeneous. A firm maximizes the present value of profits, discounted at the factor

β. A firm operates a constant returns to scale technology which turns the labor supply of a worker of type
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i into yiz units of output, where yi is a component that is common to all pairs of firms and workers of type

i, and z ∈ Z is a component that is specific to a particular firm-worker pair. The first component is the

source of persistent differences in the productivity of different types of workers. The second component is

the source of worker’s job mobility. We refer to the second component of productivity as the quality of a

firm-worker match.

The labor market is organized in a continuum of submarkets indexed by the vector x = {v, i}, where

v ∈ R denotes the lifetime utility promised by firms to workers hired in submarket x, and i ∈ {1, 2, ...I}
denotes the type of workers hired by firms in submarket x.1 Associated with each submarket, there is an

endogenous vacancy-to-applicant ratio θi(v) ∈ R+. If a worker searches in submarket x = {v, i}, he finds a

vacancy with probability p(θi(v)), where p is a strictly increasing, strictly concave function with p(0) = 0

and p(∞) = 1. A vacancy in submarket x = {v, i} meets an applicant with probability q(θi(v)), where q

is a strictly decreasing function with q(θ) = p(θ)/θ, q(0) = 1 and q(∞) = 0.

The state of the economy is described by some exogenous state s ∈ S and by the endogenous distribution

of workers across employment states. The exogenous state s evolves stochastically, and its realization may

affects the type-specific productivity yi and the type-specific unemployment income bi. To understand

the endogenous distribution of workers across employment states, note that a worker may be unemployed

without the option to recall its old job, unemployed with the option to recall a match of unknown quality,

unemployed with the option to recall a match of known quality, employed in a match of unknown quality,

or employed in a match of known quality. Let ui be the measure of unemployed workers without the option

to recall their old job, mi the measure of unemployed workers with the option to recall a job with unknown

quality. qi(z) the measure of unemployed workers with the option to recall a job with known quality z, ni
the measure of employed workers in a match of uknown quality, and gi(z) the measure of employed workers

in a match of known quality z. Overall, the state of the economy is described by ψ ≡ {s, ui,mi, qi, ni,gi}.
Every period comprises six stages: learning, separation, recall, search, matching and production. In

the first stage, a worker of type i who is employed in a match with an unknown idiosyncratic component of

productivity discovers the quality of the match with probability φi ∈ [0, 1]. The idiosyncratic component of

productivity z is a random draw from a probability density function fi : Z → R+ with a mean normalized

to 1.

In the second stage, an employed worker of type i becomes unemployed with probability de ∈ [δ, 1].

The probability de is specified by the worker’s employment contract. The lower bound δ represents the

probability that the worker has to leave the match for exogenous reasons (e.g., worker relocation). Similarly,

an unemployed worker with a recall option loses contact from his old employer with probability dq ∈ [δq, 1],

where dq is specified by the worker’s employment contract. The lower bound δq represents the probability

that the worker and the firm lose contact for exogenous reasons (e.g., firm bankruptcy, decline in the

quality of the match while inactive, loss of contact while phisycally separated, etc...).

In the third stage, an employed worker of type i becomes unemployed with a recall option with proba-

1We assume that a worker knows his own type and so does the market. The second part of the assumption may appear
unrealistic to some readers, but it does greatly simplify the model. In particular, the assumption allows us to abstract from
issues of signaling—the worker distorting his behavior so as to convince the market that his type is better than what it
actually is—as well as from issues of inference—the firms trying to assess the probability distribution of a worker’s type by
examining his employment history and performance on the job.
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bility ` ∈ [0, 1], where ` is specified by the worker’s contract. Similarly, an unemployed worker with a recall

option returns to his old job with probability h ∈ [0, 1], where again h is a prescription of the employment

contract. When a worker recalls his old job, he and his employer have to pay a fixed cost Ci ≥ 0, which

captures the physical costs of resuming production.

In the fourth stage, a worker gets the opportunity to search the labor market with a probability that

depends on his type and on his employment status. If a worker of type i is unemployed without a recall

option, he gets to search with probability λiu ∈ [0, 1]. If the worker is unemployed with a recall option, he

gets to search with probability λiq ∈ [0, λiu]. If the worker is employed, he gets to search with probability

λie ∈ [0, λiu]. Whenever the worker gets to search, he chooses which submarket x to visit. In the same

stage, firms choose how many vacancies to open in submarket x = {v, i} at the unit cost ki > 0.

In the fifth stage, workers and firms searching in submarket x = {v, i} meet bilaterally. When a firm

and a worker of type i meet in submarket x, the firm offers to the worker an employment contract that

is worth v in lifetime utility. If the worker accepts the offer, he becomes employed by the firm under the

rules of the contract. If the worker rejects the offer–which is an off-equilibrium event–he returns to his

previous employment status. When a firm and a worker of type different from i meet in submarket x, the

firm does not offer an employment contract to the worker.

In the last stage, an unemployed worker without a recall option enjoys an income of bi units of output.

An unemployed worker with a recall option enjoys an income of bi units of output, while the worker’s

old employer pays a cost ci to maintain the recall option alive. The flow cost ci is meant to capture the

overhead expenditures that the firm has to incur in order to keep the job available to the worker. A worker

of type i employed in a match of unknown quality produces, in expectation, yi units of output. A worker

of type i employed in a match of known quality z produces yiz units of output. The worker’s consumption

is wi, which is determined by the employment contract. After production and consumption take place,

next period’s state, ŝ, is drawn from the probability density function h : S×S → R+ with h(ŝ, s) denoting

the probability density of ŝ conditional on s.

We assume that employment contracts maximize the joint value of a firm-worker match, i.e. the sum of

the worker’s lifetime utility and the firm’s present value of profits generated by the worker. We also assume

that the domain of the employment contract includes not only the employment relationship proper, but

also the time during which a worker is unemployed with the option of reactivating the relationship.2 As

discussed in Menzio and Shi (2011), there are many contractual environments with the property that the

contract that maximizes the profit of the firm subject to providing the worker any given lifetime utility

also maximizes the joint value of the match. We abstract from contractual incompleteness caused by either

wage rigities or missing contingencies.

2.2 Equilibrium

To define equilibrium, we need to introduce some additional pieces of notation. Let Ui(ψ) denote the value

of unemployment without recall for a worker of type i. Let Q̃i(ψ) denote the joint value to the worker

2It is straightforward to develop a version of the model in which the firm and the worker do not act cooperatively during
a temporary separation. In keeping with the “contractual efficient” spirit of the paper, though, we decided to assume that
an employment contract regulates also this phase of the firm-worker relationship.
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and the firm from a temporarily inactive match (i.e. the worker is unemployed with the option to recall).

Similarly, Qi(z, ψ) denotes the joint value to the worker and the firm from a temporarily inactive match

of known quality z. Lastly, Let Ṽi(ψ) and Vi(z, ψ) denote, respectively, the joint value of an active match

of unknown quality and quality z. All value functions are evaluated at the beginning of the production

stage.

In what follows, we will suppress the dependece of the value functions from i and ψ in order to keep

the notation light. The value for an unemployed worker without a recall option is

U = b(s) + βEψ̂

{
U + λiu max

v
{p(θ(v))(v − U)}

}
. (1)

In the current period, the worker’s income is b(s). In the next period, the worker gets an opportunity to

search with probability λu. If the worker searches in submarket v, he meets a firm with probability p(θ(v)),

in which case his continuation lifetime utility is v. If the worker does not get the opportunity to search,

or if the search is unsuccessful, his continuation value is U .

The joint value of an active match of quality z between a worker and a firm is

V (z) = y(s)z+

βEψ̂

{
max
d

{
dU + (1− d) max

`

{
`Q(z) + (1− `)

[
V (z) + λe max

v
p(θ(v))(v − V (z))

]}}} (2)

In the current period, the sum of the worker’s income and firm’s profit is y(s)z. In the next separation

stage, the worker moves into unemployment with probability d. In this case, the worker’s continuation

value is U and the firm’s continuation profit is zero. In the next recall stage, the worker and the firm

deactivate the match with probability `, in which case their joint continuation value is Q(z). The worker

and the firm keep the match active with probability 1− `. In this case, the worker gets an opportunity to

search with probability λe. If the worker searches in submarket v, he meets a new employer with probability

p(θ(v)). In this case, the worker’s continuation value is v and the firm’s continuation value is 0. If the

worker does not get to search or if the search is unsuccessful, the joint continuation value is V (z). Note

that, since employment contracts are bilaterally efficient, d, ` and v are chosen so as to maximize the joint

value of the match.

The joint value of an active match of unknown quality is

Ṽ = y(s)

+β(1− φ)Eψ̂

{
max
d

{
dU + (1− d) max

`
{`Q̃+ (1− `)

[
Ṽ + λe max

v

{
p(θ(v))

(
v − Ṽ

)}]}}
+βφEψ̂

{∑
z

f(z) max
d

{
dU + (1− d) max

`
{`Q(z) + (1− `)

[
V (z) + λe max

v
{p(θ(v)) (v − V (z))}

]}}
.

(3)

In the current period, the joint income of the match is y(s) (in expectation). With probability 1− φ, the

firm and the worker do not discover the quality of the match. With probability φ, the firm and the worker

discover the quality z of the match, where z is drawn from the f distribution. Conditional on discovering

or nor discovering the match quality, the firm and the worker choose d, ` and v to maximize the joint

value.
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The joint value of a temporarily inactive match of quality z between a worker and a firm is

Q(z) = b(s)− c+

βEψ̂

{
max
d

{
dU + (1− d) max

h

{
h [V (z)− c] + (1− h)

[
Q(z) + λq max

v
p(θ(v))(v −Q(z))

]}}} (4)

In the current period, the sum of the worker’s income and firm’s profit is b(s)− c. In the next separation

stage, the worker moves into permanent unemployment with probability d. In this case, the worker’s

continuation value is U and the firm’s continuation profit is zero. If the next recall stage, the worker and

the firm reactivate the match with probability h, in which case their joint continuation value is V (z)− c.
The worker and the firm keep the match inactive with probability 1− h. In this case, the worker gets an

opportunity to search with probability λq. If the worker searches in submarket v, he meets a new employer

with probability p(θ(v)). In this case, the worker’s continuation value is v and the firm’s continuation

value is 0. If the worker does not get to search or if the search is unsuccessful, the joint continuation value

is Q(z).

The joint value of a temporarily inactive match of unknown quality is

Q̃ = b(s)− c+

βEψ̂

{
max
d

{
dU + (1− d) max

h

{
h
[
Ṽ − c

]
+ (1− h)

[
Q̃+ λq max

v
p(θ(v))(v − Q̃)

]}}} (5)

The expression above is analogous to (4) and requires no comment.

The tightness θ(v) of submarket v is such that

k ≥ q(θ(v))
[
Ṽ − v

]
, (6)

and θ(v) ≥ 0, with the two inequalities holding with complementary slackness. The left-hand side of (6)

is the cost to a firm from opening a vacancy in submarket v. The right-hand side is the benefit to the

firm from opening a vacancy in submarket v. The benefit is the probability that the firm fills its vacancy,

q(θ(v)), times the firm’s value from filling a vacancy, Ṽ − v, i.e. the joint value of a match between the

firm and a worker net of the lifetime utility promised by the firm to the worker.

We can easily characterize the solution of the search problems in (1)-(5). These problems have the

common structure

max
v
p(θ(v))(v − r), (7)

where r denotes the value of the worker’s current employment status. For any v such that θ(v) > 0, (6)

implies that v is equal to −kθ(v) + p(θ(v))Ṽ . For any v such that θ(v) = 0, p(θ(v)) is equal to zero. From

these observations, it follows that (7) can be written as

max
v
−kθ(v) + p(θ(v))(Ṽ − r). (8)

Now, notice that, for all θ ≥ 0, there exists a v such that θ(v) = θ. Thus, by changing the choice variable

from v to θ in (8), we do not enlarge the choice set. Conversely, for all v, there exists a θ ≥ 0 such that

θ = θ(v). Thus, by changing the choice variable from v to θ in (8), we do not shrink the choice set. From
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these observations, it follows that (8) can be written as

max
θ≥0
−kθ + p(θ)(Ṽ − r). (9)

From the above formulation, it follows immediately that a worker employed in a match of unknown quality

has no reason to actively search.

To formulate the laws of motion for the distribution of workers across employment states, we need

some notation describing the policy functions. We denote as de(z) and dq(z) the optimal probability that

a worker employed in an active or inactive match of quality z moves into unemployment. We denote as

de(∅) and dq(∅) denote that probability for a worker employed in an active or inactive match of uknown

quality. We denote as `(z) and `(∅) the optimal probability that an active match of known or unknown

quality becomes inactive. We denote as h(z) and h(∅) the optimal probability that an inactive match of

known or unknown quality becomes active. We denote as θu, θq(z), θe(z) the optimal search strategy for

an unemployed worker without a recall option, an unemployed worker with an option to recall a match of

quality z, and an employed worker in a match of quality z.

The law of motion for the measure of unemployed workers without recall is

û = u(1− λup(θu)) +
∑

z de(z) [g(z) + nφf(z)]

+
∑

z dq(z)q(z) + n(1− φ)de(∅) +mdq(∅)
(10)

The law of motion for the measure of workers employed in an active match of uknown quality is

n̂ = uλup(θu) +
∑

z(1− de(z))(1− `(z))λep(θe(z)) [g(z) + nφf(z)]

+
∑

z(1− dq(z))(1− h(z))λqp(θq(z))q(z)

+n(1− φ)(1− de(∅))(1− `(∅))

+m(1− dq(∅)) [h(∅) + (1− h(∅))λqp(θq(∅))]

(11)

The law of motion for the measure of workers employed in an active match of known quality z is

ĝ(z) = [g(z) + nφf(z)] (1− de(z))(1− `(z))(1− λep(θe(z)))

+q(z)(1− dq(z))h(z)
(12)

The law of motion for the measure of unemployed workers with the option to recall a match of quality z is

q̂(z) = q(z)(1− dq(z))(1− h(z))(1− λqp(θq(z)))

+ [g(z) + nφf(z)] (1− de(z))`(z)
(13)

Lastly, the law of motion for the measure of unemployed workers with the option to recall a match of

unknown quality is
m̂ = m(1− dq(∅))(1− h(∅))(1− λqp(θq(∅)))

+n(1− φ)(1− de(∅))`(∅)
(14)

All of the above expressions are easy to understand.

A Recursive Equilibrium (RE) is such that: (i) the value functions {U, Ṽ , V, Q̃, Q} satisfy the Bellman
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Equations (1)-(5); (ii) the policy functions {de, dq, θu, θe, θq, `, h} satisfy the optimality conditions in (1)-(5);

the distribution of workers across employment states {u,m, n, q, g} follows the laws of motion (10)-(14).

A Block Recursive Equilibrium (BRE) is a RE such that the value and policy functions depends on the

aggregate state of the economy ψ only through the exogenous state s, and not through the endogenous

distribution of workers across employment states. A Block Recursive Equilibrium is much easier to solve,

as it requires solving a system of functional equations with the one-dimensional state s as an aggregate

state variable. As proved in Menzio and Shi (2011) in the context of a similar model, there exists a BRE,

the BRE is unique, and there exists no other equilibrium that is not block-recursive.

3 Calibration

Using data from the Longitudinal Employer and Household Dynamics (LEHD) over the period 1997-2014,

we apply a k-mean algorithm to group workers based on to their similarity with respect to the frequency

and duration of unemployment spells and the number and length of jobs.3 The algorithm identifies 3 types

of workers, which we shall refer to as α, β and γ. About 55% of workers are of type α. For a worker of type

α, the duration of a job is less than a year with probability 30%, and more than 2 years with probability

50%. For a worker of type α, unemployment spells are short. About 25% of workers are of type β. For a

worker of type β, the duration of a job is less than a year with probability 40%, and more than 2 years

with probability 40%. For a worker of type β, unemployment spells are longer than for α-workers. About

20% of the workers are of type γ. For a worker of type γ, the duration of a job is less than a year with

probability 65%, and more than 2 years with probability 15%. These workers have the longest duration

of unemployment. Workers of different types also have different average earnings. Specifically, the average

earnings for β-workers are 70% compared to the average earnings for α-workers. The average earnings

for γ-workers are about 50% compared to the earnings for α-workers. The worker type characteristics

described above are the key calibration targets4

Let us review the parameters that describe the non-stochastic steady state of the model. These pa-

rameters are summarized in Table 1. Preferences are described by the discount factor, β, and by the flow

unemployment income, bi. Production is described by the type-specific component of productivity, yi, and

by the distribution of the match-specific component of productivity, fi. We specialize the distribution fi
to be a Weibull distribution with shape αi and scale σi, shifted to have a mean of 1. Learning is described

by the probability φi with which a worker and a firm discover the component of productivity that is

idiosyncratic to their match.

Search is described by the probability that a worker can search the labor market when unemployed

without a recall option, λiu and when employed, λie. Further, search depends on the vacancy cost, ki, and

on the job-finding probability function, p(θ). We normalize λiu to 1. We specialize p(θ) to have the form

min{θγ, 1}, where γ is the elasticity of the job-finding probability with respect to tightness.

3In the LEHD, we cannot distinguish between unemployment and non-employment. We identify unemployment as a spell
without earnings that lasts less than 2 years. In the LEHD, we only have quarterly observations and, thus, we cannot directly
measure short unemployment spells. We impute an unemployment spell between two jobs by comparing earnings in the first
job and earnings in the second job. If, during the transition from the first to the second job, there is a quarter in which
earnings are lower than the minimum of the typical earnings in the two jobs, we impute an unemployment spell.

4Details about the calibration algorithm are available upon request.
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Parameter Value Description
β 0.996 discount factor
bi (0.661, 0.563, 0.458) flow unemployment income
yi (1, 0.623, 0.459) type-specific productivity
αi (4, 4, 1) shape of fi
σi (0.117, 0.203, 0.08) standard deviation of fi
φi (0.25, 0.225, 0.25) probability match quality is discovered
λie (0.344, 0.763, 0.70) probability an employed worker searches

λiu, λ
i
q 1 probability an unemployed worker searches

ki (12.54, 25.92, 5.37) vacancy posting cost
γ 0.5 elasticity of job-finding rate wrt tightness
δ 0.005 exogenous separation probability
δq 0.10 probability recall option is lost
ci (0.05, 0.031, 0.023) cost of maintaining recall option
Ci (0.25, 0.156, 0.115) cost of reactivating a match

Table 1: Model Parameters

The recall process is characterized by the parameters λq, the probability that an unemployed worker

with a recall option can search the labor market, δq, the probability that an unemployed worker loses his

recall option, and by ci and Ci, the flow cost of maintaining the recall option and the fixed cost of exercising

the recall option. None of these parameters affect the non-stochastic steady-state, because absent aggregate

shocks, there are no firm-worker matches that are temporarily inactive. We shall discuss our choice of the

parameters describing the recall process in a few pages.

Now, let us describe our calibration strategy in broad strokes. We use the empirical duration of

unemployment spells to calibrate ki. We use the empirical distribution of job durations to calibrate αi, σi
and φi. We normalize yα = 1 and choose yβ and yγ to match the difference in avearge earning between

different types of workers. As suggested by Hagedorn and Manovskii (2008) and Hall and Milgrom (2009),

the proper interpretation of bi is the sum of an unemployment benefit, ζi, and the income value of leisure,

`. We choose the unemployment benefit for workers of type i to be equal to 40% of the average labor

income for workers of type i, which is the typical replacement rate of unemployment insurance in the US.

We choose the value of leisure, `, so that, in the average of the whole population of workers, the flow value

of unemployment is equal to 65% of labor income, a percentage that Hall and Milgrom (2008) argue is

reasonable for the US economy. We tentatively set δ to 0.5% per month. We tentatively set γ to 0.5.

Neither of these parameters has much of an effect on our simulation results.

4 Simulating the Pandemic Recession

To describe and simulate the pandemic recession, we stratify the model by 2-digit industry. Using data

from the Survey of Income and Program Participation (SIPP), we compute the distribution of job durations

industry by industry. We choose the fraction of workers of type α, β and γ in industry j to minimize the

distance between the distribution of job durations in industry j in the data and in the model. We carry

out the minimization subject to a constraint requiring that the sum of workers of type α, β and γ across
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 Agriculture, Forestry, Fishing and Hunting  Mining, Quarrying, and Oil and Gas Extraction

 Utilities  Construction

 Manufacturing  Wholesale Trade

 Retail Trade  Transportation and Warehousing

 Information  Finance and Insurance

 Real Estate and Rental and Leasing  Professional, Scientific, and Technical Services

 Management of Companies and Enterprises Administrative/Support/Waste Management/Remediation

 Educational Services  Health Care and Social Assistance

 Arts, Entertainment, and Recreation  Accommodation and Food Services

 Other Services (except Public Administration)  Public Administration

Figure 1: Proportion of workers of type α (pink), β (green), and γ (yellow)

all industries is equal with the fraction of workers of type α, β and γ in the LEHD. Figure 1 shows the

distribution of types by industry.

To describe the pandemic recession, we assume that the economy can be in one of three states: lockdown

(sL), uncertainty (sU), or recovery (sR). Intuitively, the lockdown state is meant to capture the current

phase of severe restrictions on economic activity. The uncertainty state is meant to capture a phase in which

restrictions on economic activities are lifted, but there is a risk of returning to the lockdown state (because

of, say, a second wave of infections). The recovery state is meant to capture a permanent return to normalcy

(because of, say, an effective vaccine is discovered). The three states differ with respect to productivity

and unemployment income. In the lockdown state, the productivity yi of i-workers employed in industry

j is multiplied by some factor AL,j, which is typically smaller than 1 and captures the (industry-specific)

effect of restrictions on economic activity. The unemployment income is multiplied by some factor BL > 1,

which captures the increase in unemployment benefits granted by the CARES Act. In the uncertainty

state, the productivity of i-workers employed in industry j returns to its normal value, i.e. AU,j = 1. The

unemployment income, however, is still multiplied by some factor BU > 1 to capture the idea that the

increase in the generosity of unemployment benefits may outlast the lockdown. In the recovery state, both

productivity and unemployment income return to their normal values, i.e. AR,j = 1 and BR = 1. When

the aggregate state is sL, the probability of moving to sU is 75% per month and the probability of moving

to sR is zero. When the aggregate state is sU , the probability of returning to sL is 13% per month, and

the probability of moving to sR is 6.5%. The sR state is absorbing.

There are several parameters that have yet to be chosen in order to simulate the recession. We cali-

brate the vector of productivity shocks AL,j so that: (a) the aggregate unemployment rate increases by

19 percentage points during the lockdown—which we take it to be a sensible guess based on the num-

ber of unemployment insurance claims during March and April 2020; and (b) the relative increase in

the unemployment rate across industries matches the relative flow of new unemployment claims across

industry—which we measure for the states of Washington, Texas, Ohio and Nebraska. We set the unem-
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Figure 2: Baseline simulation of pandemic

ployment income shock BL to 1.3 or, equivalently, 1, 000 US$ per month. This is less than what offered

by the CARES act because we want to capture, albeit crudely, the fact that not all unemployed workers

will be awarded the additional benefits. In the baseline, we set BU to 1.3, but we present results for other

values as well.

The parameters describing the process of recall require some guesswork. We assume that unemployed

workers with the option to recall their old job have the same probability of searching the labor market as

unemployed workers without such an option, i.e. λiq = λiu. We assume that the rate at which a firm-worker

match exogenously breaks down when it is temporarily inactive is 10% per month, i.e. δq = 0.1. The

particular values chosen for λq and δq do not have a significant impact on the simulation of the pandemic.

In contrast, the cost of maintaining the option of recall, ci, and the cost of exercising the recall option,

Ci, play an important role. Intuitively, both costs affect the trade-off between permanently terminating

or temporarily deactivating a firm-worker match when its productivity is depressed by the lockdown. The

relative magnitude of the two costs affects the trade-off between recalling a temporarily deactivated match

as soon as the lockdown is lifted or only when the risk of a lockdown is eliminated. Indeed, if Ci = 0, the

match can be activated and deactivated at no cost and, thus, the decision will be essentially determined

by a static comparison between b(s) − c and y(s)z. If, in contrast, Ci > 0, the firm and the worker are

discouraged from deactivating and reactivating their match often.

Figure 2 illustrates the simulation of the pandemic recession under our baseline calibration. For the

purposes of the simulation, we assume that the economy is in the lockdown state for 3 months, in the

uncertainty state for 12 months, and in the recovery state afterwards. Panel (a) plots the unemployment

rate, measured in deviation from the steady-state. Panel (b) plots the fraction of workers who are unem-

ployed without a recall option (permanently laid-off), measured in deviation from the steady state. Panel

(c) plots the fraction of workers who are unemployed with a recall option (temporarily laid-off), measured

in deviation from the steady state. The dashed lines in the three panels show the decomposition of the

aggregates by type of worker.

As the economy enters the lockdown, the unemployment rate increases by 19 percentage points. About

13 percentage points of the increase are due to temporary separations between workers and firms, the
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remaining 6 percentage points are due to permanent separations. As the economy exits the lockdown,

approximately half of the workers on temporary layoff are recalled by their previous employer. Moreover,

the UE rate increases and the unemployed workers on permanent layoff start flowing back into employment.

Overall, during the 12 months between the exit from the lockdown state and the entry into the recovery

state, the unemployment rate falls by about 5 percentage points. As the economy enters the recovery state,

all remaining workers on temporary layoffs are recalled. Moreover, the UE rate returns to its pre-lockdown

level. Thus, the unemployment rate starts its descent towards its old steady-state level.

Even though the lockdown lasts for as little as 3 months, the unemployment rate is still about 5

percentage points above its steady-state level 30 months after the beginning of the pandemic. Similarly,

the unemployment rate is still about 2.5 percentage points above its steady-state level 50 months after the

beginning of the pandemic. A recession with this kind of slow recovery is sometimes dubbed an “L-shaped”

recession. The slow pace of the recovery is caused by the ex-ante heterogeneity of workers. As can be seen

from Panel (a), the excess unemployment for α-workers subsides fairly quickly. This is because α-workers

have a high UE rate and, once they find a job, they are likely to keep it for a long time. The excess

unemployment for the γ-workers, however, subsides much more slowly. This is because γ-workers have a

low UE rate and, once they find a job, they are unlikely to keep it for a long time. Thus, the increase in

unemployment among γ-workers takes years to be reabsorbed as many of them go through multiple cycles

of unemployment and short-term employment.

It is worth noting that γ-workers are the largest contributor to the initial increase in aggregate un-

employment, even though they are the smallest group in the overall population. In contrast, α-workers

are the smallest contributor to the initial increase in aggregate unemployment, even though they are the

largest group in the overall population. Intuitively, γ-workers have the smallest gains from trade in the

labor market and, hence, their employment is most susceptible to a negative productivity shock and to an

increase in the generosity of unemployment benefits. In contrast, α-workers have the largest gains from

trade in the labor market and, hence, their employment is least susceptible to the lockdown. Moreover, as

one can see from Figure 1 and Table 2, γ-workers are overrepresented in some of the industries that are

hit hardest by the lockdown. Indeed, the average productivity shock for a γ-worker is 10% larger than for

α-workers.

It is also worth pointing out that the share of temporary layoffs is highest for γ-workers (approximately

75%) and lowest for α-workers (approximately 35%). There is a clear intuition behind this result. It

takes a long time for an unemployed γ-worker to find a “stable” match, i.e. a match with an idiosyncratic

component of productivity that is high enough to make the worker stop searching for something better.

Thus, a firm and a γ-worker in a “stable” match prefer to remain in contact (at the costs c and C) rather

than to permanently separate. In contrast, it takes a relative short time for an unemployed α-worker to find

a new “stable” match. Thus, a firm and an α-worker prefer to permanently terminate their relationship

rather than to remain in contact.

The role played by the ex-ante heterogeneity of workers in shaping the recovery can be seen in the

dynamics of the unemployment rate in different industries. Panel (a) in Figure 3 shows the excess unem-

ployment rate in construction—an industry with a large fraction of γ-workers. Panel (b) shows the excess

unemployment rate in manufacturing—an industry with a large fraction of α-workers. Even though the
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Figure 3: Unemployment dynamics in selected industries

initial increase in unemployment is higher in manufacturing, the recovery is much faster because α-workers

are more likely to find stable employment after the lockdown is lifted. In the Appendix, we present the

behavior of the unemployment rate in every industry.

Table 2 shows the industry-specific productivity shocks that we infer from our calibration. The cali-

brated shocks depend on the composition of workers in the industry—which we estimate from the SIPP—

and on the magnitude of the increase in unemployment benefit claims—which we observe for March and

April 2020 for several states. As a sanity check, we compare our calibrated productivity shocks with two

measures of the exposure of an industry to the lockdown. The first measure is the fraction of workers in

industry j that can work remotely. This measure is constructed from the occupational index of “teleworka-

bility” constructed by Dingel and Neiman (2020) using the ONET and then projected on industry j based

on its occupational composition. The second measure is a definition of “essential work” for the state of

Pennsylvania, where essential workers are those exempted from the lockdown.5

Figure 4 contains a scatter plot of the calibrated productivity shock and the fraction of “teleworkable”

labor (panel a) and the scatter plot of the calibrated productivity shock and the fraction of “essential” labor

(panel b) across 2-digit industries. As one would have hoped, both relationships are negative. Also note

that the employment-weighted average productivity shock in the model is about 35%. The employment-

weighted average of the fraction of labor that cannot be done remotely is 45%. The employment-weighted

average of the fraction of labor that is both non-essential and cannot be done remotely is 27%. We find

it reassuring that our model generates an average shock that is in the same order of magnitude as the

fraction of labor that is susceptible to the lockdown.

As mentioned earlier, the recall costs ci and Ci determine the fraction of workers in permanent and

temporary layoffs. Thus, for a given increase in the unemployment rate, the recall costs affect the speed

of the recovery. Specifically, the higher are the recall costs, the lower is the fraction of temporary layoffs

and the slower is the recovery. It is then important to build some confidence in our choice of ci and Ci.

In our baseline calibration, we set ci = 0.05 · yi and Ci = 0.25 · yi and found that 65% of the increase

in unemployment during the lockdown was due to temporary layoffs and 35% to permanent layoffs. This

5There is nothing special about Pennsylvania. The list of essential work in other states is quite similar.
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Industry ∆uj (%) Aj
Agriculture, Forestry, Fishing and Hunting 3.85 1.2
Mining, Quarrying, and Oil and Gas Extraction 12.29 0.67
Utilities 1.06 1.11
Construction 18.06 0.75
Manufacturing 21.0 0.37
Wholesale Trade 11.82 0.53
Retail Trade 26.25 0.59
Transportation and Warehousing 12.37 0.49
Information 9.8 0.96
Finance and Insurance 1.33 1.16
Real Estate and Rental and Leasing 18.51 0.61
Professional, Scientific, and Technical Services 9.17 0.75
Management of Companies and Enterprises 5.58 1.04
Administrative/Support/Waste Management/Remediation 18.57 1.06
Educational Services 8.12 0.68
Health Care and Social Assistance 21.0 0.49
Arts, Entertainment, and Recreation 55.7 0.13
Accommodation and Food Services 49.06 0.34
Other Services (except Public Administration) 47.62 0.21
Public Administration 0.0 1.24

Table 2: Industry-level unemployment increases and calibrated productivity shocks
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Figure 4: Calibrated productivity shocks vs. flexible and essential jobs
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Figure 5: Simulation of pandemic with ci = 0.15 · yi and Ci = 0

finding is in line with the survey evidence on layoffs during the early stages of the pandemic. Adams-

Prassl et al. (2020) survey a representative sample of individuals in the US, conducting multiple waves of

interviews during the first weeks of the pandemic. Individuals could report whether they had lost their

job in a permanent way or been furloughed, implying the expectation of being called back. As of the

Apr 23 data, the ratio of temporary to permanent lay-offs was 3 : 2. Bick and Blandin (2020) conduct

a similar survey, again asking whether individuals who separated from their employer expected the layoff

to be temporary. They found approximately 50% of separations were expected to be temporary. Overall,

our calibration of ci and Ci is conservative, in the sense that our model generates more temporary lay-offs

than what found in these surveys.

The ratio between the cost of exercising the recall option, Ci, and the cost of maintaining the recall

option, ci, affects the time at which temporarily deactivated relationships are recalled. Figure 5 shows the

simulation of the recession for ci = 0.15 · yi and Ci = 0, rather than for ci = 0.05 · yi and Ci = 0.25 · yi. By

lowering the cost of exercising the recall option while increasing the cost of maintaining the recall option,

the fraction of layoffs that are temporary and permanent does not change by much (it goes from 65 : 35%

to about 50 : 50%). For this reason, the medium-term effects of the lockdown do not change by much

either (the excess unemployment rate 50 months out is still about 2.5%). However, the timing of recalls

does change. In particular, most of temporarily laid-off workers are recalled as soon as the lockdown is

lifted.

From the perspective of policy, it is interesting to see the effect of extending the lockdown. Figure

6 below illustrates the results of the simulated recession when the economy is kept under lockdown for

6 months rather than 3, and the period of uncertainty lasts 9 rather than 12 months. Because of the

extended lockdown, the unemployment rate remains close to its peak for a longer period of time. Yet,

once the economy enters the recovery state, the unemployment rate is essentially the same as in the

baseline calibration. In this sense, extending the lockdown does not seem to have nefarious effects on

unemployment in the medium-run. We urge our readers, however, to take this finding with a grain of salt,

as it may depend on our conservative assumptions about the effect of the lockdown on the survival rate of

temporarily deactivated relationships.
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Figure 6: Simulation of pandemic with 6 months of lockdown, 9 months of uncertainty
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Figure 7: V-shaped simulation of pandemic

Lastly, we want to point out that the model can also generate a “V-shaped” recession, i.e. a recession

in which the initial increase in unemployment is quickly reabsorbed after the end of the lockdown. The

model generates a V-shaped recession when the initial increase in unemployment is almost entirely driven by

temporary layoffs and, as soon as the lockdown is over, firms find it optimal to recall all of the temporarily

laid-off workers.6 Hence, the model generates a V-shaped recession when ci and Ci are small and BU is

close to 1.

Figure 7 illustrates the simulation of the pandemic recession with ci = Ci = 0 and BU = 1. As

the economy enters the lockdown, the unemployment rate increases by 19 percentage points. About 18

percentage points of this increase are due to temporary separations between workers and firms, while the

remaining 1 percentage point is due to permanent separations. As the economy exits the lockdown, nearly

all of the workers on temporary layoff are recalled by their employers, and the unemployment rate returns

6In principle, the model could also generate a V-shaped recession if the vast majority of workers entering unemployment
during the lockdown were of type α. However, our calibration of the type distribution across industries and of the shock
distribution across industries rules out this possibility.
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within 1 percentage point of its steady-state level.

While the model can generate a V-shaped recession, it does so by producing some implausible outcomes.

First, 95% the initial increase in the unemployment rate is due to temporary layoffs and only 5% is due to

permanent layoffs. In the recent surveys of Adams-Prassl et al. (2020) and Bick and Blandin (2020), at

least 40% of workers who became unemployed at the beginning of the recession state to have no expectation

of being recalled by their previous employer. Second, when the costs associated with temporary layoffs

are low, it takes a smaller productivity shock to generate the same increase in unemployment during the

lockdown. Indeed, the employment-weighted productivity shock required to generate a 19 percentage point

increase in unemployment is only 1.4%. This is an order of magnitude lower than the employment-weighted

average of work that cannot be done remotely (45%), and much lower than the employment-weighted

average of the fraction of work that is both non-essential and cannot be done remotely (27%).

Let us conclude by pointing out that underneath the results presented in this section—results that are

aggregated either at the economy level or at the industry level—there is a wealth of additional results

about individual workers, including the size of their earnings losses during the lockdown and the speed

at which these losses are recouped.7 We decided not to report these disaggregated results not because we

deem them uninteresting, but for the sake of conciseness.

7Let us just say that our model does an excellent job at reproducing the size of earnings losses documented in Jacobson,
LaLonde and Sullivan (1993) and Davis and von Wachter (2011).
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A Unemployment rate IRFs by industry
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Figure 8: Pandemic simulation by industry
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This paper presents an economic model of an epidemic in which 
susceptible individuals may engage in costly social distancing in order 
to avoid becoming infected. Infected individuals eventually recover 
and acquire immunity, thereby ceasing to be a source of infection to 
others. Under non-cooperative and forward-looking decision making, 
equilibrium social distancing arises endogenously around the peak 
of the epidemic, when disease prevalence reaches a critical threshold 
determined by preferences. Spontaneous, uncoordinated social 
distancing thus acts to 'flatten the curve' of the epidemic by reducing 
peak prevalence. In equilibrium, social distancing stops once herd 
immunity sets in, but acts to extend the duration of the epidemic 
beyond the benchmark of a non-behavioral epidemiological model. 
Comparative statics with respect to the model parameters indicate 
that the curve becomes flatter (i) the more infectious the disease is and 
(ii) the more severe the health consequences of the disease are for the 
individuals.
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“...[the Black Death made people] shun and flee from the sick and all that pertained to
them, and thus doing, each thought to secure immunity for himself”.

- Boccaccio’s The Decameron (1353)

1. Introduction
The world is currently gripped by the COVID-19 pandemic. At the time of writing,
there is no vaccine available against this virus and no antiviral therapies to increase the
speed of recovery. The only available strategies to stem the spread of the disease are
behavioral interventions such as social distancing. Social distancing refers to any non-
pharmaceutical intervention, taken by individuals or by policy makers, which acts to
decrease the contact rate between infected and susceptible individuals.1 Reducing the
contact rate is often held to be the central tool to “flatten the curve”, i.e. to reduce
disease incidence and hence the number of infected individuals. In some countries such
as the United Kingdom, governments have refrained from directly imposing restrictions
on individuals and have instead appealed to citizens to act in the interests of society and
to voluntarily withdraw from the public space. The question is then, when left to their
own devices, how much social distancing will there be in equilibrium? And how does
this depend on biological and preference parameters? The United Kingdom’s response to
the COVID-19 pandemic and the scientific research underlying it is heavily predicated on
behavior changes that reduce the contact rate in the population (see Ferguson et al., 2020,
Ferguson et al. 2006 and Halloran et a., 2008). The overwhelming focus of governments’
responses to the epidemic on behavioral responses of the population makes it incumbent
upon researchers to be clear about how and why individuals act as the epidemic unfolds.
What are their constraints and incentives? Will they voluntarily comply with directions
given by public health offi cials or do governments need to compel certain behaviors, as
has now been seen across the world?
On current evidence, much of the thinking around social distancing is based on epi-

demiological simulations and modeling that eschew a nuanced analysis of human behavior
in the face of epidemics. Specifically, most of the modeling is based on assumptions about
how individuals will behave under a set of interventions such as travel restrictions, school
closures and bans on sporting and cultural events and mass gatherings. But since behav-
ior is the central issue, we must be careful about how we model it and strive to incorporate
behavioral considerations more fully into our analysis of disease control. We cannot sim-
ply rely on traditional analyses that do not model behavior but augment these with
ad-hoc interventions that rely on guesses about compliance rates. The standard epidemi-
ological models are an excellent starting point for analysis, but must be made complete
by fully integrating them with more sophisticated models of human decision-making and
behavior. Empirical evidence shows that individuals indeed respond to disease outbreaks
by changing behavior (see e.g. Kumar et al. 2012, Bayham et al., 2015, Bayham and
Fenichel, 2016 and references therein).
Lauren Gardner, a public health expert and modeler of epidemics at Johns Hopkins,

recently stated that

“When people change their behavior, [epidemiological] model parameters are no longer
applicable.”2

1When social distancing is imposed on a sub-population by a government, it is often referred to as
quarantines; when it is voluntary and chosen by individuals themselves, it is known as self-isolation.
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In other words, we must revisit the traditional models to fully account for human
behavior. This paper is a contribution towards this goal.
This paper analyzes social distancing by means of a continuous-time, infinite-horizon

economic-epidemiological model of an infectious disease. A closed population of indi-
viduals face a disease of the susceptible-infected-removed variety, which is an appropri-
ate setting for analyzing the spread of COVID-19.3 At each instant, individuals non-
cooperatively decide whether to engage in costly social distancing and in doing so, trade
off the benefits of social interactions against the risk of contracting the communicable
disease.
I find that each individual’s optimal strategy is described succinctly in terms of a

threshold infection probability, which depends on aggregate disease prevalence. For suf-
ficiently low disease prevalence, as may be found at the beginning or the end of an
epidemic, the risks from social interactions are small and thus individuals choose not to
socially distance themselves. For higher levels of disease prevalence, the risk of exposure
may outweigh the benefits and so individuals switch to social distancing. In this case,
aggregate equilibrium disease prevalence remains constant through time until suffi ciently
many individuals have gone through the cycle susceptible → infected → recovered to
cause disease prevalence to fall without further social distancing. In a sense, individuals’
equilibrium social distancing decisions act as a flow rate regulator between healthy and
recovered individuals, where the underlying uncontrolled flow rates are determined by
the biological features of the disease.
The analysis emphasizes that while the equilibrium extent of social distancing is not

socially optimal, aggregate equilibrium infection across the epidemic is lower than what
a traditional non-economic epidemiological analysis would suggest. In other words, a
purely non-behavioral model would tend to overstate the severity of the epidemic relative
to one that features rational behavior. While this by no means implies that equilibrium
is socially optimal, it does mean that the worst-case scenario under a laissez-faire policy
is not that predicted by purely biological considerations.4

To further contrast the predictions of the economic model with those of a purely epi-
demiological model, I characterize the equilibrium dynamics in terms of several properties
of the aggregate disease dynamics, namely in terms of peak prevalence, duration and fi-
nal size distribution. I find that equilibrium social distancing will tend to reduce peak
prevalence, increase duration and decrease cumulative incidence, which can be thought
of as an inverse measure of herd immunity. Interestingly, I find that the comparative
statics predictions of the of economic model are the reverse of those in the uncontrolled
epidemiological model. For example, peak prevalence and cumulative incidence are both
increasing in the infectiousness of the disease in the biological model, whereas they are
decreasing in the economic model. This is because the endogenously determined social
distancing decisions of the individuals react to higher infectiousness by engaging in more
protective behavior.
The formal economic analysis of social distancing is sparse. Sethi (1978) analyzes the

2https://www.nytimes.com/2020/03/13/us/coronavirus-deaths-estimate.html?referringSource=articleShare
3This model is also known as that of a general epidemic. See Kermack and McKendrick (1927) for

the original treatment. Disease-induced deaths can be incorporated explicitly in the model but are not
considered in order to simplify the exposition.

4In the present model, equilibrium will not be socially optimal since individuals do not internalize
the positive externalities that flow from their decisions to socially distance themselves.
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problem of a social planner in the context of the simpler susceptible-infected-susceptible
SIS model of disease in which recovered individuals are not immune to further infection.
Chen et al. (2011), Gersovitz and Hammer (2004), Gersovitz (2010) and Toxvaerd (2019)
consider equilibrium social distancing in the SIS model under decentralized decision-
making, while Rowthorn and Toxvaerd (2015) consider the interaction between social
distancing and treatment with antivirals, both in equilibrium and under central planning.
Toxvaerd and Rowthorn (2020) consider the equilibrium and socially optimal inducement
of immunity via vaccination and treatment. Reluga (2010) analyzes a differential game
model of social distancing with a finite horizon, no discounting and (eventual) vaccination.
Chen (2012) studies social distancing in the susceptible-infected-recovered SIR model
under more general matching functions than the standard mass-action specification used
in the epidemiological literature and finds that for some specifications of the matching
function, there may be scope for multiple Nash equilibria at each point in time, making
it diffi cult to predict the course of the epidemic.
In contrast to these papers, I consider an SIR framework in which individuals are

perfectly forward-looking but where each is small relative to a large population, thereby
side-stepping the diffi culties involved in differential games. Furthermore, in the present
setting there is a unique equilibrium path through the epidemic, allowing me not only
to predict of the course of the epidemic (within the model) but also to perform mean-
ingful comparative statics with respect to biological and preference parameters. Last,
Fenichel et al (2011) and Fenichel (2013) consider social distancing in the SIR model
when individuals have concave utility functions. Fenichel (2013) considers the properties
of decentralized equilibrium and socially optimal social distancing when susceptible, in-
fected and recovered individuals can vary their exposure levels differentially. He argues
that in such a setting, a second-best policy that requires all individuals to socially distance
themselves to the same extent may be inferior to a laissez-faire policy. Here, the main
focus is on the differences between the dynamics under equilibrium behavior and those
in the uncontrolled epidemiological model. In addition, the dependence of the dynamics
on preference parameters is explored and the present results are thus complementary to
his analysis.
The paper is organized as follows. In Section 2, I present the economic-epidemiological

model and briefly review the classical analysis of the susceptible-infected-recovered model.
This is to set the stage for the subsequent analysis of individual decision-making and
characterization of equilibrium dynamics under social distancing, contained in Section 3.
In Section 4, I discuss the results and conclude.

2. The Model
The model is an economic extension of the classical susceptible-infected-recovered model
and is simple to describe. Time is continuous and runs indefinitely. A closed population
consists of a continuum [0, 1] of infinitely lived individuals who can at each instant t ≥ 0
each be in one of three states, namely susceptible or infected or recovered. The measure
of susceptible individuals is S(t), the measure of infected (and infectious) individuals is
I(t) and the measure of recovered individuals is R(t). Because the population size is
normalized to one, these measures can be interpreted as fractions. Henceforth, I(t) shall
be referred to as disease prevalence.
At each instant, the population mixes homogeneously. This corresponds to pair-wise

random matching where each individual has an equal chance of meeting any other indi-
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Figure 1: States and Flows in the SIR Model.

vidual, irrespective of the health status of the two matched individuals. A match between
an infected and a susceptible individual may infect the susceptible. The rate at which
infection is transferred in such a match, absent social distancing, is denoted by β > 0.
This parameter captures the infectivity of the disease. Recovered individuals are immune
to further infection and also cannot carry the disease. Coupled with the assumption of
homogeneous mixing, this means that the aggregate rate at which susceptible individuals
become infected is given by βI(t)S(t). This means that the rate of new infection, or
disease incidence, is proportional to disease prevalence. The basic model compartments
with states and flow rates is illustrated in Figure 1.
Last, infected individuals spontaneously recover at rate γ ≥ 0. This means that on

aggregate, the rate at which recovery occurs is γI(t). Throughout, I will maintain the
following assumption:

Assumption 1: β > γ ≥ 0.

This assumption makes the analysis more interesting and will be explained below. To
model the possibility of engaging in social distancing, assume that the individuals can
affect the rate of infection by controlling the rate at which they expose themselves to
infection. In particular, at each instant t ≥ 0, each individual i ∈ S(t) non-cooperatively
chooses exposure level εi(t) ∈ [0, 1], at personal cost (1− εi(t))c ≥ 0. Effectively, this re-
duces the rate of infection for the individual to εi(t)βI(t). This formalization captures the
notion that, ceteris paribus, exposure is desirable. Equivalently, this means that engaging
in social distancing is costly to the individual. In this analysis, infected and recovered
(and therefore immune) individuals have no private benefits from social distancing and
are assumed to not engage in any preventive efforts.
To complete the economic model, assume that the individuals in the susceptible,

infected and recovered classes earn flow payoffs πS , πI and πR respectively and discount
the future at rate ρ > 0. It will be assumed that

πS ≥ πR ≥ πI

In contrast to most of the literature on controlled epidemics, I allow for the possibility
that πS > πR. This case captures the possibility of after-effects, i.e. that although an
individual recovers from the disease, it may have negative long-term consequences on
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health and well-being to have been infected.
In what follows, I will impose the following restriction:

Assumption 2: c < β
(ρ+γ)(ρ+β)

[(ρ+ γ)πS − πI + (γ/ρ)πR].

This assumption ensures that social distancing is state dependent in equilibrium.

2.1. The Epidemiological Benchmark. In this subsection, the classical SIR model
will briefly reviewed. This is to help build intuition for the equilibrium analysis and to
better contrast the equilibrium dynamics with those in the uncontrolled biological model.
The dynamics of the epidemic is described by the following system of differential

equations:

Ṡ(t) = −βI(t)S(t) (1)

İ(t) = I(t) [βS(t)− γ] (2)

Ṙ(t) = γI(t) (3)

S(t) = 1− I(t)−R(t) (4)

S(0) = S0 > γ/β, I(0) = I0, S0 + I0 = 1 (5)

It follows from the equations that Ṡ(t) ≤ 0 and Ṙ(t) ≥ 0, but it turns out that the
evolution of disease prevalence I(t) is non-monotonic. The restriction that S0 > γ/β
ensures that the epidemic can take hold in the population. With this assumption in
place, the overall behavior of the system can be described as follows. The measure of
susceptible individuals S(t) decreases over time while the measure of recovered individuals
increases over time. In contrast, the measure of infected individuals initially increases,
peaks when S(t) = γ/β and then tends to zero. The basic evolution of the uncontrolled,
non-behavioral SIR epidemic is illustrated in Figure 2.
Let I denote the peak prevalence of the epidemic. The level I is the highest possible

disease prevalence when there is no social distancing whatsoever. Peak prevalence for the
SIR epidemic is

I ≡ S0 + I0 −
γ

β
+
γ

β
log

(
γ

βS0

)
(6)

The SIR model cannot be fully characterized analytically. Nevertheless, the limiting
distribution of health states can be characterized, which shall prove useful in the analysis
of the economic model below. Well-known steps lead to the central result in epidemiology
that the final epidemic size is characterized by the equations5

S(∞) = 1−R(∞) = S(0) exp (−R(∞)R0) ≥ 0 (7)

where R0 ≡ β/γ is the basic rate of reproduction.
The basic rate of reproduction represents how many secondary infections are caused

by the insertion of a single infected individual into a fully susceptible population. The
second equation in (7) defines R(∞) implicitly and the first equation defines S(∞) as the
residual, which is possible since I(∞) = 0. The limiting proportions S(∞) and R(∞)

5See Brauer and Castillo-Chavez (2012).
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Figure 2: Dynamics of susceptible, infected and recovered in classical SIR model.

are easily found for particular parameterizations of the model. As is to be expected,
cumulative incidence R(∞) is an increasing function of the infectivity parameter β and
a decreasing function of the rate of spontaneous recovery γ.
There are two important insights that follow from equation (7). First, in the limit the

disease must die out and no infected individuals remain. Second, and more importantly,
when the disease dies out, there is generically a positive measure of susceptibles remaining
in the population. This shows that what causes the disease to die out is not that there
is eventually a lack of susceptibles that can be infected. Rather, it dies out because the
measure of recovered individuals, which must grow over time, becomes so large that the
contact between infected and susceptible individuals becomes too rare for the infection
to be passed on. Infected individuals have increasingly long sequences of matches with
recovered individuals (or between themselves) and so, on expectation, will recover before
having the opportunity to pass on the infection to a susceptible individual. Thus with
increasing frequency, the chains of infection are broken. The remaining susceptible indi-
viduals are said to be protected by herd (or population) immunity as they benefit from
the protection that the recovered individuals give.
The basic rate of reproduction plays a central role here. If R0 < 1, then infection

cannot take hold in the population. If R0 > 1, then infection first flares up and then
tapers off. In the characterization of equilibrium social distancing, the basic rate of
reproduction will play a prominent role as well, not as an aim in itself, but as a feature
of the equilibrium dynamics.
The economic version of the model inherits a number of simplifying assumptions

from the classical model. First, there is only one disease and one level (or severity)
of infection. In particular, this rules out the possibility of superinfection by different
strains of the disease. Second, the incubation period has zero length. This means that
the moment that an individual is infected coincides with the onset of symptoms, so no
infected individual acts under the mistaken belief that he or she is susceptible. Last,
once an individual becomes infected, he or she immediately becomes infectious to other
individuals (i.e. the latency period has zero length). Relaxing any of these assumptions
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constitutes possible extensions of the present work.
Last, the analysis is based on the implicitly assumption that only susceptibles ever

engage in social distancing, as strictly self-interested infected or recovered individuals
face no risks from social interactions.

3. Equilibrium Social Distancing

In making a decision on how much preventive effort to engage in, the individual must
trade off the net benefits of remaining susceptible (through costly prevention) and the
net benefits of exposure (with its inherent risks of becoming infected). But since the
transition from infected to recovered is beyond the influence of the individual, he or
she may treat the problem as one with only two (health) states, namely susceptible and
non-susceptible.
Let S(t) denote the set of susceptibles at time t ≥ 0. For an individual i ∈ S(t),

the social distancing decision influences his or her probability of becoming infected. Let
pi(t) ∈ [0, 1] denote that probability at instant t ≥ 0. The problem to be solved by a
susceptible individual is then given by

max
εi(t)∈[0,1]

∫ ∞
0

e−ρt {(1− pi(t))[πS − (1− εi(t))c] + pi(t)ρVI} dt (8)

s.t. ṗi(t) = εi(t)βI(t)(1− pi(t)), pi(0) = pi0 (9)

where the value of transitioning into the infected state can be calculated as6

VI =
1

ρ+ γ

[
πI + γ

πR
ρ

]
(10)

The value can be understood as follows. Once infected, the individual experiences flow
utility πI until he or she recovers. From then on, the individual earns flow utility πR in
perpetuity. The recovery date is governed by a Poisson process with rate γ and cannot
be influenced by the individual.7 The value VI is simply the expected discounted lifetime
utility of an individual in the infected state. Last, observe that

lim
γ→0

VI =
πI
ρ
, lim

γ→∞
VI =

πR
ρ

(11)

In steady state, ṗi(t) = 0. Assuming that the agent has positive exposure, this means
that in steady state, either the individual has become infected at some point in time
t ≥ 0 so pi(t) = 1 (but has recovered since), or infection has died out so I(t) = 0 before
the individual became infected, in which case he or she remains susceptible in perpetuity.
Note that no individual can influence the evolution of disease prevalence and this

is thus taken as exogenously given. Thus each individual’s problem is solved on the
background of the aggregate evolution of the infectious disease. This is in turn described
by the following modified logistic growth equation, which is a function of the aggregate

6See the Appendix for the derivation.
7For equilibrium models with treatment augmented recovery, see Rowthorn and Toxvaerd (2015) for

the SIS case with no immunity and Toxvaerd and Rowthorn (2020) for the SIR case with immunity.
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social distancing efforts across the population of susceptibles:

İ(t) = I(t) [ε(t)βS(t)− γ] , ε(t) ≡
∫
i∈S(t)

S(t)−1εi(t)di (12)

Letting η(t) denote the current-value costate variable, the individual’s current-value
Hamiltonian is given by

H = pi(t)
1

ρ+ γ
[ρπI + γπR]+(1−pi(t))[πS−(1−εi(t))c]+η(t)εi(t)βI(t)(1−pi(t)) (13)

The optimality condition, supposing that pi(t) < 1, is given by

∂H

∂εi(t)
= η(t)βI(t) + c = 0 (14)

Thus the privately optimal policy for an individual (i.e. his or her best response function)
is given by

εi(t) =


0 for − η(t)βI(t) > c
ε for − η(t)βI(t) = c
1 for − η(t)βI(t) < c

(15)

for any constant ε ∈ [0, 1]. At first blush, this may seem like a bang-bang type solution but
as will become clear, in equilibrium the solution will have a bang-singular-bang nature.
This means that for some intervals of time (or equivalently, for some levels of disease
prevalence), the best response of individuals will be bang-bang and switch between ε∗i (t) =
0 and ε∗i (t) = 1. But during a phase around the peak of the epidemic, the best responses
will be a singular solution determined by the aggregate measure of susceptibles remaining
in the population.

The evolution of the current-value multiplier is given by

η̇(t) = ρη(t)− ∂H

∂pi(t)
(16)

= η(t)[ρ+ εi(t)βI(t)] +

[
πS −

ρπI + γπR
ρ+ γ

− (1− εi(t))c
]

(17)

Using the indifference condition (14) with the equation η̇(t) = 0 to eliminate η(t) yields
the critical threshold of disease prevalence

I∗ ≡ ρc

β
(
πS − ρπI+γπR

ρ+γ
− c
) (18)

Under Assumption 2, I∗ ∈ (0, 1).8 Now the optimal strategy of a susceptible individual
can be expressed in terms of disease prevalence as follows:

8Assumption 2 ensures that I∗ < 1. The assumption also implies the weaker condition (ρ+ γ) c <
[(ρ+ γ)πS − πI + (γ/ρ)πR], which ensures that I∗ > 0.
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β γ c ρ πS πI πR
I∗ — + + +/— — + +
I + — 0 0 0 0 0

Table 1: Comparative statics of peak prevalence levels.

εi(t) =


0 for I(t) > I∗

ε for I(t) = I∗

1 for I(t) < I∗
(19)

for any constant ε ∈ [0, 1].
The comparative statics of the threshold value I∗ and peak prevalence I are listed in

Table 1.
It is noteworthy that peak prevalence I for the purely biological model is increasing

in the infectiousness of the disease β, while the maximum equilibrium prevalence I∗ is
in fact decreasing in β. Similarly, peak prevalence is decreasing in the recovery rate γ in
the biological model but increasing in γ in the economic model. Thus the economic and
the biological models offer sharply different predictions about how the characteristics of
the disease will influence the course of the epidemic. That increased infectiousness will
decrease individuals’ incentives to self-protection is a feature also seen in the work of
Philipson and Posner (1993), Geoffard and Philipson (1996), Fenichel (2013) and Tox-
vaerd (2019). It can be understood as follows.
Controlling for behavior, i.e. holding behavior fixed, higher infectiousness necessar-

ily leads to more infected individuals. This is intuitive and in fact what the classical
epidemiological model predicts. But in the behavioral model, behavior is not fixed but
endogenously determined and changes as the environment changes. This is because the
society in the economic model is populated by utility maximising individuals who each
weigh the costs and benefits of social distancing. For these individuals, as the infectious-
ness increases, social distancing becomes more attractive because exposure now leads to
a higher probability of becoming infected. As a result, individuals respond to increased
infectiousness by scaling back exposure and socially distancing themselves. On aggre-
gate, this behavioral response acts to curb disease incidence and hence decrease peak
prevalence.

3.1. No Social Distancing Scenario. Next, I turn to the characterization of the
equilibrium social distancing choices and the concomitant behavior of the dynamics of
the epidemic. There are two cases to consider, namely I∗ < I and I∗ ≥ I and each
scenario will be characterized in turn. When I∗ ≥ I, the disease is not very serious as
seen from the perspective of individuals themselves and thus they never engage in any
social distancing. That is, disease prevalence in the uncontrolled biological model never
reaches levels that prompt individuals to engage in preventive effort. The equilibrium
path of disease prevalence therefore exactly coincides with that in the classical SIR model,
with infection peaking at I. This is not a trivial case, since it highlights an important
feature of continual prevention. Namely, in this type of equilibrium, it is quite possible
that a very large proportion will become infected at some point along the way, and that
all individuals know this. The key reason for there not being an incentive to engage in
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social distancing is that the intertemporal distribution of infections is suffi ciently spread
out, i.e. the infection curve is already suffi ciently flat, such that at no given moment
is the probability of infection suffi ciently high to merit costly prevention. In a nutshell,
what matters for prevention is the intensity of the epidemic rather than the duration of
the epidemic.

3.2. Social Distancing Scenario. In the case where I∗ < I, equilibrium becomes
more complicated. Denote by S∗(t), I∗(t) and R∗(t) the paths of susceptible, infected
and recovered individuals under equilibrium social distancing and define the following
threshold values:

t ≡ min{t ≥ 0 : I(t) = I∗} (20)

t ≡ min{t ≥ 0 : S∗(t) = γ/β} (21)

Disease prevalence will be defined as naturally decreasing if disease incidence is nega-
tive in the absence of social distancing. In other words, disease prevalence is naturally
decreasing when even with no preventive behaviour, there are suffi ciently few remain-
ing susceptibles to ensure that the number of infected individuals declines. Then, the
uncontrolled epidemic becomes naturally decreasing at time t̃, defined implicitly by

t̃ ≡ min{t ≥ 0 : S(t) = γ/β}

Because social distancing induces (weakly) lower disease incidence for all t, it has to be
that I∗(t) ≤ I(t). But this implies that

S∗(t̃) > S(t̃) = γ/β

In other words, at the point in time at which disease prevalence on the uncontrolled
path starts decreasing, the equilibrium disease incidence would be positive (i.e. disease
prevalence would increase) were the individuals to cease social distancing. This means
that in a sense, in equilibrium social distancing prolongs the duration of the epidemic.
To use a phrase much discussed in recent policy debates, in equilibrium the individuals
will act to “flatten the curve” out of an uncoordinated desire for self-preservation.
Equilibrium behavior can now be characterized as follows:

Proposition: If I∗ < I, then in a symmetric equilibrium, exposure at time t ≥ 0 for
each individual i ∈ S(t) is given by

ε∗i (t) =

{ γ
βS(t)

for t ∈ (t, t)

1 for t /∈ (t, t)
(22)

Proof: From the best response function of the individuals, it follows that if I(t) > I∗,
then all individuals will engage in full social distancing, thereby bringing down disease
incidence. Similarly, if I(t) < I∗, then all individuals will fully expose themselves to
infection, thereby increasing disease incidence. There are two cases to consider. If dis-
ease prevalence is naturally decreasing, then full exposure will continue to be optimal
indefinitely. If disease prevalence is not naturally decreasing, then it will move towards
the level I∗. Therefore, in equilibrium, disease prevalence must remain constant until it
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becomes naturally decreasing. Setting İ(t) = 0 yields the required aggregate exposure
level (and thus the individual mixing probabilities) as

ε∗(t) =
γ

βS(t)
(23)

and the result follows �

The Proposition shows that in equilibrium, individuals engage in no social distancing
until a suffi ciently large proportion of the population has become infected. Once it has
taken suffi cient hold, they switch to a mixed strategy equilibrium in which they attach
increasingly high probability to no social distancing. The probability increases as the
measure of susceptibles decreases. One can view the strategy of individuals as akin to a
thermostat that switches off and on as the temperature is above or below a desired level.
An immediate result of the Proposition is as follows:

Corollary: During the equilibrium social distancing phase, individuals gradually reduce
their social distancing efforts despite the infection probability not decreasing.

This result is noteworthy because it shows that in equilibrium, during the social dis-
tancing phase it is the measure of remaining susceptibles that determines the level of
social distancing, not the number of infected individuals. In fact, during this plateau
phase, disease incidence stays constant at the critical threshold I∗ and equilibrium social
distancing effort decreases as the measure of susceptibles decreases. During the social
distancing phase, i.e. when the best responses are on the singular segment, efforts to de-
crease exposure to infection are strategic substitutes in that any individual would respond
to more social distancing by others with an increase in exposure. The mixed strategy-
singular solution nature of equilibrium during the social distancing phase is similar in
nature to the steady state equilibrium behavior in Toxvaerd (2019). In that paper, the
disease is of the susceptible-infected-susceptible variety and thus individuals cannot ob-
tain immunity. As a consequence, in steady state S(t) remains constant through time
and thus the mixed strategy weights in the singular solution are constant. In contrast,
with immunity, the measure of susceptibles must decrease over time, explaining why the
equilibrium mixing probabilities must change as time progresses and the state of the
epidemic changes.

The the equilibrium path for disease prevalence and the associated equilibrium social
distancing efforts are illustrated in Figure 3, which also displays the path of disease preva-
lence in the uncontrolled biological model for comparison. As can be seen in the figure,
at the early stages of the epidemic, individuals choose not to make any social distancing
efforts (i.e. they choose to fully expose themselves). This reflects the fact that as disease
prevalence is initially very low (and thus the infection risk from exposure commensurately
small), individuals do not find social distancing measures worthwhile. Similarly, when
the epidemic has run its course and infection has almost died out, individuals will again
opt for full exposure. But at the height of the epidemic, during the phase in which the
uncontrolled epidemic would have peaked, individuals spontaneously act and engage in
social distancing, causing a dampening effect on disease incidence and prevalence.

Corollary: The equilibrium trajectory of the disease during the social distancing phase
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Figure 3: Equilibrium disease prevalence and social distancing across stages of epidemic.
The blue curve shows disease prevalence and the red curve shows aggregate exposure.

is characterized by the system of differential equations

Ṡ∗(t) = −βε∗(t)I∗S∗(t) = −β
(

γ

βS∗(t)

)
I∗S∗(t) = −γI∗ (24)

İ∗(t) = 0 (25)

Ṙ∗(t) = γI∗ (26)

As an aside, the model also an equilibrium in asymmetric strategies. All that is re-
quired on the equilibrium path during the social distancing phase is that on the horizontal
segment of the curve, aggregate exposure must equal ε∗(t); it does not matter how this
comes about. Since on this segment the individuals are indifferent between full social
distancing and full exposure, they are willing to mix between strategies. But it is also
consistent with equilibrium to have a fraction ε∗(t) exposing themselves fully and have
the remainder (1− ε∗(t)) fully socially distancing themselves.
For ease of comparison of disease paths between the non-controlled biological model

and the equilibrium under social distancing, Figures 4, 5 and 6 show the evolution of
individuals in each health state separately, while Figure 9 at the end of the paper shows
all the paths superimposed.
The dynamic equations in the Corollary show another interesting feature, namely

that during the social distancing phase, the measure of susceptible individuals decreases
linearly at a rate −γI∗, while the measure of recovered individuals increases linearly at
rate γI∗. In addition, one sees that the rates of change are proportional to the critical
threshold I∗. In other words, we can relate the speed of change over time during the
social distancing phase to the magnitude of the biological and preference parameters. For
example, an increase in infectivity β will cause the susceptibles to decrease more sharply
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Figure 4: Paths of susceptible individuals across epidemic. Dashed curve shows path in
epidemiological model; solid curve shows equilibrium path in economic model.

Figure 5: Paths of infected individuals across epidemic. Dashed curve shows path in
epidemiological model; solid curve shows equilibrium path in economic model.

123
C

ov
id

 E
co

no
m

ic
s 1

5,
 7

 M
ay

 2
02

0:
 1

10
-1

33



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Equilibrium Social Distancing

Figure 6: Paths of recovered individuals across epidemic. Dashed curve shows path in
epidemiological model; solid curve shows equilibrium path in economic model.

and the recovered to increase more sharply. Similarly, the more severe the disease is, as
measured by lower flow utility while infected πI , will likewise make susceptibles decrease
faster and that of the recovered increase faster. The linear segments on the S∗(t) and
R∗(t) curves can be verified in Figures 4 and 6.

Next, consider how a change in the preference parameters influences the social dis-
tancing decisions in equilibrium and how they alter the trajectory of the disease over
time. We will do this in terms of effects on peak prevalence and on the duration of the
plateau phase with elevated disease prevalence. To trace the effects of changes in the
preference parameters, we can simply determine how they influence the critical threshold
I∗ and then see what effect this has on the aggregate dynamics. Since the method of
analysis is the same for each of the parameters, I will perform this exercise only for a
change in the flow payoff πI that an individual earns when it is infected. This case is
illustrated in Figure 7, which shows the effects on the trajectory of infected people when
πI is lowered. This corresponds to making the disease more severe in that it has more
dire health consequences. All other parameters are kept fixed. The benchmark case is
shown as a solid black curve while the modified case is shown as a solid blue curve. The
dashed black curve shows the uncontrolled benchmark for reference. Because the disease
is now more severe, individuals have reduced tolerance to infection. This is reflected in a
downward shift in the critical threshold I∗. But this means that social distancing kicks in
earlier in equilibrium and also serves to extend the duration of the epidemic (in the sense
described earlier). As will be explored further below, this also has consequences for the
limiting distribution of the epidemic. As will become clear, although the phase of rela-
tively high disease prevalence is thus increased, the actual number of infected individuals
across the epidemic (i.e. cumulative incidence) actually decreases.
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Figure 7: How parameters change the intensity and duration of the epidemic under
equilibrium social distancing. Plot shows the evolution of susceptible individuals in the
benchmark model in solid black and the evolution when the disease is more severe (πI is
lower) in solid blue.

Analysis of the limiting distribution. Till now, I have focused on the evolution
of the epidemic across time, which is useful to analyze inter-dependencies between the
compartments, growth rates and time-domain properties of the disease. But the time
dimension is less useful for determining the limiting properties of the disease, such as the
cumulative incidence (i.e. the total number of infected individuals across the epidemic)
and how the eventual number of immune and susceptible individuals depend on the initial
conditions. For that purpose, and to further compare the equilibrium disease dynamics
with social distancing to those under the uncontrolled biological model, it is useful to
consider the evolution of infections in the (S(t), I(t))-plane. This is done in Figure 8.
For an arbitrary point in this diagram, the measure of recovered individuals R(t) is
residually determined. For this purpose, note that the dynamics in (S(t), I(t))-space are
characterized by the equation9

I(t) = S0 + I0 − S(t) +
γ

β
log

(
S(t)

S0

)
(27)

To understand the figure, assume that R0 = 0 and pick an initial point (S0, I0). This
point is denoted by a on the curve. I will first describe the uncontrolled dynamics in the
absence of social distancing and then contrast them with the dynamics in equilibrium.
Starting from the initial point a, infection picks up and the susceptible population de-
creases, moving the state of the system along the dashed curve peaking at point f and
ending in some point (S(∞), I(∞)), denoted by g. There are two important points to

9See Hethcote and Waltman (1973), who uses this type of diagram to illustrate the effects of an initial
pulse vaccination of a fraction of the susceptible population.
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Figure 8: Disease dynamics in the (S(t), I(t))-plane. Dashed curve shows path in epi-
demiological model; solid curve shows equilibrium path in economic model.

notice.
First, the curve showing the uncontrolled dynamics has its maximum at S(t) = γ/β,

irrespective of the initial condition. In other words, all the curves describing the epidemic
in (S(t), I(t))-plane achieve their maximum at the same value of susceptibles. This will
turn out to be important for the characterization of the equilibrium dynamics. If one
chooses another initial state (S ′0, I

′
0) with I

′
0 > I0, indicated by e, then the resulting curve

is simply shifted upwards and never intersects the initial curve. The dynamics under this
higher initial disease prevalence settles on a lower value for S(∞), as can be verified from
the equation that characterizes the final distribution. But note that the shifted curve
also has its maximum at S(t) = γ/β.
Second, generically, the curves intersect the S(t)-axis at a point (S(∞), I(∞)) at

which I(∞) = 0 and S(∞) > 0. In other words, the disease dies out asymptotically,
some individuals remain susceptible and R(∞) = 1−S(∞) become infected at some point
during the epidemic but eventually recover. The limiting fraction R(∞) measures the
aggregate incidence (or total case count) of the epidemic. Next, consider the movement
along the I(t)-dimension. As is clear from the curve, infection initially increases to the
point when S(t) = γ/β and then decreases.
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It is important to emphasize that the speeds along these different uncontrolled disease
curves differ and depend on the initial conditions and the parameters β and γ (see Het-
hcote and Waltman, 1973 for details). As will be shown below, the speed of movement
in equilibrium is lower than that in the biological model, as social distancing serves to
reduce the speed by suppressing disease incidence.

Next, I turn to the dynamics under endogenous social distancing. In Figure 8, I plot
the horizontal line corresponding to the equilibrium cutoff I∗ < Ī. In equilibrium, the
initial dynamics from the point a coincide with those of the biological model until the
point b, where I(t) = I∗. At that point, the equilibrium and uncontrolled biological
paths diverge as the individuals start to socially distance themselves. They do so to
an extent that keeps I(t) constant at the critical level. Thus in equilibrium after the
initial stage, the dynamics move horizontally leftward till the point c, at which no further
social distancing is desired by the individuals. As described above, this happens when
the infection becomes naturally decreasing. But on the diagram, one readily verifies this
must happen at a point where S∗(t) = γ/β. Thus once point c is reached, individuals
cease social distancing and thus the dynamics going forward coincide with those of the
uncontrolled biological model but with the modified initial condition (S0, I0) = (γ/β, I∗).
The equilibrium path thus ends at point d, which can be confirmed to lie strictly to the
right of point g.

In both the uncontrolled biological model and in the model with social distancing,
the infection dies out only asymptotically. Thus the end of the disease cannot be said
to occur faster under social distancing than it otherwise would have under a purely
non-behavioral model. What is possible though is to determine when the disease starts
decreasing naturally under the two scenarios. In the diagram, it is clear that this happens
when the fraction of remaining susceptibles reaches the critical threshold γ/β. But note
that along the uncontrolled biological trajectory, the speed of movement along the curve
in the (S(t), I(t))-plane is

Ṡ(t) = −βI(t)S(t) (28)

= −β
[
S0 + I0 − S(t) +

γ

β
log

(
S(t)

S0

)]
S(t) (29)

In contrast, during the social distancing phase, the speed of movement is

Ṡ(t) = −βI∗S(t) (30)

But since I∗(t) ≤ I∗ for all t ≥ 0, it follows that the starting point of declining infection
happens with a delay under social distancing. Another way to see that infection is
suppressed under social distancing is to recall that in the uncontrolled biological model,
the churn rate is

βS(t)

γ
(31)

In other words, each individual who recovers is replaced by βS(s)/γ new infected indi-
viduals. The dependence of this conversion ratio on the fraction of susceptibles S(t) is
exactly what causes infection to first increase and then decrease. In contrast, under social
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β γ c ρ πS πI πR
S∗(∞) + — — +/— + — —
R∗(∞) — + + —/+ — + +
S(∞) — + 0 0 0 0 0
R(∞) + — 0 0 0 0 0

Table 2: Comparative statics of final size distributions.

distancing, the churn rate is

ε∗(t)βS(t)

γ
=

γ
βS(t)

βS(t)

γ
= 1 (32)

In other words, equilibrium exposure is set such that each individual who recovers is
replaced by exactly one new individual who is infected.
The suppression of incidence in equilibrium also has effects on the progression of

susceptible and recovered individuals. Once social distancing kicks in, as fewer people
become infected, the measure of susceptibles declines less steeply. At the same time, the
measure of recovered grows less rapidly.
Note that since the curves in the (S(t), I(t))-plane do not intersect, we can use the

intersection between the lines I(t) = I∗ and S(t) = γ/β to determine the effects of changes
in parameters on the final size distribution. E.g., for two distinct such intersection points
(which differ because we vary one of the underlying parameters), we can rank the resulting
limiting distributions by following the curves from the initial intersection points to the
S(t)-axis to find the corresponding S(∞)-values.
Using the comparative statics of the critical threshold I∗ in Table 1, we find the

corresponding effects that the biological and preference parameters have on the final size
distribution in the uncontrolled biological model and in the equilibrium in the economic
model. These are given in Table 2.
These comparative statics again show that the results from the equilibrium model may

reverse those of the uncontrolled biological model. For example, increasing infectiousness
β or decreasing the recovery rate γ leads to higher cumulative incidence in the biological
model but to lower cumulative incidence in the economic model. The comparative statics
with respect to the preference parameters have no biological counterpart and so for these,
no comparison is possible.

4. Discussion
This paper has considered the equilibrium amount of social distancing in the context of the
well-known SIR epidemiological model. While simple, this model allows for an intuitive
and clean analysis of the tradeoffs involved in individuals’ decision-making on social
distancing. There are several ways in which the analysis can be enriched. First, rather
than consider a linear cost of social distancing, other cost structures can be considered.
The main insights are robust to this extension. With increasing convex costs of social
distancing, individuals would continually adjust to increasing disease prevalence in the
population.10 Second, the paper has not offered a full welfare analysis of the equilibrium.

10Note also that although costs (and thus the current-value Hamiltonian) is linear, the symmetric
equilibrium is characterised by a singular solution during the social distancing phase. Thus exposure
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It is immediately clear that the equilibrium is in fact not social welfare maximizing.
The reasons is a classical one in this type of model, namely that the individuals in the
population do not internalize the positive externalities flowing from social distancing.
Third, and most interestingly, the analysis has been based on the assumption of a well-
mixed population in which all that matters are the fractions of susceptible, infected and
recovered. A richer model would consider a population with explicit social structure.
This would open up for the possibility that the incentives to socially distance oneself may
depend on one’s position in the social network. Such an analysis may also be useful in
informing policy, such as the socially optimal design and micro-targeting of quarantines.

Last, the population in this model has been assumed to be homogeneous. With a pop-
ulation that is heterogeneous along some dimension, the qualitative nature of the analysis
would be similar, but aggregate social distancing would change more continuously, creat-
ing a gradual increase and subsequent decrease in social distancing. To see this, suppose
that individuals were heterogeneous in how much they suffered from infection. In that
case, different individuals would have different tolerances to infection risk and this would
mean that each individual would start socially distance itself at different levels of disease
prevalence. Initially, only the very risk intolerant in the population would start socially
distancing but as prevalence increases further, additional individuals would join them. In
this manner, aggregate social distancing would be phased in more smoothly than in the
homogeneous population case, in which all switch to social distancing at the same time.
The heterogeneous population case also suggests the interesting possibility of free-riding
by the more risk tolerant on the efforts of the less risk tolerant. As the latter start socially
distancing themselves, disease incidence is curbed somewhat, thus protecting those indi-
viduals who have not yet reached their individual social distancing thresholds. In fact,
disease prevalence may be curbed so much by the initial social distancing efforts of the
risk intolerant that the most tolerant may never have to engage in any social distancing
and they would in effect be free-riding on the preventive efforts of those who do.

levels in fact vary continuously with the state during this phase.
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A. Appendix

In this Appendix, I derive the value of transitioning into the infected state. Let the
recovery date for an infected individual be denoted by T . This date arrives according to
a Poisson process with rate γ ≥ 0.

The value we seek to characterize, namely the net present value of being infected at
instant t ≥ 0 is

VI =

∫ T

t

e−ρuπIdu+

∫ ∞
T

e−ρuπRdu (33)

Consider a utility flow π which can take two values, πI and πR. At time t, the utility
flow starts offwith π = πI . Over the time interval [t, t+dt), the probability of the utility
flow switching to πR is γdt and so the probability of the utility flow not switching πR is
1− γdt. Define

V t
I = Et

∫ ∞
t

e−ρ(u−t)sudu (34)

and assume that st = πI . We do so because for the case where st = πR, we know that
the utility flow gets stuck at πR and so

Et

∫ ∞
t

e−ρ(u−t)πRdu = πREt

∫ ∞
t

e−ρ(u−t)du =
πR
ρ

(35)

Observe also that V t
I is independent of t, by virtue of the infinite horizon and so V

t
I = VI .

Therefore

VI = πIdt+ (1− γdt)e−ρdtVI + γdte−ρdt
πR
ρ

(36)

VI = πIdt+ [1− (ρ+ γ)dt]VI + γdt
πR
ρ

+ o(dt) (37)

0 = πIdt− (ρ+ γ)VIdt+ γdt
πR
ρ

+ o(dt)VIdt =
πI + γ πR

ρ

ρ+ γ
dt+ o(dt). (38)

In the continuous-time limit, we obtain

VI =
1

ρ+ γ

[
πI + γ

πR
ρ

]
(39)

and the result follows �
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Figure 9: Paths of susceptible, infected and recovered individuals across epidemic. Dashed
curves shows paths in epidemiological model; solid curves show equilibrium paths in
economic model.
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cases. Implementing additional eligibility requirements may help 
target funds towards the most constrained firms.
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1 Introduction

The COVID-19 pandemic has caused widespread economic disruption in the US in the �rst

few months of 2020. In response, the US federal government passed and signed into law

the Coronavirus Aid, Relief, and Economic Security (CARES) Act on March 27, 2020 which

provides over $2 trillion dollars in relief funds to various sectors and industries in the US

economy. One of the major provisions within the Act is the Paycheck Protection Program

(PPP), a $349 billion fund aimed at keeping workers employed by providing forgivable loans

to businesses. The program is administered through the US Small Business Administration

(SBA). On April 24, an additional $310 billion was subsequently approved for the program,

making PPP one of the largest economic stimulus programs in US history.

In this paper, we provide an initial assessment of the program by analyzing the public

�rms that received PPP loans. One of the primary reasons for focusing on public �rms

is the substantial media coverage regarding their loan approvals.1 In fact, several large

public companies, such as Ruth's Chris and Shake Shack, that received PPP loans that were

subsequently returned after signi�cant public pressure.2 The argument has been that public

�rms do not need PPP funds because they have access to other sources of �nancing. In order

to evaluate this argument, however, it is important to �rst understand the prepandemic

�nancial condition of these borrowers. Fortunately, detailed �nancial information about

public companies is readily available. We hope that the results of our empirical analysis can

provide context to the policy discussion regarding the design or modi�cation of the program

moving forward.

In the �rst part of our analysis, we construct a list of public �rms with PPP loans

based on their disclosures to the Securities and Exchange Commission (SEC) and document

three key facts. First, 273 public �rms were granted $929 million in PPP loans between

April 7 and April 27. This represents a mere 0.3% of total funds allocated to the �rst round

of the program. Second, we �nd that close to half of public �rms were eligible for PPP loans

based on the criteria outlined by the SBA. Third, 13% of these PPP-eligible public �rms

1See, for example, Pacheco, Inti and Francis, Theo. �Public Companies Got $500 Million in Small Business
Loans." The Wall Street Journal. April 22, 2020.

2Wallace, Alicia. �Ruth's Chris will return its PPP loans after Treasury says public companies should
repay." CNN Business. April 24, 2020.
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eventually received PPP loans. Other concurrent research e�orts document similar total

PPP loan amounts to public �rms.3 Therefore the main contribution of this paper lies in

understanding the set of PPP-eligible �rms.

In the second part of our analysis, we investigate which �rm-level characteristics are

associated with PPP borrowing using a regression analysis. Overall, our �ndings suggest

that PPP loans were granted to �rms speci�cally targeted by the SBA. First, controlling

for industry and location, we �nd that PPP borrowers tend to be smaller, but have more

employees. PPP borrowers are also associated with fewer investment opportunities and fewer

cash holdings. A �rm with outstanding debt on their balance sheets is 5.3 percentage points

more likely to be a PPP borrower, suggesting that preexisting banking relationships are

an important determinant for borrowing. Lastly, we �nd that being located in a county

with COVID-19 cases is associated with a 6.0 percentage point increase in the probability

of receiving a PPP loan. In sum, PPP borrowers align with the characteristics of companies

one would expect to seek assistance from the program.

Given that loans went to eligible �rms, how should we view the PPP outcomes as

a whole? Because PPP loans are targeted towards retaining workers at their prepandemic

wage levels, we calculate the average loan amount per employee. From our data, public �rms

are able to allocate an average of $17,758 for each employee. This amount is $20,319 when

we consider all PPP borrowers, regardless of being public or private. From this perspective,

PPP loans appear to bene�t workers similarly at both public and private �rms.

However, we do not wish to downplay the news reports that continue to come out

regarding the inability of many small �rms to access PPP. Instead, we want to emphasize

the need for additional eligibility requirements to direct policy towards aspects of the program

that can have the largest potential impact. While the SBA modi�ed its guidelines in late

April discouraging large public companies from participating,4 the program can implement

further requirements based on a �rm's �nancial health. Our results suggest that cash-to-

assets and outstanding debt levels a�ect whether a �rm borrowed. These requirements can

3See, among others, Meier and Smith (2020); the Washington Post article by O'Connell et al. �Public
companies received $1 billion in stimulus funds meant for small businesses� from May 1, 2020; and http:
//trumpbailouts.org/.

4Speci�cally, the SBA highlighted that loans must be �necessary to support the
ongoing operations of the Applicant." See https://home.treasury.gov/system/�les/136/
Paycheck-Protection-Program-Frequently-Asked-Questions.pdf for details.
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also be applied to private �rms if the SBA wants to target the most constrained �rms.

Seru and Zingales propose a similar targeted approach through programs for wages, interest

payments, and rent.5

Our study is one of the �rst to empirically investigate the PPP, an unprecedented

stimulus program directly aimed at small businesses. Meier and Smith (2020) analyze a

similar set of PPP borrowers but they do not consider SBA eligibility or provide overall

context to the program. The authors refer to the loans as �bailouts� rather than loans,

suggesting the funds are channeled directly to equity holders. Granja, Makridis, Yannelis,

and Zwick (2020) use loan-level data from the SBA to study the geographic distribution of

PPP funds. They �nd that PPP funds did not �ow to communities that were more adversely

a�ected by the pandemic. We view their results as complementary to ours given that they

focus on lenders and the location of borrowers while we focus on the features of borrowers.

Our paper also contributes to growing literature on the impact of COVID-19 on �rms.

Fahlenbrach, Rageth, and Stulz (2020) �nd that �rms with less �nancial �exibility faced

more negative stock returns in the �rst few months of 2020. Acharya and Ste�en (2020)

study the use of credit lines by �rms. Albuquerque, Koskinen, Yang, and Zhang (2020)

explore how �rms with high Environmental and Social (ES) ratings fared in early 2020.

Bartik, Bertrand, Cullen, Glaeser, Luca, and Stanton (2020) focus on small businesses and

document that over seventy percent of businesses anticipated using the PPP program as of

March 26, 2020, and expected funds to signi�cantly in�uence other business decisions. Also

using survey data, Humphries, Neilson, and Ulyssea (2020) �nd that the smallest businesses

were less aware of the PPP compared to larger �rms. Baker, Bloom, Davis, and Terry

(2020) quantify the signi�cant increase in economic uncertainty in early 2020 using market-,

news-, and survey-based measures. Sedlácek and Sterk (2020) estimate the e�ects on startup

activity and employment. Rio-Chanona, Mealy, Pichler, Lafond, and Farmer (2020) quantify

supply and demand shocks at the industry level.

Finally, our paper contributes to the growing literature that seeks to understand

the economic impact of COVID-19. Alon, Doepke, Olmstead-Rumsey, and Tertilt (2020)

consider the implications of the impending COVID-19-based recession for gender equality.

5https://promarket.org/the-stimulus-package-is-too-expensive-and-poorly-targeted-the-waste-contained-
in-the-cares-act.
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Giglio, Maggiori, Stroebel, and Utkus (2020) gauge investor short- and long-run expectations

through a survey. Inoue and Todo (2020) show how the contractionary e�ects of lockdown

policies can propagate to other cities. Alfaro, Chari, Greenland, and Schott (2020) show that

unanticipated changes in predicted infections during the SARS and COVID-19 pandemics

forecast aggregate equity market returns. Croce, Farroni, and Wolfskeil (2020) quantify the

exposure of major �nancial markets to news shocks about global contagion risk accounting

for local epidemic conditions. Many studies consider the e�ects of COVID-19 and potential

policy responses in a macroeconomic framework (Caballero and Simsek, 2020; Eichenbaum,

Rebelo, and Trabandt, 2020; Castro, Miguel Faria e, 2020; Glover, Heathcote, Krueger, and

Ríos-Rull, 2020; Krueger, Uhlig, and Xie, 2020; Ludvigson, Ma, and Ng, 2020). Other studies

explore the observed economic impact from previous pandemics (Carillo and Jappelli, 2020;

Correia, Luck, and Verner, 2020; Daniel Lewis and Stock, 2020; Dahl, Hansen, and Jense,

2020).

The rest of this paper is organized as follows. Section 2 describes the PPP program in

more detail. Section 3 describes the construction of our dataset, while 4 analyzes the data

in detail. Section 5 concludes.

2 Background

The Payment Protection Program (PPP), administered and guaranteed by the US Small

Business Administration (SBA), aims to provide immediate economic assistance to US indi-

viduals, families, and businesses a�ected by the COVID-19 pandemic by incentivizing small

businesses to retain their workers. It was enacted as part of the Coronavirus Aid, Relief,

and Economic Security (CARES) Act, which was signed into law on March 27, 2020. Of the

over $2 trillion in funds available through the CARES Act, $349 billion was allocated to the

PPP.6

Firms can allocate PPP loan funds for payroll, rent, mortgage interest, and utility

expenses, with at least 75% to be used for paying employees for up to eight weeks. This loan

6Other programs that were previously available to small businesses for adverse situations were still avail-
able. This includes the Economic Injury Disaster Loan (EIDL) emergency program, providing up to $10,000
per business, and the SBA Express Bridge Loan program, providing up to $25,000 per business. In addition
the SBA promised to pay 6 months of principal, interest, and fees for SBA loans that were disbursed prior
to September 2020.
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can be forgiven if the �rm maintains its employee headcount or quickly rehires its employees

while maintaining wages.7 In addition, payments on this loan can also be deferred for six

months, there are no fees associated with the loan, and no collateral or guarantees are

required. Loans can also be prepaid without any penalties. The loan is a two year loan with

an annual interest rate of 1% and is subject to a $10 million cap.

SBA lenders, federally insured depository banks, federally insured credit unions, and

Farm Credit System institutions were allowed to process PPP loans starting on April 3,

2020. All businesses (including nonpro�ts, independent contractors, self-employed individu-

als, and veterans organizations) with 500 or fewer employees can apply. In certain industries,

businesses with more than 500 employees can apply if they meet revenue-based or employee-

based size thresholds de�ned by the SBA.8 In addition, all �rms in the hotel and food services

industries (NAICS code 72) with 500 or fewer employees per location are eligible to apply.

At the time of implementation, there were no other requirements or certi�cations needed to

qualify for a loan.9

Although the PPP was scheduled to be open until June 30, 2020, the SBA was over-

whelmed with applications within days of the program opening on April 3. On April 16,

the SBA announced $342 billion had been allocated to over 1.6 million small business loans

around the country (Small Business Administration, 2020). On April 21, Congress approved

another stimulus package, allocating an additional $310 billion for the PPP. Soon after on

April 27, the SBA announced that it resumed taking PPP applications.

3 Data

Analyzing the types of public �rms that borrowed from PPP requires �rm-level data for

both borrowers and �rms eligible for the program. This section describes the data construc-

tion which proceeds in two steps. First, we identify PPP borrowers from their mandatory

disclosure reports to the SEC. Second, we collect �nancial statement information for the set

7Payroll costs per employee are capped at $100,000.
8For further detail, see the �Who Can Apply� section on the SBA website (https://www.sba.gov/

funding-programs/loans/coronavirus-relief-options/paycheck-protection-program).
9Latest information about the PPP Program can be found on the SBA website:

https://www.sba.gov/document/support�faq-lenders-borrowers, and the US Department of Treasury
website: https://home.treasury.gov/policy-issues/cares/assistance-for-small-businesses.
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of public �rms and apply the SBA eligibility guidelines for PPP loans.

3.1 PPP Borrowers

We construct our list of public �rms that borrowed through the PPP program using Form

8-K's submitted to the SEC and available through the EDGAR platform.10 Form 8-K is a

mandatory report of scheduled or unscheduled material information such as major events

and/or corporate changes that are relevant to shareholders. An event such as taking out a

large loan with a bank counts as a major event. Firms have four days to submit a Form 8-K

from the triggering event. We �rst perform a textual search over all 8-K forms submitted in

April 2020, including all attachments and exhibits, for the following keywords: �paycheck,�

�PPP,� �small business administration,� �SBA,� �cares,� and �emergency.� We manually

review the cases in which at least one of these terms if used and determine whether it

represents a PPP loan. Finally, we collect the loan amount and date of the loan reported in

the form.11

Between April 7 and April 27, 2020, we �nd 273 public �rms that have availed of the

PPP program. The list of �rms, dates, and associated loan amounts is provided in Table

A1 at the end of this paper. In total, public �rms took out $929 million in PPP loans.

Relative to the $349 billion amount designated by the CARES Act (section 2), public �rms

have comprised a small fraction (0.3%) of aggregate PPP loans.12 Because PPP loans are

targeted towards retaining workers at their prepandemic wage levels, we calculate the average

loan amount per employee (table 1). From our data, public �rms are able to allocate an

average of $17,758 for each employee. This amount is $20,319 when we consider all PPP

borrowers, regardless of being public or private. From this perspective, PPP loans appear

to bene�t workers similarly at both public and private �rms.

10We download all 8-K reports from the EDGAR platform as of April 29, 2020.
11The PPP loan is often reported under the item �Entry into a Material De�nitive Agreement.�
12The calculation is almost identical when we use the latest data from the SBA; 1.66 million loans worth

$342.3 billion have been approved as of April 16, 2020 (Small Business Administration, 2020).
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All Firms Public Firms

Total in US

Number of Firms 5,996,900 5,544

Employment 128.59 mil 49.96 mil

PPP Eligiblea

Number of Firms 5,976,761 1,989

Employment 60.56 mil 3.49 mil

PPP Borrowers

Numberb 1,661,367 273

Employmentc 16.83 mil 0.11 mil

Total Loan Amount $342,278.0 mil $929.2 mil

Averages

PPP Loan Amount per Firm $206,022 $3,403,663

PPP Loan Amount per Employeed $20,319 $17,758

Table 1. Paycheck Protection Program in the Aggregate
Sources: 2017 Statistics of US Businesses conducted by the US Census, US Small Business Administration,
Compustat.
aFor all �rms, we assume that �rms with fewer than 500 employees are eligible for a PPP loan. For public
�rms, we apply the SBA criteria to Compustat data. There are fewer public �rms in our regression analysis
because of additional data requirements.
bFor all �rms, we report aggregate number of PPP loans. For public �rms, we report number of distinct
�rms. Public �rms may take on more than one PPP loan if it has multiple subsidiaries.
cFor all �rms, assume that the fraction of employees that accessed PPP is the same as the number of �rms
that accessed PPP = 60.56m · 1,661,3675,976,761 . For public �rms, this �gure is based only on the 93% of �rms for
which we have employment data.
dFor public �rms, we report the average PPP loan amount per employee across �rms.

3.2 PPP Eligible

We construct the list of PPP-eligible �rms from Compustat. We apply the SBA guidelines

which require that a �rm meet criteria based on total dollar receipts or number of employees

for its industry to the universe of public �rms in the data. As an example, the SBA de�nes

a �rm in the farming industry as small if total dollar receipts are less than $1 million, while

a �rm in the automobile manufacturing industry is small if it employs fewer than 1,500

employees.13 For each �rm in Compustat, we compute total dollar receipts as the sum of

revenue (REVT) and the cost of goods sold (COGS) and use the most recent annual data

13The SBA small business size standards for each 6-digit NAICS code industry is found in https://www.
sba.gov/document/support--table-size-standards.
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available since September 2019.14 We take the number of employees reported in EMP.15

We restrict our sample to �rms that satisfy the following criteria: nonmissing total assets,

nonmissing revenue, with at least �ve employees, nonmissing 2-digit NAICS code. From the

5,544 �rms that are active in 2019 in Compustat, 4,233 satisfy these criteria.

47.3

1.8

40.5

36.9

0 10 20 30 40 50
Percent of Public Firms

Any

NAICS Code 72

Less Than 500 Employees

SBA Standard

Panel A. All Public Firms

93.1

3.1

83.8

76.1

0 20 40 60 80 100
Percent of PPP Borrowers

Any

NAICS Code 72

Less Than 500 Employees

SBA Standard

Panel B. PPP Borrowers

Figure 1. PPP Eligibility by SBA Criteria

This �gure shows the fraction of �rms that satisfy the eligibility criteria for PPP loans for the set of all
public �rms in Compustat (Panel A) and the set of PPP borrowers (Panel B). �SBA Standard� refers to
the employee- and receipts-based guidelines for each 6-digit industry NAICS code imposed by the SBA.
For certain industries, �rms with up to 1,500 may be eligible. NAICS code 72 (Accommodation and Food
Services) refers to the hotel and food services industry.

Of the public �rms in Compustat, 2,020 (47.3%) satisfy at least one of the eligibility

criteria speci�ed by the SBA. We show the breakdown of this distribution for each of the

speci�ed criteria in �gure 1 (panel A). In particular, 40.5% percent of public �rms have

fewer than 500 employees, while 36.9% satisfy the industry-speci�c standard based on either

receipts or employees. A �rm may satisfy the 500-employee threshold criteria but not the

industry-speci�c SBA standard because the latter is more often based on total dollar receipts

rather than employment. A �rm may not satisfy the 500-employee threshold but may satisfy

the industry-speci�c SBA standard based on the number of employees because the latter is

often a higher number (as high as 1,500 employees).16 Finally, a small fraction (1.8%) have

14For annual income statement values, we use the year-to-date value in the fourth �scal quarter if available,
or the sum of the trailing four quarterly values.

15EMP is only available in the annual Compustat data.
16500 out of 1,023 of the 6-digit NAICS codes listed in the SBA standards specify a criteria based on

the number of employees. Of these codes, 306 (60%) have a threshold higher than 500 employees. See
https://www.sba.gov/document/support--table-size-standards.
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a 2-digit NAICS code of 72, which is the accommodation and food services sector.

We validate this methodology by applying it to the set of PPP-borrowers. We identify

93.1% of actual PPP borrowers as PPP-eligible, with many of the �rms satisfying the 500-

employee threshold criteria (�gure 1, panel B). While we do not identify a few of the PPP

borrowers to be eligible, we still include them in the analysis.

Percent
50 − 100
40 − 50
30 − 40
20 − 30
10 − 20
0 − 10
No data

Panel A. Public Firms Only

Percent
50 − 58
40 − 50
30 − 40
20 − 30
10 − 20
10 − 10

Panel B. All Firms

Figure 2. Fraction of PPP Eligible Firms that Borrowed, by State

Panel A shows the ratio of the number of public �rms that are PPP borrowers (from their Form 8-K reports)
to the number of public �rms eligible for PPP loans (according to employee- and receipts-based size guidelines
by industry from the SBA). Panel B shows the ratio of the number of PPP loans to the number of �rms in
that state with fewer than 500 employees according to the 2017 Statistics of US Businesses (a proxy for the
number of �rms eligible for PPP loans).

3.3 PPP Across States

PPP borrowers have been geographically distributed across the di�erent states (�gure 2). In

panel A, we show the fraction of PPP-eligible public �rms that borrowed from the program.

We calculate this ratio based on the state of the �rm's headquarters. For 21 states, less than

10 percent of PPP-eligible �rms availed of SBA funding. New Mexico and Vermont have

higher take up ratios, but only a few of the �rms in our sample are headquartered in those

states. For perspective, we show a similar �gure for all �rms across the country in panel

B. In particular, we calculate the fraction of �rms with fewer than 500 employees according

to the 2017 Statistics of US Businesses (SUSB) that have taken PPP loans according to

Small Business Administration (2020). There are close to 6 million �rms with fewer than

500 employees across the US, which is a good proxy for the number of all �rms eligible for

PPP funding.
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The maps point to several key takeaways. First, the number of PPP borrowers relative

to PPP eligible �rms is much higher across all �rms compared to public �rms. Given that

273 of loans were made to public �rms, the vast majority of the 1.66 million issued PPP loans

were in fact allocated towards non-public �rms. Second, there is geographic dispersion in the

percent of eligible �rms that are PPP borrowers. In states along the west coast, fewer than

20% of small �rms are PPP borrowers (California has the lowest at 15%), while more than

half of businesses are PPP borrowers in less populous states (North Dakota is the highest

at 58%). This suggests that allocating resources towards processing loans in more populous

areas could address some of the bottleneck issues that the program is facing.

3.4 Final Data and Summary Statistics

To analyze the set of �rms that are PPP-eligible and eventual borrowers, we merge the

hand-collected information from the 8-K reports to Compustat. We use a link table of

the �rm identi�er in the SEC �lings (CIK) to the �rm identi�er in Compustat (GVKEY)

provided by WRDS.17 We use the following Compustat variables. A proxy for age (Years in

Compustat) is de�ned as the di�erence in days between March 31, 2020 and the �rms earliest

DATADATE value, divided by 365. Return on assets is year-to-date net income (NIIY) for

fourth �scal quarter when available, or the trailing sum of quarterly net income (NIIQ) over

the last four quarters divided by the moving average in total assets (ATQ) over the last

four quarters.18 Tobin's Q is de�ned as the sum of the market value of equity (MKVALTQ)

and the di�erence between ATQ and common equity (CEQQ), all divided by ATQ. Cash

to assets is cash (CHQ) divided by assets (ATQ). Total debt is the sum of long-term debt

(DLTTQ) and current liabilities (DLCQ), where missing values are assumed to be zero. We

de�ne a positive debt dummy to be equal to 1 if a �rm has over $1,000 in total debt. For

PPP borrowers, we compute the size of the loan relative to their expenses and liquidity.

Annualized operating expense and SG&A are de�ned as the year-to-date value (XOPRY

17The Central Index Key (CIK) identi�er is given to an individual, company, or foreign government by the
US Securities and Exchange Commission (SEC). Several PPP borrowers (Acquired Sales Corp.; ARC Group,
Inc.; Cool Holdings, Inc.; Duos Technologies Group, Inc.; Emerald Biosciences, Inc.; Galaxy Gaming, Inc.;
Lodging Fund REIT III, Inc.; Luvu Brands, Inc.; Oblong, Inc.; Pharmacy Value Management Solutions,
Inc.; SCI Engineered Materials, Inc.; XG Sciences, Inc.) do not appear in Compustat and are left out of the
analysis.

18Missing assets are ignored for the moving average calculation.
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and XSGAY) for fourth �scal quarter when available, or the trailing sum of the quarterly

values (XOPRQ and XSGAQ) over the last four quarters. We divide the annualized values

by 6 because PPP loans are meant to cover 8 weeks of expenses.

Panel A: PPP-Eligible Nonborrowers

N Mean SD 10% 50% 90%

Assets, $ mil 1664 1411.71 5854.76 8.92 153.11 2956.55

Employees 1664 2001.26 18895.57 12.50 105.00 685.00

Years in Compustat 1664 15.48 11.90 4.00 11.01 34.27

Return on Assets, % 1664 -37.02 80.67 -98.33 -8.84 8.77

Tobin's Q 1664 4.04 8.48 0.88 1.83 7.47

Cash / Assets, % 1664 24.87 27.08 0.90 14.13 71.51

Debt / Assets, % 1664 32.42 32.36 0.00 21.54 87.99

Positive Debt Dummy 1664 0.93 0.25 1.00 1.00 1.00

Panel B: PPP Borrowers

N Mean SD 10% 50% 90%

Assets, $ mil 250 133.49 348.37 8.86 49.76 283.93

Employees 250 428.98 1133.55 23.50 136.50 779.50

Years in Compustat 250 19.54 12.77 5.01 17.76 38.32

Return on Assets, % 250 -33.57 56.02 -99.56 -12.63 8.22

Tobin's Q 250 2.34 2.42 0.80 1.52 4.80

Cash / Assets, % 250 21.07 21.73 1.56 14.26 52.27

Debt / Assets, % 250 34.40 30.54 0.94 25.94 86.63

Positive Debt Dummy 250 0.97 0.17 1.00 1.00 1.00

PPP Borrowing, $ mil 250 3.46 3.60 0.53 2.18 8.21

PPP Borrowing / 8wk Oper. Expense, % 243 30.57 16.68 12.84 28.59 50.00

PPP Borrowing / 8wk SG&A, % 220 107.54 149.53 24.54 63.79 247.35

PPP Borrowing / Cash, % 250 420.51 2863.42 6.72 32.33 369.47

Panel C: COVID-19 Exposure Indicators

Nonborrowers Borrowers

Positive COVID-19 Cases 0.820 0.948

Any County-Wide Policy 0.663 0.772

- Business Closure 0.080 0.060

- Emergency Declaration 0.643 0.740

- Safer-At-Home 0.326 0.416

N 1664.000 250.000

Table 2. Summary Statistics
This table shows summary statistics for balance sheet and income statement information from Compustat
used in the regression analysis for the full sample of PPP-eligible �rms (Panel A) and PPP borrowers (Panel
B). The number of COVID-19 cases by county is taken from the New York Times COVID-19 data repository
and the data on local government policies is taken from the National Association of Counties. See section 3
for more details.

We use available data as of December 31, 2019, and take data as of September 30, 2019

when December data is not available. We winsorize return on assets, Tobin's Q, and debt
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ratio at the 1st and 99th percentiles. For our empirical analysis, 106 �rms that are eligible

for PPP do not have su�cient data. This includes nine PPP borrowers.19 We also use data

that captures exposure to the pandemic. We merge the number of COVID-19 cases on a

county level from from the New York Times COVID-19 data repository.20 We also merge in

the exposure of a �rm to various government-mandated closures and policies taken from the

National Association of Counties (NACO).21

We provide summary statistics for �rms in our empirical analysis in table 2. Due to

data limitations, we focus on the set of �rms who are PPP-eligible but did not borrow (1,664

�rms in panel A) and PPP borrowers (250 �rms in panel B). These tables provide a preview

of the results we formally show in section 4. PPP borrowers are smaller on average, both in

terms of total assets and number of employees, and about 4 years older on average. These

�rms also appear to be relatively more pro�table, have less cash on hand, have fewer growth

opportunities as represented by Tobin's Q. PPP loans are usually less than both 8-week

operating expense and 8-week SG&A.

Panel C shows the exposure of both types of �rms to the COVID-19 pandemic. We

see that 94.8% of PPP borrowers are located in counties with at least one COVID-19 case,

compared to 82.0% for PPP nonborrowers. In terms of the government policies in the county

of the headquarters of the �rm, a lower fraction of borrowers faced business closure policy,

but a higher fraction faced either an emergency declaration and a safer-at-home policy. An

emergency declaration is made when a government o�cial feels that urgent is needed, often

involving seeking federal assistance and resources. Safer-at-home policies prohibit outside

gatherings of more than ten people and direct residents to remain at home unless engaging

in "essential activities," which is at speci�ed by county. Business closure policies are similar.

According to NACO, the primary di�erence being that �safer at home policies explicitly

restrict the movement and activities of individual residents, while business closure policies

only restrict the activities of businesses.�22

19These PPP borrowers with insu�cient data are American Res Corp, Edison Nation Inc, Janel Corp,
NioCorp Developments Ltd, Onewater Marine Inc, Rhino Resource Partners LP, SRAX Inc, Transportation
& Log Sys Inc, and Vistagen Therapeutics Inc.

20See https://github.com/nytimes/covid-19-data. We use a mapping for the zip code available in Com-
pustat to the FIPS county code.

21See https://ce.naco.org/?dset=COVID-19&ind=Emergency%20Declaration%20Types.
22https://www.naco.org/sites/default/�les/documents/NACo-Brief_Safer_at_Home.pdf.
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4 Empirical Analysis

In this section, we use �rm-level regressions to analyze the �rm characteristics and local

conditions associated with PPP borrowers. Speci�cally, we run regressions of the following

form:

PPP Borroweri,j = α + βXi + γCOVID-19j + εj. (1)

Here, PPP Borroweri,j is a dummy variable that is equal to 1 if �rm i with headquarters

located in county j received a PPP loan. We include a vector of �rm-level variables, Xi,

that are computed as of the end of 2019 to measure �rm characteristics prior to the onset of

the pandemic. These variables are described in section 3 and include size (total assets and

employees), age (years in Compustat), pro�tability (return on assets), investment opportuni-

ties (Tobin's Q), cash-to-assets ratio, and a positive debt indicator. The vector COVID-19j

denotes the exposure of the �rm to the pandemic and to county-level policies in response to

the pandemic. The coe�cients capture the change in probability that a PPP-eligible �rm

was a PPP borrower given a one unit change in the corresponding independent variable.

We present our main results in table 3 in which we progressively add our controls.

Column (1) includes �rm-level controls, while (2) includes industry �xed e�ects. We include

a measure of exposure to COVID-19 cases and government policy dummies in columns

(3) and (4), respectively. Our benchmark speci�cation with all �rm-level and county-level

variables is in column (5). Table 3 shows that �rm characteristics signi�cantly determine the

likelihood that a PPP-eligible public �rm is also a borrower. We focus on the direction of

the coe�cients rather than on the magnitudes. First, we show that PPP borrowers tend to

be are smaller (negative coe�cient on Log Assets). All else equal however, borrowers have

more employees (positive coe�cient on Log Employees), and are older (positive coe�cient

on Log Years in Compustat). Pro�tability does not appear to be a signi�cant determinant

of whether the �rm is a borrower. However, �rms with more growth opportunities as of the

end of 2019, as captured by Tobin's Q, are less likely to be borrowers from the program.

Importantly, this measure does not incorporate the dramatic declines in market value in

early in the �rst few months of 2020. Unsurprisingly, �rms with a higher cash-to-assets ratio

are less likely to require immediate relief funding from the government, and are therefore
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less likely to be PPP borrowers. This result, however, is only weakly signi�cant. Finally,

PPP borrowers are more likely to have outstanding debt on their balance sheets (positive

coe�cient on Positive Debt Dummy). Speci�cally, the presence of debt on a �rm's balance

sheet is associated with a 5.3 percentage point higher probability of receiving a PPP loan.

We interpret this �nding as the the �rm is also more likely to have an existing relationship

with a bank, increasing the likelihood of obtaining a PPP loan in a timely fashion.

(1) (2) (3) (4) (5)

Log Assets -0.058*** -0.051*** -0.050*** -0.051*** -0.051***

(-12.49) (-7.77) (-7.80) (-7.90) (-7.89)

Log Employees 0.035*** 0.035*** 0.034*** 0.035*** 0.034***

(6.22) (4.31) (4.24) (4.35) (4.27)

Log Years in Compustat 0.031*** 0.026*** 0.024*** 0.026*** 0.024***

(3.54) (2.82) (2.60) (2.85) (2.64)

Return on Assets 0.000 0.000 0.000 0.000 0.000

(1.30) (0.44) (0.64) (0.62) (0.74)

Tobin's Q -0.006*** -0.007*** -0.006*** -0.007*** -0.006***

(-9.21) (-8.59) (-8.20) (-8.32) (-8.07)

Cash / Assets -0.001*** -0.001* -0.001* -0.001* -0.001

(-3.19) (-1.89) (-1.65) (-1.79) (-1.64)

Positive Debt Dummy 0.062** 0.051* 0.051** 0.053** 0.053**

(2.47) (1.96) (1.98) (2.04) (2.06)

Positive COVID-19 Cases Dummy 0.073*** 0.060***

(4.71) (3.50)

Business Closure Policy Dummy -0.036 -0.046*

(-1.32) (-1.67)

Emergency Declaration Dummy 0.033* 0.027

(1.87) (1.53)

Safer-at-home Policy Dummy 0.028 0.016

(1.45) (0.77)

Industry FE No Yes Yes Yes Yes

R2 0.095 0.113 0.118 0.118 0.122

N 1914 1914 1914 1914 1914

Table 3. Benchmark Regression Results

This table shows the coe�cient estimates for OLS regressions in which the dependent variable is an indicator
that equals 1 if the public �rm is a PPP borrower. Balance sheet and income statement information are
from Compustat, the number of COVID-19 cases by county is from the New York Times COVID-19 data
repository, and the data on local government policies is taken from the National Association of Counties.
See sections 3 and 4 for more details. Standard errors are heteroskedasticity-consistent. t-statistics are in
parentheses. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

The coe�cients on the COVID-19 exposure variables describe county-level conditions

that PPP borrowers likely faced. First, we �nd that being located in a county with COVID-
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19 cases is associated with a 6.0 percentage point increase in the probability of receiving a

PPP loan. This result suggests that the employees or customers of these �rms were more

directly a�ected by the pandemic, resulting in more need for economic relief funding from

the government. Studying the 1918 Flu Pandemic in the US, Correia et al. (2020) �nd that

direct exposure to the disease does negatively a�ect the local economy. Second, we see that

only one out of the three county-level government policies appears to be associated with

PPP borrowing. Speci�cally, business closure policies seem to be negatively associated with

whether a PPP-eligible public �rm was a borrower, although the statistical signi�cance of

even this result is weak. The negative coe�cient may appear surprising, but recall that

the PPP program is geared primarily towards retaining workers and maintaining their wage

levels. Policies that force business closures means that a �rm cannot satisfy a major require-

ment of the PPP funding, which is to pay employees. Hence, these �rms would be less likely

to apply.

We perform two sets of robustness exercises to show the consistency of our results. In

table 4, we focus on di�erent subsamples to address the concern that we are not capturing

the right set of PPP-eligible �rms. The �rst concern is that, despite our eligibility �ltering,

we may still be including many large �rms in our sample. In column (2), we restrict the

analysis to the subset of �rms with total assets less than $100 million. The estimates are

largely similar relative to the benchmark in column (1), which is the same as column (5)

of table 3. Assets become insigni�cant by construction, yet the key �rm characteristics and

exposure to COVID-19 remain statistically signi�cant. Note that our sample size drops to

less than half in this analysis. In column (3) of table 4, we focus on the set of �rms with

fewer than 500 employees. Recall that some of the SBA standards based on the number of

employees consider �rms in certain industries with more than 500 employees to be eligible

for a PPP loan. In column (4), we only use data as of December 2019 without including

September�November 2019 data if December data is unavailable. We do so to alleviate

the concern that di�erences in the timing of Compustat reports might a�ect our results. In

column (5) we focus on the industries that PPP borrowers are in (2-digit NAICS code 32 and

33, manufacturing, and 51, information) to alleviate the concern that industry-level variables

are driving our results despite including industry �xed e�ects. In all these speci�cations, our

key results continue to hold with similar magnitudes and signi�cance.
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(1) (2) (3) (4) (5)

Benchmark Assets<100mil Empl.<500 Dec2019 Only Select Industries

Log Assets -0.051*** -0.015 -0.045*** -0.056*** -0.066***

(-7.89) (-1.02) (-6.55) (-7.83) (-6.39)

Log Employees 0.034*** 0.076*** 0.039*** 0.035*** 0.055***

(4.27) (5.06) (4.03) (4.14) (4.57)

Log Years in Compustat 0.024*** 0.029* 0.021** 0.017* 0.032***

(2.64) (1.71) (2.15) (1.82) (2.67)

Return on Assets 0.000 -0.000 0.000 -0.000 0.000

(0.74) (-0.11) (1.04) (-0.64) (0.13)

Tobin's Q -0.006*** -0.003*** -0.005*** -0.008*** -0.007***

(-8.07) (-3.04) (-6.52) (-7.24) (-7.17)

Cash / Assets -0.001 -0.001 -0.000 -0.001*** -0.000

(-1.64) (-1.57) (-1.32) (-2.93) (-0.94)

Positive Debt Dummy 0.053** 0.056 0.050* 0.046 0.056*

(2.06) (1.46) (1.87) (1.61) (1.84)

Positive COVID-19 Cases Dummy 0.060*** 0.135*** 0.071*** 0.059*** 0.102***

(3.50) (4.41) (4.02) (3.32) (4.43)

Log COVID-19 Cases

Business Closure Policy Dummy -0.046* -0.028 -0.047 -0.048* -0.047

(-1.67) (-0.56) (-1.60) (-1.68) (-1.32)

Emergency Declaration Dummy 0.027 0.015 0.033* 0.038** 0.034

(1.53) (0.48) (1.73) (2.03) (1.42)

Safer-at-home Policy Dummy 0.016 0.051 0.016 0.004 -0.001

(0.77) (1.46) (0.70) (0.17) (-0.04)

Industry FE Yes Yes Yes Yes Yes

R2 0.122 0.134 0.123 0.135 0.114

N 1914 861 1628 1690 1182

Table 4. Robustness: Alternative Firm Samples

This table shows the coe�cient estimates for OLS regressions in which the dependent variable is an indicator
that equals 1 if the public �rm is a PPP borrower. Column (1) is the benchmark from Table 3. Columns
(2)-(3) focus on �rms with total assets less than the speci�ed threshold, (4) focuses on �rms with fewer than
500 employees, (5) focuses on �rms with a December 2019 �ling date, and (6) focuses on manufacturing
and information, which are the top industries for PPP borrowers in our sample. Balance sheet and income
statement information are from Compustat, the number of COVID-19 cases by county is from the New York
Times COVID-19 data repository, and the data on local government policies is taken from the National
Association of Counties. See sections 3 and 4 for more details. Standard errors are heteroskedasticity-
consistent. t-statistics are in parentheses. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

In the second set of robustness checks, we consider alternative model speci�cations.

Results are shown in table 5, where the benchmark speci�cation is shown in column (1) for

reference. In column (2), we include county-level �xed e�ects, which absorb our county-level

exposure variables. We lose observations in this speci�cation due to counties with no PPP

borrowers. In columns (3) and (4), we run logit and probit models without any �xed e�ects,
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respectively. The important takeaway from this table is that, once again, our key results

from table 5 continue to hold.

(1) (2) (3) (4)

OLS (Benchmark) OLS Logit Probit

Log Assets -0.051*** -0.046*** -0.689*** -0.365***

(-7.89) (-5.59) (-10.64) (-9.16)

Log Employees 0.034*** 0.027*** 0.460*** 0.225***

(4.27) (2.70) (6.20) (4.78)

Log Years in Compustat 0.024*** 0.024** 0.218** 0.127**

(2.64) (2.17) (2.32) (2.51)

Return on Assets 0.000 0.000 0.001 0.000

(0.74) (0.67) (0.69) (0.60)

Tobin's Q -0.006*** -0.008*** -0.168*** -0.087***

(-8.07) (-6.61) (-4.28) (-4.52)

Cash / Assets -0.001 -0.001 -0.004 -0.003

(-1.64) (-1.38) (-1.26) (-1.59)

Positive Debt Dummy 0.053** 0.043 0.893** 0.441**

(2.06) (1.27) (2.06) (2.02)

Positive COVID-19 Cases Dummy 0.060*** 1.078*** 0.544***

(3.50) (3.36) (3.48)

Business Closure Policy Dummy -0.046* -0.461 -0.259

(-1.67) (-1.48) (-1.59)

Emergency Declaration Dummy 0.027 0.273 0.163

(1.53) (1.40) (1.59)

Safer-at-home Policy Dummy 0.016 0.175 0.105

(0.77) (1.01) (1.11)

Industry FE Yes Yes No No

County FE No Yes No No

R2 0.122 0.220

Pseudo R2 0.169 0.169

N 1914 1561 1914 1914

Table 5. Robustness: Alternative Model Speci�cations

This table shows the coe�cient estimates for OLS regressions in which the dependent variable is an indicator
that equals 1 if the public �rm is a PPP borrower. Column (1) is the benchmark from Table 3. Column (2)
includes county �xed e�ects, (3) is a logit regression speci�cation, and (4) is a probit regression speci�cation.
Balance sheet and income statement information are from Compustat, the number of COVID-19 cases by
county is from the New York Times COVID-19 data repository, and the data on local government policies
is taken from the National Association of Counties. See sections 3 and 4 for more details. Standard errors
are heteroskedasticity-consistent. t-statistics are in parentheses. ∗p < 0.10; ∗∗p < 0.05; ∗∗∗p < 0.01.

5 Conclusion

In the �rst few weeks of April 2020, 273 public �rms have participated and borrowed a total

of $929 million from the Paycheck Protection Program (PPP). This corresponds to 0.3% of
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the total $349 billion in funding allocated by the Coronavirus Aid, Relief, and Economic

Security (CARES) Act towards the program.

We document that close to half of public �rms are eligible to apply for PPP funds and,

of these �rms, 13% received them. In this paper, we document the �rm characteristics that

are signi�cantly associated with public �rms that are PPP borrowers. These �rms are smaller

both in terms of total assets, but in fact larger in terms of number of employees. PPP �rms

also tend to be older, with less relatively less growth opportunities and relatively less cash

in hand. Firms with outstanding debt, which may capture preexisting bank relationships,

are also more likely to be borrowers.

While we do not take a stance on whether or not these �rms should have gotten

PPP assistance, we highlight the di�erence in the order of magnitude of funding that has

been made available to private �rms relative to public �rms. It may be more useful to

evaluate the size of the program and the eligibility requirements to address the continued

inability of small and private �rms to access funding. A natural �rst step is underway, in

the form of $310 billion additional funds for replenishing PPP. In addition, assessing the

program geographically shows that small �rms in certain states, especially along the coasts,

are receiving relatively less funding compared to less populous states (about 15% of small

�rms in California compared to 58% in North Dakota). Reallocating resources geographically

can also alleviate issues related to PPP access.

As data become available, we plan to build upon our analysis by looking at the second

set of PPP borrowers. We are also interested in tracking the performance of PPP borrowers

to see how the funds a�ected their business decision-making and �nancial outcomes. An

understanding of the post-loan outcomes can help dictate future policy changes.
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A Appendix

Table A1. List of Public Firms with PPP Loans

N
Date
Granted

Name Amount ($) Industry

1 Apr 07 Ruths Hospitality Group 20,000,000 retail eating places
2 Apr 08 Fiesta Restaurant Group 10,000,000 retail eating places
3 Apr 08 Transportation And Logistics

Systems
2,941,213 transportation

4 Apr 09 Graham 4,599,003 general industrial machinery equipment
5 Apr 09 Identiv 2,900,000 computer peripheral equipment nec
6 Apr 09 Silversun Technologies 3,150,832 business services nec
7 Apr 09 Windtree Therapeutics 546,600 biological products no diagnostic substances
8 Apr 10 Addvantage Technologies Group 2,915,000 wholesale durable goods
9 Apr 10 Air T 8,215,100 air courier
10 Apr 10 Blonder Tongue Laboratories 1,768,762 radio tv broadcasting communications equipment
11 Apr 10 Bsquare 1,600,000 business services nec
12 Apr 10 Careview Communications 781,800 radio tv broadcasting communications equipment
13 Apr 10 Cpi Aerostructures 4,795,000 aircraft part auxiliary equipment nec
14 Apr 10 Crawford United 3,679,383 industrial instruments for measurement display

and control
15 Apr 10 Drive Shack 5,276,742 retail eating drinking places
16 Apr 10 Enservco 1,939,900 oil gas �eld nbc
17 Apr 10 In�nite Group 957,373 computer programming data processing etc
18 Apr 10 Inuvo 1,100,000 advertising
19 Apr 10 Joint 2,730,000 patent owners lessors
20 Apr 10 Legacy Housing 6,545,700 mobile homes
21 Apr 10 Lindblad Expeditions Holdings 6,600,000 transportation
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22 Apr 10 Lodging Fund Reit Iii 286,100 real estate investment trusts
23 Apr 10 Mannkind 4,900,000 pharmaceutical preparations
24 Apr 10 Misonix 5,199,487 laboratory apparatus furniture
25 Apr 10 Mobivity Holdings 891,103
26 Apr 10 Natural Gas Services Group 4,600,000 oil gas �eld nbc
27 Apr 10 Oblong 2,416,600 telephone communications no radio telephone
28 Apr 10 Optinose Us 4,400,000 pharmaceutical preparations
29 Apr 10 Phunware 2,850,336 computer processing data preparation
30 Apr 10 Potbelly Sandwich Works 10,000,000 retail eating places
31 Apr 10 Prodex 1,360,100 surgical medical instruments apparatus
32 Apr 10 Pulmatrix 616,795 pharmaceutical preparations
33 Apr 10 Sifco Industries 5,024,732 aircraft engines engine parts
34 Apr 10 Us Auto Parts Network 4,107,388 retail auto home supply stores
35 Apr 10 Vislink Technologies 1,167,700 communications equipment nec
36 Apr 10 Wave Life Sciences 7,234,890 pharmaceutical preparations
37 Apr 12 Frequency Electronics 4,964,810 instruments for meas testing of electricity elec sig-

nals
38 Apr 12 Polarityte Md 3,576,145 biological products no diagnostic substances
39 Apr 12 Srax 1,074,488 advertising agencies
40 Apr 13 Adamis Pharmaceuticals 3,191,700 pharmaceutical preparations
41 Apr 13 Bk Technologies 2,196,335 radio tv broadcasting communications equipment
42 Apr 13 Broadwind Energy 9,500,000 nonferrous foundries castings
43 Apr 13 Emmis Operating Company 4,753,000 radio broadcasting stations
44 Apr 13 Englobal 4,915,800 engineering services
45 Apr 13 Helius Medical Technologies 323,000 electromedical electrotherapeutic apparatus
46 Apr 13 Hepion Pharmaceuticals 176,585 pharmaceutical preparations
47 Apr 13 Hyrecar 2,004,175 auto rental leasing no drivers
48 Apr 13 Immucell 937,700 in vitro in vivo diagnostic substances
49 Apr 13 Intellicheck 796,100 prepackaged software
50 Apr 13 Livexlive Media 2,000,000 retail eating places
51 Apr 13 Marrone Bio Innovations 1,723,000 agriculture chemicals
52 Apr 13 Quantum 10,000,000 computer storage devices
53 Apr 13 Rave Restaurant Group 656,830 wholesale groceries related products
54 Apr 13 Rocky Mountain Chocolate Fac-

tory
1,400,000 sugar confectionery products

55 Apr 13 Vaso 3,610,900 electromedical electrotherapeutic apparatus
56 Apr 13 Zagg 9,443,728 retail misc retail
57 Apr 14 Accelerate Diagnostics 4,780,600 laboratory analytical instruments
58 Apr 14 Acquired Sales 149,623 prepackaged software
59 Apr 14 Astrotech 541,500 laboratory analytical instruments
60 Apr 14 Ballantyne Strong 3,173,900 photographic equipment supplies
61 Apr 14 Biolase 2,980,000 dental equipment supplies
62 Apr 14 Continental Materials 5,487,000 concrete gypsum plaster products
63 Apr 14 Dmc Global 6,700,000 misc primary metal products
64 Apr 14 Harte Hanks 10,000,000 direct mail advertising services
65 Apr 14 Kura Sushi Usa 5,983,290 retail eating places
66 Apr 14 Mikros Systems 753,300 measuring controlling devices nec
67 Apr 14 New Age Beverages 6,868,400 malt beverages
68 Apr 14 Perma�x Environmental Ser-

vices
5,666,300 hazardous waste management

69 Apr 14 Scienti�c Industries 563,700 laboratory analytical instruments
70 Apr 14 Sigma Labs 361,700 misc manufacturing industries
71 Apr 14 Superior Drilling Products 891,600 oil gas �led machinery equipment
72 Apr 14 Sw Seed Company 2,000,000 agriculture production crops
73 Apr 14 Ultralife 3,459,278 misc electrical machinery equipment supplies
74 Apr 14 Westell 1,637,522 telephone telegraph apparatus
75 Apr 14 Workhorse Group 1,411,000 motor vehicles passenger car bodies
76 Apr 15 Arc Group 6,064,560 patent owners lessors
77 Apr 15 Asure Software 8,855,605 computer integrated systems design
78 Apr 15 Audioeye 1,300,000 prepackaged software
79 Apr 15 Azur Rx Biopharma 180,000 pharmaceutical preparations
80 Apr 15 Cinedigm 2,151,800 video tape rental
81 Apr 15 Collectors Universe 4,200,000 business services nec
82 Apr 15 Culp 7,605,500 broadwoven fabric mills cotton
83 Apr 15 Dawson Geophysical Company 6,373,707 oil and gas �eld exploration
84 Apr 15 Eastside Distilling 1,438,100 beverages
85 Apr 15 Edison Nation 789,852 games toys childrens vehicles no dolls bicycles
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86 Apr 15 Energy Services Of America 13,139,100 water sewer pipeline comm and power line con-
struction

87 Apr 15 Hallador Energy Company 10,000,000 bituminous coal lignite mining
88 Apr 15 Intellinetics 838,700 prepackaged software
89 Apr 15 J Alexander S Holdings 15,100,000 retail eating places
90 Apr 15 Lgl Group 1,907,500 electronic components nec
91 Apr 15 Nortech Systems Orporated 6,100,000 electronic components nec
92 Apr 15 Ricebran Technologies 1,800,000 grain mill products
93 Apr 15 Senestech 645,700 agriculture chemicals
94 Apr 15 Spanish Broadcasting System 6,478,800
95 Apr 15 Torotel 1,984,688 electronic coils transformers other inductors
96 Apr 15 Trovagene 305,000 biological products no diagnostic substances
97 Apr 15 Tsr 6,659,220 computer programming services
98 Apr 15 Veritone 6,491,300 computer processing data preparation
99 Apr 15 Wilhelmina International 1,847,700 management consulting services
100 Apr 16 Adma Biomanufacturing 5,400,000 biological products no diagnostic substances
101 Apr 16 Arcadia Biosciences 1,107,700 agriculture chemicals
102 Apr 16 Autoweb 1,380,000 computer programming data processing etc
103 Apr 16 Calamp 10,000,000 radio tv broadcasting communications equipment
104 Apr 16 Cool Holdings 3,098,000 wholesale electronic parts equipment nec
105 Apr 16 Digimarc 5,032,072 computer integrated systems design
106 Apr 16 Educational Development 1,447,400 wholesale misc nondurable goods
107 Apr 16 Flotek Industries 4,788,100 misc chemical products
108 Apr 16 Freightcar America 10,000,000 railroad equipment
109 Apr 16 Gulfslope Energy 100,300 crude petroleum natural gas
110 Apr 16 Intest 2,829,207 instruments for meas testing of electricity elec sig-

nals
111 Apr 16 Odyssey Marineexploration 370,400 water transportation
112 Apr 16 Perceptron 2,545,205 optical instruments lenses
113 Apr 16 Retractable Technologies 1,363,000 surgical medical instruments apparatus
114 Apr 16 Smithmidland 2,691,700 concrete products except block brick
115 Apr 16 Universal Stainless Alloy Prod-

ucts
10,000,000 steel works blast furnaces rolling mills coke ovens

116 Apr 16 Urenergy 893,300 gold silver ores
117 Apr 16 Usio 813,500 functions related to depository banking nec
118 Apr 17 Applied Optoelectronics 6,228,895 semiconductors related devices
119 Apr 17 Aquestive Therapeutics 4,830,000 pharmaceutical preparations
120 Apr 17 Bionano Genomics 1,770,000 laboratory analytical instruments
121 Apr 17 Bridgeline Digital 1,047,500 prepackaged software
122 Apr 17 Conformis 4,719,800 orthopedic prosthetic surgical appliances supplies
123 Apr 17 Crh Medical 2,945,620 health services
124 Apr 17 Csp 2,180,600 computer integrated systems design
125 Apr 17 Cv Sciences 2,906,195 pharmaceutical preparations
126 Apr 17 Electronic Systems Technology 171,712 electronic components accessories
127 Apr 17 Encision 598,567 surgical medical instruments apparatus
128 Apr 17 Energy Focus 794,965 electric lighting wiring equipment
129 Apr 17 Galaxy Gaming 835,300 amusement recreation services
130 Apr 17 Gulf Island Fabrication 10,000,000 fabricated structural metal products
131 Apr 17 Intrepid Potash 10,000,000 mining quarrying of nonmetallic minerals no fuels
132 Apr 17 Limoneira Company 3,609,200 agriculture production crops
133 Apr 17 Micropacindustries 1,924,400 semiconductors related devices
134 Apr 17 Nanophase Technologies 951,600 misc primary metal products
135 Apr 17 Nio Developments 196,300 metal mining
136 Apr 17 Ramaco Resources 8,444,737 bituminous coal lignite mining
137 Apr 17 Sonotek 1,001,640 misc electrical machinery equipment supplies
138 Apr 17 Technical Communications 474,400 radio tv broadcasting communications equipment
139 Apr 17 Tecogen 1,874,200 air cond warm air heating equip comm indl refrig

equip
140 Apr 17 Trans World Entertainment 2,017,550 retail computer prerecorded tape stores
141 Apr 17 Tss 889,858 management consulting services
142 Apr 17 Twin Disc Orporated 8,199,500 general industrial machinery equipment
143 Apr 18 Exone Company 2,193,512 printing trades machinery equipment
144 Apr 18 Forward Industries 1,356,570 plastics products nec
145 Apr 18 Harvard Bioscience 6,114,700 laboratory analytical instruments
146 Apr 18 Neos Therapeutics 3,582,800 pharmaceutical preparations
147 Apr 18 Ntn Buzztime 1,625,100 television broadcasting stations
148 Apr 18 Xg Sciences 825,000 plastics materials synth resins nonvulcan elas-

tomers
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149 Apr 19 Crown Crafts 1,963,800 broadwoven fabric mills cotton
150 Apr 19 Durect 2,037,395 pharmaceutical preparations
151 Apr 19 Janel 2,725,893 business services nec
152 Apr 19 Manning Napier 6,732,818 investment advice
153 Apr 19 Shake Shack 10,000,000 retail eating drinking places
154 Apr 20 Ampio Pharmaceuticals 543,900 pharmaceutical preparations
155 Apr 20 Art Sway Manufacturing Co 1,242,900 farm machinery equipment
156 Apr 20 Biolife Solutions 2,175,320 electromedical electrotherapeutic apparatus
157 Apr 20 Chembio Diagnostic Systems 2,980,000 pharmaceutical preparations
158 Apr 20 Crimson Wine Group 3,819,521 beverages
159 Apr 20 Cumberland Pharmaceuticals 2,187,140 pharmaceutical preparations
160 Apr 20 Cynergistek 2,825,500 business services nec
161 Apr 20 Ekso Bionics Holdings 1,085,630 general industrial machinery equipment nec
162 Apr 20 Fuelcell Energy 6,515,045 misc electrical machinery equipment supplies
163 Apr 20 Global Healthcare Reit 574,975 real estate investment trusts
164 Apr 20 Hallmark Financial Services 8,300,000 insurance carriers nec
165 Apr 20 Idt Domestic Telecom 10,000,000 telephone communications no radio telephone
166 Apr 20 Ikonics 1,214,500 photographic equipment supplies
167 Apr 20 Kopin 2,100,000 semiconductors related devices
168 Apr 20 Leaf Group 7,143,927 computer processing data preparation
169 Apr 20 Onewater Marine 14,151,797 retail auto home supply stores
170 Apr 20 Pf Industries 2,929,200 metalworking machinery equipment
171 Apr 20 Predictive Oncology 541,867 orthopedic prosthetic surgical appliances supplies
172 Apr 20 Sharps Compliance 2,183,187 hazardous waste management
173 Apr 20 Socket Mobile 1,058,700 electronic computers
174 Apr 20 Sonic Foundry 2,314,815 radio tv broadcasting communications equipment
175 Apr 20 Summer Energy Holdings 2,342,300 electric
176 Apr 20 Transmedics 2,249,280 electromedical electrotherapeutic apparatus
177 Apr 20 Zomedica Pharmaceuticals 527,360 pharmaceutical preparations
178 Apr 21 Advanced Emissions Solutions 3,300,000 misc chemical products
179 Apr 21 Alimera Sciences 1,777,502 pharmaceutical preparations
180 Apr 21 Amerinac Holding 3,083,000 wholesale hardware
181 Apr 21 Ashford Hospitality Trust 30,100,000 real estate investment trusts
182 Apr 21 Aviat Networks 5,911,000 radio tv broadcasting communications equipment
183 Apr 21 Avid Bioservices 4,400,000 pharmaceutical preparations
184 Apr 21 Braemar Hotels Resorts 15,800,000 real estate investment trusts
185 Apr 21 Celsion 632,220 pharmaceutical preparations
186 Apr 21 Cipherloc 365,430 computer processing data preparation
187 Apr 21 Crexendo 1,000,626 telephone communications no radio telephone
188 Apr 21 Curis 890,779 biological products no diagnostic substances
189 Apr 21 Cvd Equipment 2,415,970 special industry machinery nec
190 Apr 21 Endra Life Sciences 308,600 electromedical electrotherapeutic apparatus
191 Apr 21 Imac Holdings 1,691,520 specialty outpatient facilities nec
192 Apr 21 Image Sensing Systems 923,700 measuring controlling devices nec
193 Apr 21 Innovate Biopharmaceuticals 220,205 pharmaceutical preparations
194 Apr 21 Innovative Food Holdings 1,650,221 wholesale groceries general line
195 Apr 21 Lantronix 2,437,714 computer communications equipment
196 Apr 21 Luby S 10,000,000 retail eating places
197 Apr 21 Mateon Therapeutics 250,000 pharmaceutical preparations
198 Apr 21 Mimedx Group 10,000,000 surgical medical instruments apparatus
199 Apr 21 Nathans Famous 1,224,645 retail eating places
200 Apr 21 Neuronetics 6,360,327 surgical medical instruments apparatus
201 Apr 21 Omnitek Engineering 199,000 motor vehicle parts accessories
202 Apr 21 Pro�re Energy 1,074,030 oil gas �led machinery equipment
203 Apr 21 Red Lion Hotels 4,233,500 hotels motels
204 Apr 21 Servotronics 4,000,000 cutlery handtools general hardware
205 Apr 21 Sharpspring 3,234,000 prepackaged software
206 Apr 21 Telkonet 913,063 auto controls for regulating residential comml en-

vironment
207 Apr 21 Thermogenesis Holdings 646,300 laboratory apparatus furniture
208 Apr 21 Tomi Environmental Solutions 410,700 industrial organic chemicals
209 Apr 21 Vuzix 1,555,900 radio tv broadcasting communications equipment
210 Apr 21 Xeris Pharmaceuticals 5,090,000 pharmaceutical preparations
211 Apr 21 Zosano Pharma 1,610,000 pharmaceutical preparations
212 Apr 22 Allied Healthcare Products 2,375,000 orthopedic prosthetic surgical appliances supplies
213 Apr 22 American Resources 2,700,000 misc repair services
214 Apr 22 Ashford 3,300,000 management consulting services
215 Apr 22 Avalon Holdings 800,000 refuse systems
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216 Apr 22 Castlight Health 10,000,000 computer processing data preparation
217 Apr 22 Cutera 7,135,348 electromedical electrotherapeutic apparatus
218 Apr 22 Emerald Biosciences 116,700
219 Apr 22 Eyepoint Pharmaceuticals S 2,041,405 laboratory analytical instruments
220 Apr 22 Insignia Systems 1,054,200 advertising
221 Apr 22 Microvision 1,570,881 electronic components nec
222 Apr 22 Motusgi Holdings 780,942 surgical medical instruments apparatus
223 Apr 22 Novan 955,800 pharmaceutical preparations
224 Apr 22 Obalon Therapeutics 430,047 surgical medical instruments apparatus
225 Apr 22 Opgen 1,138,983 medical laboratories
226 Apr 22 Rhino Resources Partners Lp 10,000,000 bituminous coal lignite surface mining
227 Apr 22 Sanara Medtech 583,000 orthopedic prosthetic surgical appliances supplies
228 Apr 22 Senseonics Holdings 5,800,000 industrial instruments for measurement display

and control
229 Apr 22 Soleno Therapeutics 350,445 electromedical electrotherapeutic apparatus
230 Apr 22 Solitario Z 70,000 gold silver ores
231 Apr 22 Strata Skin Sciences 2,028,524 surgical medical instruments apparatus
232 Apr 22 Tetraphase Pharmaceuticals 2,285,830 pharmaceutical preparations
233 Apr 22 Vistagen Therapeutics 224,000 pharmaceutical preparations
234 Apr 23 Aehr Test Systems 1,678,789 instruments for meas testing of electricity elec sig-

nals
235 Apr 23 Alphatec Holdings 4,300,000 surgical medical instruments apparatus
236 Apr 23 Avinger 2,300,000 surgical medical instruments apparatus
237 Apr 23 Axogen 7,800,000 electromedical electrotherapeutic apparatus
238 Apr 23 Bioanalytical Systems 5,051,282 commercial physical biological research
239 Apr 23 Clea�eld 3,700,000 telephone telegraph apparatus
240 Apr 23 Dolphin Entertainment 2,096,000 personal services
241 Apr 23 Duos Technologies Group 1,410,270 prepackaged software
242 Apr 23 Enzo Biochem 6,999,500 medical laboratories
243 Apr 23 Gigatronics Orporated 786,200 instruments for meas testing of electricity elec sig-

nals
244 Apr 23 International Isotopes 495,500
245 Apr 23 Iridex 2,497,199 electromedical electrotherapeutic apparatus
246 Apr 23 Izea Worldwide 1,905,100 advertising
247 Apr 23 Lightwave Logic 410,700 misc plastic products
248 Apr 23 Marin Software Orporated 3,319,600
249 Apr 23 Miragen Therapeutics 1,725,585 medical laboratories
250 Apr 23 Oncocyte 1,140,930 in vitro in vivo diagnostic substances
251 Apr 23 Park City Group 1,100,000 computer processing data preparation
252 Apr 23 Pharmabio Serv 1,931,700
253 Apr 23 Pharmacy Value Management

Solutions
1,243,840 hospital medical service plans

254 Apr 23 Precipio 787,200 laboratory analytical instruments
255 Apr 23 Sigmatron International 6,282,973 printed circuit boards
256 Apr 23 Xcel Brands 1,805,856 patent owners lessors
257 Apr 23 Zedge 217,900 prepackaged software
258 Apr 24 Black Ridge Oil Gas 112,925 crude petroleum natural gas
259 Apr 24 Bright Mountain Media 464,800 computer programming services
260 Apr 24 Capstone Turbine 2,610,200
261 Apr 24 Conifer Holdings 2,744,667 �re marine casualty insurance
262 Apr 24 Escalade 5,627,500
263 Apr 24 General Moly 365,034 metal mining
264 Apr 24 Myomo 1,077,590 orthopedic prosthetic surgical appliances supplies
265 Apr 24 Peck Electric Co 1,487,624 gas other combined
266 Apr 24 Realnetworks 2,870,568 computer programming services
267 Apr 24 Sci Engineered Materials 325,300
268 Apr 24 Unique Fabricating Na 5,998,700 motor vehicle parts accessories
269 Apr 24 Viveve Medical 1,343,400 electromedical electrotherapeutic apparatus
270 Apr 25 Arch Therapeutics 176,300 surgical medical instruments apparatus
271 Apr 26 Luvu Brands 1,096,200 household furniture
272 Apr 27 Harrow Health 1,967,100 pharmaceutical preparations
273 Apr 27 Transenterix Surgical 2,815,200 surgical medical instruments apparatus

Note. This table lists public �rms that have been granted PPP loans. All information is taken from their Firm 8-K reports to
the SEC. Date refers to the day the loan was granted or approved.
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This paper analyzes the epidemiological and economic effects of 
quarantines. We use a basic epidemiological model, a SEIR-model, 
that is calibrated to roughly resemble the COVID-19 pandemic, and 
we assume that individuals that become infected or are isolated on 
average lose a share of their productivity. An early quarantine 
postpones but does not alter the course of the pandemic at a cost 
that increases in the duration and the extent of the quarantine. For 
quarantines at later stages of the pandemic there is a trade-off between 
lowering the peak level of infectious people on the one hand and 
minimizing fatalities and economic losses on the other hand. A longer 
quarantine dampens the peak level of infectious people and also 
reduces the total number of infected persons but increases economic 
losses. Both the peak level of infectious individuals and the total 
share of the population that will have been infected are U-shaped in 
relation to the share of the population in quarantine, while economic 
costs increase in this share. In particular, a quarantine covering a 
moderate share of the population leads to a lower peak, fewer deaths 
and lower economic costs, but it implies that the peak of the pandemic 
occurs earlier.

1 Both authors are grateful for financial support from the Jan Wallander and Tom Hedelius Research Foundation.
2 Professor, Stockholm University and CEPR Research Fellow.
3 Senior lecturer, Stockholm University.
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1 Introduction

This paper analyzes the epidemiological and economic effects of quarantines. More specifically,

our focus is on how the timing, duration and extent of a quarantine impact on the dynamics of

a pandemic as well as on economic losses.

In the absence of a vaccine or effi cient drugs, countries have to adopt old-fashioned practices

to combat the COVID-19 pandemic. One such policy is the use of quarantines, which slow down

the spread of the infection. This means that fewer individuals will be infected at the peak of the

infection and that the peak will occur later in time. Both these effects are important in order

to prevent the health care system from being completely overwhelmed. However, quarantines

have substantial economic costs, as production closes down when workers are confined to stay

at home.

Countries have adopted very different strategies when it comes to the use of quarantines.

China implemented an almost complete lockdown in Wuhan and in some other cities in the

Hubei province on 23 January. On April 8 the lockdown offi cially ended. Many European

countries have also been using quarantines of various degrees of restrictiveness. Italy, which was

hit very hard by the COVID-19 infection, implemented a very restrictive quarantine early on.

For instance, in Codogno (pop. 16,000), one of the most affected towns, police cars blocked roads

into and out of the quarantined area and erected barriers. In many countries schools and most

shops were closed nationwide, and gatherings of only limited numbers of people were allowed

in public spaces. Denmark was among the first European countries to introduce lockdown

measures, starting on 13 March; since mid-April a very slow and gradual reopening has been

initiated. At the other end of the spectrum is Sweden that did not impose any quarantine, kept

primary schools and pre-schools open and has allowed public gatherings of up to 50 people.

We will in this paper analyze the effects of quarantines of different extents and durations that

are imposed at different points during a pandemic. We use a basic epidemiologic model, a SEIR-

model, that is calibrated to roughly resemble the COVID-19 pandemic.1 As in Atkeson (2020)

we assume that individuals that become infected on average lose a share of their productivity,

and we also assume that quarantined individuals on average incur productivity losses. However,

our qualitative results do not depend on the assumed values of productivity losses. Our main

findings can be summarized as follows.

1) The implementation of an early quarantine will essentially postpone but not alter the

course of the pandemic at a cost that increases in the duration and the extent of the quarantine.

2) For quarantines starting at later stages of the pandemic there is a trade-off between

lowering the peak level of infectious people on the one hand and minimizing fatalities and

economic losses on the other hand. A quarantine implemented when the number of infectious

persons starts increasing rapidly is optimal if the main goal is to reduce the peak level of

infectious people. A starting day just before the peak of infectious people is reached is optimal

1This type of epidemiological model was introduced by Kermack and McKendrick (1927).
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if the aim is to minimize fatalities and economic losses.

3) There is a trade-off between economic costs and health outcomes in terms of the duration

of a quarantine. A longer quarantine either postpones the peak (if it is implemented relatively

early) or dampens the peak and reduces the total number of infected people and deaths (if it

starts at a later stage of the pandemic), but implies higher economic losses.

4) The peak level of infectious people as well as the total share of the population that will

have been infected are U-shaped in relation to the extent of a quarantine (the share of the

population in quarantine). A quarantine of moderate extent, covering around one third of the

population, leads to a lower peak, fewer deaths and lower economic costs than a more complete

lockdown. However, it implies that the peak of infectious people occurs earlier.

Several recent papers analyze the implications of the policy response in relation to the

COVID-19 pandemic. Dewatripont et al. (2020) discuss how to best use testing. Hall et al.

(2020) analyze the optimal trade-off between consumption losses and pandemic deaths. Jones

et al. (2020) studies the interaction of private and public mitigation efforts. Other policy

options are discussed in Baldwin and Weder di Mauro (2020a) and Baldwin and Weder di

Mauro (2020b). More closely related to us, a number of recent papers specifically analyze the

consequences of isolation enforcement. Anderson et al. (2020) discuss how mitigation policies

will affect the COVID-19 pandemic. Casares et al. (2020) calibrates a dynamic model for

the Spanish economy. The study shows how isolation or quarantine slows down the speed of

the contagion and reduces the number infected and dead. However, they do not consider the

economic effects of quarantines. Piguillem et al. (2020) calibrate a SEIR- model to Italian data,

and calculate the optimal path of a quarantine for different functional forms of the planner’s

utility function. Similarly Alvarez et al. (2020) and Gonzalez-Eiras and Niepelt (2020) employ

optimal control theory to determine the optimal path of a quarantine that can be continuously

varied. We do not calibrate our model to any particular country and do not use control theory to

pin down an optimal path of isolation. Our purpose is instead to try to shed light on some of the

underlying trade-offs between economic and health outcomes when a quarantine is implemented.

2 The Model

We employ a SEIR-model similar to Atkeson (2020). There are five categories of individuals:

susceptible persons (S) who have never been exposed to the virus; exposed persons (E) who

carry the virus, but are not yet infectious; infectious persons (I); recovered persons (R) who

are no longer infectious and, possibly, have developed resistance to the virus; and deceased

persons (D). A susceptible individual becomes infected by infectious individuals at the rate βI.

Exposed persons become infectious at rate ε. Infectious persons recover at rate γ and die at
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rate δ. The dynamics of the SEIR-model can be summarized as follows:

.
S = −βSI,
.
E = βSI − εE,
.
I = εE − γI − δI,
.
R = γI,
.
D = δI.

For simplicity it will be assumed that S, E, I, R and D represent shares of the population,

i.e. S(t) + E(t) + I(t) +R(t) +D(t) = 1 at any point in time t.

Most countries have responded to the present Corona pandemic by imposing different types

of quarantines, covering large parts of the population. In the context of the present model

a quarantine would cover a constant share q of susceptible, exposed, infectious and recovered

individuals over a certain period. The quarantined population would thus consist of the shares

SQ, EQ, IQ and RQ. For simplicity we assume that there is no transmission of the virus among

the quarantined population, i.e. SQ(t) remains constant during the quarantine. In reality, the

virus could be transmitted within quarantined families; allowing for a small rate of transmission

among the quarantined population would not alter our analysis qualitatively. Quarantined

exposed individuals become infectious at rate ε, and quarantined infectious individuals recover

at rate γ and die at rate δ. The dynamics during the quarantine can thus be summarized as

follows:

.
S = −βSI,
.
E = βSI − εE,
.
I = εE − γI − δI,
.
R = γI,
.
D = δI + δIQ
.
SQ = 0,
.
EQ = −εEQ,
.
IQ = εEQ − γIQ − δIQ,
.
RQ = γIQ.

After the quarantine has been terminated, the quarantined individuals join their correspond-

ing groups, e.g. EQ is added to E. Here, we do not account for quarantines that are introduced

and lifted in steps. In reality, a government can vary the extent of a quarantine and let smaller

groups of people return to normal life. However, there are infinitely many possibilities for im-

plementing a quarantine. To keep our analysis transparent we only consider quarantines that

take place once for a certain duration and covering a constant share of the population.
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To assess the implications of a quarantine we will focus on the following measures:

(i) The peak of the share of infectious individuals IPeak. From a public health perspective

it is desirable to dampen the maximum number of infected persons.

(ii) The day t(IPeak) when the peak of the share of infectious individuals occurs. For the

public health authorities a later day is preferable, because it allows hospitals to be better

prepared.

(iii) The share of the population that will have been infected and survived one year after the

start of the pandemic, which is measured by the share of recovered individuals on day 365 of

the pandemic R(365); the share of deceased persons is obviously proportional to that number.

To keep the number of infected and hence, deceased individuals low is one important objective.

(iv) The economic output during one year Y , from day 0 to day 365. In the absence of

the pandemic it is assumed that productivity is 1 per individual and day, i.e. normalized

total output would be 366 for the entire population. It is assumed that the productivity of

susceptible, exposed and recovered individuals is 1 if there is no quarantine, whereas those in

quarantine will have an average productivity b = 0.5, reflecting the fact that some individuals,

e.g. individuals employed as manual workers, may have close to zero productivity, whereas other

professions or tasks are easier to perform from home. Likewise infectious persons either have

no or only mild symptoms or are sick at home or need costly treatment in a hospital. Their

average productivity is decreased by a factor a, here set to a = 0.5. The productivity parameters

determine the economic impact of the quarantine, but they do not affect the dynamic properties

of the model.

Normalized total output at any day t is given by

Y (t) = S(t) + E(t) +R(t) + aI(t) + b
[
SQ(t) + EQ(t) +RQ(t) + aIQ(t)

]
.

To assess the economic consequence of the pandemic, Y =
365∑
t=0

Y (t) will be measured. It is

thus implicitly assumed that the pandemic only has short-term consequences in the sense that

it only leads to lost output due to illness and, possibly, a quarantine. Long-term structural

effects are therefore not accounted for. Once the pandemic is over, the economy reverts to the

status quo ante.

3 Simulations

We do not intend to calibrate the infection dynamics to any particular country or case, but

we do have the COVID-19 pandemic in mind, and we have therefore chosen parameter values

that have been suggested for this infection. The average incubation period is five days, but it

seems that you can spread the infection two days before that.2 We therefore set ε = 1
3 .We also

assume that it takes on average two weeks to recover, implying that γ = 1/14, and that 0.1%

2See He et al. (2020).

163
C

ov
id

 E
co

no
m

ic
s 1

5,
 7

 M
ay

 2
02

0:
 1

59
-1

83



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

of infectious persons die, i.e. δ = 0.001/14.3 Finally, we have β = 0.2 in the base case, which

reflects the speed of the spread of the pandemic without a quarantine.4

3.1 Base case: no quarantine

The base case scenario has no quarantine. Figure 1 illustrates the pandemic dynamics during

the course of one year given our parameter values.

Figure 1. Pandemic dynamics in the absence of a quarantine

The horizontal axis measures days since the start of the pandemic, while the vertical axis

measures shares of the population. The red curve represents the share of infectious individu-

als, the blue curve represents the share of infectious plus exposed individuals, and the green

curve represents the share of infectious, exposed and susceptible individuals. That is, recovered

and deceased individuals are represented by the area above the green curve; deceased people

represent only a tiny fraction (0.1%) of these.

Assuming that at the start of the pandemic 0.01% had been exposed to the virus (i.e.

S(0) = 0.9999), the peak of infectious individuals would occur on day 118 and represent 23 per

3This relatively optimistic value for δ is consistent with the study by Bendavid et al. (2020). However, the

choice of δ has virtually no effect on the infection dynamics.

4This value of β is used by e.g. Alvarez et al. (2020).
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cent of the population. Moreover, a year after the pandemic started almost 93% would belong

to the category of recovered (and possibly resistant) individuals, implying a share of 7% still

being susceptible. Furthermore, output would be reduced from 366 to 359.28, representing a

fall of 1.84%, due to the pandemic.

3.2 Introducing a quarantine

When assessing the effects of a quarantine several factors are of interest:

(i) timing, i.e. the start of the quarantine;

(ii) the duration of the quarantine;

(iii) the extent of the quarantine, i.e. how large a share of the population is covered.

Below we present results from simulations to illustrate the importance of these factors.

3.2.1 Timing of the quarantine

Figure 2 illustrates the pandemic dynamics in the absence of a quarantine (solid curves, the same

as in figure 1) and for a thirty-day quarantine covering 80 per cent of the population starting on

day 30 of the pandemic (dashed curves). At early stages of the pandemic the starting date of

the quarantine has almost no effect on the dynamics; a later starting date will simply postpone

the pandemic.

Figure 2. Pandemic dynamics with no quarantine and with a 30 day

quarantine covering 80 per cent of the population starting on day 30
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If the quarantine starts at a stage when the share of infectious individuals is increasing

rapidly, the pandemic dynamics are affected differently, as illustrated by a quarantine starting

on day 90 in figure 3 (dashed-dotted curves). In this case there will be a double-peak in the

share of infectious individuals, as its rise is stopped, but it starts increasing again after the

quarantine has been terminated.5 In case the quarantine starts later, just before or after the

peak of the share of infectious individuals has been reached, there will be a faster drop from the

peak (see the dotted curves in figure 3). Both cases lead to fewer infected persons and therefore

to fewer deaths compared to the base case. The later quarantine leads to fewer being infected,

but at the cost of a higher peak level of infectious individuals.

Figure 3. Pandemic dynamics for 30 day quarantines covering 80 per

cent of the population starting on days 90 and 120

Figures 4 and 5 illustrate how the peak level of infectious individuals and the day when this

peak level is reached are affected by the timing of a thirty-day quarantine covering 80 per cent

of the population; the horizontal axis measures the day of the pandemic when the quarantine

starts.

5This case is discussed by Anderson et al. (2020).
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Figure 4. The peak level of infectious people in relation to the starting

date of a 30 day quarantine covering 80 per cent of the population

Figure 5. The day of the peak level of infectious people in relation to the

starting date of a 30 day quarantine covering 80 per cent of the

population

The perhaps most striking result is that there is a U-shaped relationship between the starting

day of the quarantine and the maximum share of infectious individuals. An early quarantine

primarily postpones the infection (see figure 2); once lifted the infection runs its course, and

since there are still many susceptibles in the population the peak will be high. A late quarantine,

just before or after the peak of the infection has passed, has no effect on the level of he peak
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(see figure 3). The peak of the infection is therefore mostly reduced by a quarantine starting

when the number of infectious individuals increases most rapidly. This results in a double peak

in the share of infectious persons, leading to a drop in the peak day as the first peak becomes

larger than the second peak.

In the example above a quarantine starting on day 94 seems optimal in terms of reducing

the peak level of infectious individuals; it decreases to less than 12 percent from almost 23

percent in the absence of a quarantine. This is a remarkably stable result; although peak levels

obviously depend on the duration and the extent of a quarantine, those starting around this

date generally yield the lowest peak levels.6

Figures 6 and 7 show the share of population that has recovered after the pandemic as well

as the economic losses with respect to the starting date.

Figure 6. The share of population that has recovered one year after the

start of the pandemic in relation to the starting date of a 30 day

quarantine covering 80 per cent of the population

6For a 30 day quarantine covering only 20 per cent of the population the IPeak-level would reach its minimum

if it is started on day 93; however, the minimum IPeak-level would be somewhat higher, at 0.15.

For a 60 day quarantine covering 80 per cent of individuals the IPeak-level would also reach its minimum if

implemented on day 93; in this case the minimum IPeak-level would be somewhat lower, at 0.1086.
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Figure 7. Economic losses in relation to the starting date of a 30 day

quarantine covering 80 per cent of the population

There is a U-shaped relationship between the total number of individuals that have been

infected and recovered (and hence, also the total number of deceased individuals) and the

starting day of the quarantine. The lowest level is reached for a quarantine starting on day 114.

In this case the share of the population that will have been infected and survived will be less

than 78 per cent, as compared to almost 93 per cent in the absence of a quarantine. It is worth

noting that herd immunity would be achieved for any 30 day quarantine covering 80 percent of

the population, regardless of the starting day.7

The relationship between the economic loss and the starting date is also U-shaped, with

economic losses minimized for a quarantine starting on day 115. Interestingly there seems to

be no trade-off between economic losses and averting fatalities. The total number of deaths

and the economic losses are both minimized when the quarantine is implemented around day

114-115. Thus, to keep fatalities as well as economic losses low it seems optimal to postpone a

quarantine to just before the share of infectious individuals reaches its peak. Also this result

is stable; obviously levels depend on the duration and extent of a quarantine, but the general

pattern is similar.8 The downside, however, is that this policy does little to reduce the peak,

and the implementation of this policy is therefore dependent on there being suffi cient capacity

7The herd immunity threshold would be about 64% of the population given that R0 = 2.8.

8For a 30 day quarantine covering only 20 per cent of the population the R(365)-value would be larger, reaching

its minimum for one started on day 109 (at 0.875), while economic losses would be smaller, being minimized for

a quarantine starting on day 111.

For a 60 day quarantine covering 80 per cent of individuals the R(365)-value would be smaller and minimized for

one implemented on day 111 (at 0.668), while economic losses would be larger, being minimized for a quarantine

starting on day 112.
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in the health care system.

To summarize, there is a trade-off between lowering the peak level of infectious people on the

one hand, and reducing fatalities as well as economic losses on the other hand. If the main goal is

to lower the IPeak-level an earlier quarantine starting day within this time frame is preferable,

while a later starting day would be optimal if the main goal is to reduce fatalities and/or

economic losses. An implication of this is that a high capacity for intensive care treatment in

the health care system implies that the government can chose a strategy that leads to both

fewer deaths and lower economic losses.

3.2.2 Duration of the quarantine

We now turn to the effect of the duration of a quarantine. We simulate quarantines that cover 80

per cent of the population. As demonstrated in the previous section, the timing of a quarantine

impacts crucially on the pandemic dynamics. To analyze the effects of a quarantine’s duration

we therefore distinguish between those implemented early and those started later, when the

share of infectious individuals starts taking off.

Consider first the case of a quarantine that starts at a relatively early stage of the pandemic.

Figure 8 illustrates the pandemic dynamics in the absence of a quarantine (solid curves) and on

day 60 of the pandemic with different durations (30 days: dashed curves; 60 days: dashed-dotted

curves; 90 days: dotted curves).
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Figure 8. Pandemic dynamics for quarantines covering 80 per cent of

the population starting on day 60 with different durations

The duration of a quarantine that starts relatively early, e.g. on day 60, pushes the dynamics

forward, about 1.6 days per extra quarantine day, but has hardly any impact on the peak level

of infectious individuals and the share of recovered persons after the pandemic has ended (see

table 1). Naturally a longer quarantine is associated with higher economic losses, about 0.1

percentage points for every extra day, as shown in the table below, which presents the IPeak-

level, the day when this peak is reached, the share of the population that will have been infected

and survived, economic output and economic losses for quarantines of different durations. For

example, Q60-74 indicates a quarantine starting on day 60 and ending on day 74.
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Table 1. Outcomes of quarantines of different durations, covering 80 per cent of the population

and starting on day 60

A quarantine starting on the same day, but covering a smaller share of the population

yields different results with respect to the duration. In particular, a smaller share in isolation

will impact substantially on the peak level, while having a smaller effect on the peak day and

naturally leading to smaller economic losses (see section 3.2.3).

The impact of the duration of quarantines covering 80 per cent of the population is somewhat

different when these start at a later stage, e.g. on day 90 of the pandemic, as illustrated in figure

9. The solid curves represent the absence of a quarantine, dashed curves represent a quarantine

of 15 days duration, dashed-dotted curves represent a quarantine of 30 days duration and dotted

curves represent a quarantine of 60 days duration.
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Figure 9. Pandemic dynamics for quarantines covering 80 per cent of

the population starting on day 90 with different durations

All quarantines starting on day 90 lead to a double-peak in the share of infectious individuals,

with the first peak occurring on day 90. The second, larger peak is pushed forward by around

two days per extra quarantine day. The IPeak-level as well as the share of recovered individuals

and deaths decrease in the duration of the quarantine. Figures 10 and 11 illustrate the impact

of the duration (the number of days) of a quarantine on the peak level of infectious individuals

and the day of the peak occurring.
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Figure 10. The peak level of infectious people in relation to the

duration of a quarantine starting on day 90 and covering 80 per cent

of the population

Figure 11. The day of the peak level of infectious people in relation

to the duration of a quarantine starting on day 90 and covering 80

per cent of the population

While the peak day is almost linearly related to the duration, the peak level decreases at

a decreasing rate in the duration. A quarantine lasting about 30 days reduces the peak level

substantially; extending the quarantine beyond 30 days only marginally reduces the peak level,

but pushes the peak date forward. Figures 12 and 13 illustrate the impact on the share of
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recovered individuals after one year and the economic losses in relation to the duration; since

quarantines starting on day 90 and lasting more than 60 days lead to the pandemic not having

ended after one years time, only the effects for durations up to 60 days are presented.

Figure 12. The share of population that has recovered one year after

the start of the pandemic in relation to the duration of a quarantine

starting on day 90 and covering 80 per cent of the population

Figure 13. Economic losses in relation to duration of a quarantine

starting on day 90 and covering 80 per cent of the population

The share of recovered individuals and hence, also the share of deceased persons is only

marginally affected by the duration, whereas economic losses increase almost linearly in the
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duration, by more than 0.1 percentage points for every extra quarantine day.

To summarize, longer quarantines imply larger economic losses. The main effect of a longer

duration of a quarantine that is implemented at an early stage of the pandemic is to postpone

it. For quarantines that start later the peak level of infectious individuals is reduced by a

longer duration, and so is the total number of infected and dead individuals. Thus, there is a

relatively clear trade-off between economic costs and health outcomes in terms of the duration

of a quarantine.

3.2.3 Extent of the quarantine

Finally, we vary the share of the population that is covered by the quarantine, q. Again we

distinguish between quarantines starting early on and those starting later during the pandemic.

First, we consider quarantines starting relatively early, e.g. on day 60, and lasting for 60

days. Figure 14 illustrates the pandemic dynamics in the absence of a quarantine (solid curves)

as well as for quarantines covering different shares of the population (20 per cent: dashed curves;

40 per cent: dashed-dotted curves; 60 per cent: dotted curves).

Figure 14. Pandemic dynamics for 60 day quarantines starting on day

60 and covering different shares of the population

An increase in the share of quarantined persons unambiguously pushes the IPeak-day for-

ward. The IPeak-level first decreases somewhat, but eventually increases as a higher share of

the population is covered by the quarantine. The share of the population having been infected
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and recovered remains stable above 90 per cent. Table 2 summarizes results of simulations;

a quarantine covering the entire population is obviously not realistic, but can be used as a

benchmark.

Table 2. Outcomes of quarantines of different extents, starting on day 60 and lasting for 60 days

Thus, the main effect of increasing q for an early quarantine is to push the infection forward

in time, but this is associated with substantial economic costs.

For quarantines starting at a later stage of the pandemic the pattern is slightly different.

Figure 15 illustrates the pandemic dynamics in the absence of a quarantine (solid curves) as well

as for quarantines starting on day 90 of the pandemic, lasting for 60 days and covering different

shares of the population (20 per cent: dashed curves; 35 per cent: dashed-dotted curves; 60 per

cent: dotted curves).
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Figure 15. Pandemic dynamics for 60 day quarantines starting on day

90 and covering different shares of the population

A smaller share of quarantined individuals leads to flatter pandemic dynamics compared to

the absence of a quarantine; in particular, the IPeak-level is reduced substantially. For larger

shares of quarantined individuals we obtain the familiar double-peak pattern, with the first peak

occurring at the starting day of the quarantine. The second peak is actually lower for q = 0.35

than for q = 0.6, as a higher share will already have become infectious once the quarantine is

terminated. Figures 16 and 17 illustrate how the IPeak-level and the IPeak-day are affected by

the extent of the quarantine.
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Figure 16. The peak level of infectious people in relation to the

extent of a 60 day quarantine starting on day 90

Figure 17. The day of the peak level of infectious people in relation

to the extent of a 60 day quarantine starting on day 90

An increase in q initially reduces the IPeak-level and has only a minor impact on the IPeak-

day.9 Eventually an increase in q brings about the double-peaked pandemic pattern. A higher

q is associated with an increase in the IPeak-day, but also an increase in the IPeak-level. The

9Note that for quarantines covering around a third of the population the first peak resembles a plateau lasting

for almost 30 days (see figure 15 when q = 0.35). We therefore observe a drop in the peak-level day when q

increases from 0.34 to 0.35, as the peak of this plateau shifts from day 112 to day 97.
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impact on the IPeak-level is thus U-shaped, with a minimum reached for q = 0.5 when the two

peaks reach almost the same level. Figures 18 and 19 illustrate how the share of recovered

individuals after one year and economic losses are affected by the extent of the quarantine.

Figure 18. The share of population that has recovered one year

after the start of the pandemic in relation to the extent of a 60 day

quarantine starting on day 90

Figure 19. Economic losses in relation to the extent of a 60 day

quarantine starting on day 90

The relationship between the share of recovered (and hence, also deceased) people after the

pandemic and the extent of the quarantine is also U-shaped. More specifically, the number of
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deceased individuals is minimized for q = 0.28. Economic losses increase almost linearly in the

share of quarantined persons, by almost 0.08 percentage points for every extra per cent being

quarantined.

For q ∈ [0.28, 0.5] there is a trade-off between lowering the IPeak-level on the one hand and
reducing the share of people that will have become exposed to the virus on the other hand. If

the main goal is to minimize fatalities, a quarantine covering a smaller share of the population

is optimal, while a quarantine covering almost half the population is preferable if the focus is

on reducing the IPeak-level.

To summarize, the main effect of increasing the share of the quarantined population when

the quarantine starts at a relatively early stage of the pandemic is essentially that the peak

infection day is pushed forward, but this comes at a substantial economic cost. A quarantine

starting at a later stage, when the number of infectious individuals starts increasing rapidly,

is associated with a U-shaped relationship between the peak level of infectious individuals and

the extent of the quarantine, such that the peak level is reduced substantially for quarantines

covering about half the population. At higher q-levels the peak is pushed forward, but this

also leads to a higher peak level and higher economic losses. The share of deceased people is

minimized for quarantines covering a rather small share of the population. Thus, there is a

relatively strong case for limiting the extent of a quarantine, since this leads to a lower peak,

fewer deaths and lower economic costs. However, such a policy would lead to an earlier peak of

infectious people.

4 Conclusions

This paper considers some of the basic trade-offs between health outcomes and economic out-

comes when a quarantine is implemented. For this purpose we employ a SEIR-model, calibrated

to resemble the COVID-19 pandemic and coupled with the assumption that infected and quar-

antined individuals lose part of their productivity.

Our main findings can be summarized as follows. First, the implementation of an early

quarantine postpones but does not alter the course of the pandemic at a cost that increases in

the duration and the extent of the quarantine. Second, a quarantine implemented when the

number of infectious persons starts increasing rapidly is optimal if the focus is on reducing the

peak level, while a starting day just before the peak of infectious people is reached is optimal

if the main goal is to reduce fatalities and economic losses. Third, there is a trade-off between

economic costs and health outcomes when it comes to the duration of a quarantine. A longer

quarantine either postpones the peak (if it is implemented relatively early) or dampens the peak

and reduces deaths (if it starts at a later stage of the pandemic), but implies higher economic

losses. Finally, there is a relatively strong case for limiting the extent of a quarantine. A less

than complete quarantine leads to a lower peak, fewer deaths and lower economic costs. The

flip side of this strategy is that the peak of infectious individuals occurs earlier.
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To test the robustness of our results we have simulated pandemics with both higher and

lower transmission rates. Qualitatively all our findings can be replicated for different pandemic

dynamics. Thus, our conclusions regarding the timing, duration and extent of quarantines hold

generally.
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Less impacted than the rest of the world, the African continent is also 
facing the spread of Covid-19 and the numbers of confirmed cases are 
rising. This paper estimates the short-term impact of COVID-19 on 
poverty in Africa using the World Bank’s PovcalNet dataset. Three 
scenarios were used including low, medium and high consumption 
contractions of 10%, 20% and 30%. The impact is estimated based 
on the US$ 1.90 per day poverty line. First, the impact of COVID-19 
is estimated for the whole Africa. Secondly, to account for the regional 
heterogeneity, the impact is estimated separately for the five regions in 
Africa. The results indicate that the number of poor people in Africa 
would increase by between 59 and 200 million due to contractions in 
consumption as a result of COVID-19 pandemic. In all three scenarios, 
West Africa and East Africa are the most affected by contractions 
in consumption due to the COVID-19 pandemic, while North Africa 
is the least affected among the five regions in Africa. The findings 
suggest that COVID-19 pandemic is a serious threat for achieving the 
Sustainable Development Goals (SDGs). Therefore, governments and 
international organizations should increase efforts in supporting the 
economic activities in all countries.

1 Research Fellow, Laboratoire d’Economie Publique, Université d’Abomey-Calavi.
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1. Introduction 

The whole world is facing an unprecedented health crisis due to the Covid-19 pandemic. The 

virus has spread to 185 countries and regions since emerging in China last December. As of 

April 2020, there are more than 3 million cases infected with COVID-19 worldwide with the 

U.S. and Europe now the hardest-hit regions in the world. The ten (10) most affected countries 

are United States (US), Spain, Italy, France, Germany, United Kingdom, Turkey, Russia, Iran 

and China. China, which was initially the world center of the epidemic, registers less than 100 

thousand cases while in the others countries, this bar is largely exceeded. For instance the US 

confirmed more than a million cases. In Africa, the number of COVID-19 cases has risen to 

about 30,000. North Africa remains the hardest-hit of the continent’s five regions, followed by 

West, Southern, East, and Central. In term of countries, South Africa has 4,996 COVID-19 

cases, Egypt has 4,100, Morocco 3,800, and Algeria has 3,100. 

The consequences of this COVID-19 pandemic would be dramatic worldwide, both from a 

health and economic point of view. A global economic recession appears inevitable in 2020. 

African countries would not be spared from this global economic crisis. Recent studies that 

estimate the economic impact of the COVID-19 were done by International Food Policy 

Research Institute (IFPRI), the International Labour Organization (ILO), and the United 

Nations University World Institute for Development Economics Research (UNU-WIDER).  

Employing the computable general equilibrium (CGE) model, the estimates of IFPRI done by 

Vos, Martin and Laborde (2020a, 2020b) show that a decrease of 1 percentage point in a global 

gross domestic product (GDP) would increase poverty (based on a poverty line of US$1.90 per 

day) by between 14–22 million people in Sub-Sahara Africa and South Asia. However the 

impact would be greater in Sub-Sahara Africa. Also based on a CGE model, the work by ILO 

(2020) is focused on three scenarios: low, medium, and high global drops in GDP growth of 2, 

4, and 8 per cent. In all cases, the three scenarios results indicate a substantial rise in global 

unemployment of between 5.3 million and 24.7 million from a base level of 188 million in 

2019. The medium scenario suggests an increase of 13 million.  The working poverty is also 

likely to increase significantly; under the mid and high scenarios, there will be between 20.1 

million and 35.0 million more people in working poverty. 

UNU-WIDER estimates by Sumner, Hoy and Ortiz-Juarez (2020) used the World Bank’s 

PovcalNet dataset. Their estimates are based on three scenarios: low, medium, and high income 

or consumption contractions of 5, 10, and 20 per cent; and three poverty lines including 
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US$1.90, US$3.20 and US$5.50 per day. The three scenarios results show an important 

increase in the number of poor relative to the 2018 figures, of between 80 million and 580 

million people. Under the medium scenario, the increases in a number of poor people is 

between 180, and 280 million people. Sumner, Hoy and Ortiz-Juarez (2020) also show that the 

concentration of the potentially new poor under the US$1.9/day and US$3.2/day poverty lines 

would occur in the poorest regions of the world, notably in SSA and South Asia, which could 

accrue together between two thirds and 80–85 per cent of the total poor. For the higher poverty 

line of US$5.5/day, about 40 per cent of the new poor could be concentrated in East Asia and 

Pacific, about a third in both SSA and South Asia combined, and about 10 per cent each in 

Middle East and North Africa and Latin America and the Caribbean. 

This paper aims to estimate the potential short-term impact of COVID-19 on poverty in Africa. 

While previous studies (Sumner, Hoy and Ortiz-Juarez, 2020; Vos, Martin and Laborde, 2020a, 

2020b) concluded on the greatest impact of COVID 19 in Sub Sahara Africa, this does not tell 

about the specific case of the regions in Africa. In fact, the regions are not affected in the same 

way as they have different levels of development and resilience. The study accounts for this 

heterogeneity by including the regions in the analysis. The five (5) regions in Africa are 

“Central Africa”, “North Africa”, “East Africa”, “Southern Africa” and “West Africa”.  

The rest of the paper is structured as follows. Section 2 presents the methods of analysis 

followed by results and discussion in section 3. Finally, section 4 provides concluding remarks. 

2. Methods of analysis 

Data used in this study are from the World Bank’s PovcalNet dataset and were computed 

through the Stata’s PovcalNet interface (Castañeda et al. 2019; Sumner, Hoy and Ortiz-Juarez, 

2020) at the global and regional levels in Africa. The data were aggregated using 2018 as the 

reference year. PovcalNet has income or consumption distributional data from more than 1500 

household surveys spanning 1967-2018 and 166 economies2. 

The data set allows to consider all the five regions in Africa. However, there are four (04) 

countries that were not covered by PovcalNet dataset. These include Somalia and Eritrea for 

East Africa, Equatorial Guinea for Central Africa and Liberia for North Africa. Thus, in total, 

fifty (50) countries distributed in five regions are included in this analysis (see annex 1 for the 

list of countries).  

                                                             
2 http://iresearch.worldbank.org/PovcalNet/methodology.aspx  
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All the African countries have consumption data in the PovcalNet dataset except Seychelles 

which has an income data. These monetary data are expressed in PPP exchange rates from the 

2011 International Comparison Program (Sumner, Hoy and Ortiz-Juarez, 2020). A poor people 

is defined as an individual whose daily consumption expenditure or income is less than an 

international poverty line of US$ 1.90. 

This study uses three scenarios of consumption drops as a result of the COVID 19 pandemic. 

 a “Low scenario” where consumption drops by around 10 per cent; 

 a “Mid scenario” where consumption decreases by 20 per cent; 

 a “High scenario” where consumption reduces by around 30 per cent: 

The study considers 10, 20 and 30 per cent contractions in consumption instead of 5, 10, and 

20 per cent contractions used by Sumner, Hoy and Ortiz-Juarez (2020) because we believed 

that the impact of COVID-19 would be more pronounced in developing countries especially in 

Africa than the developed countries. The reason is that majority of the populations in Africa 

are poor and lives daily. Therefore this COVID-19 pandemic will have much more effect on 

the consumption and income levels of populations in Africa. 

Following Sumner, Hoy and Ortiz-Juarez (2020), the reductions in consumption is captured by 

increasing the value of the poverty line consequently. This is because the individuals’ 

consumption levels from PovcalNet’s built-in database are not observed. Therefore, for a 

consumption decreases of x per cent, the poverty line z is adjusted upwardly as follows: 

𝑍′ = 𝑧 (1 − 𝑧)             (1) 

Where 𝑍′ is the adjusted poverty line. 

The three scenarios were performed using a “povcalnet” command in STATA 15. 

3. Results and discussion 

To achieve the objective of the paper, we first estimate the impact of COVID-19 on the whole 

Africa. Secondly, to account for the regional heterogeneity, we estimate the impact separately 

for the five regions in Africa. All the estimations were performed based on the US$ 1.90 per 

day poverty line. 

Table 1 shows the increase in poverty as result of COVID-19 pandemic at the global level in 

Africa.  
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Table 1. Increase in poverty in Africa due to consumption drops as a result of COVID-19 

pandemic 

Source: Estimates based on PovcalNet 

All other things being equal, a drops in consumption or income as a result of COVID-19 

pandemic would lead to an increase in the global poverty headcount ratio in Africa. Under a 

decrease of 10% and relative to the reference year (2018), the poverty headcount ratio at US$ 

1.9 per day would increase by about 5 percentage points; meaning that under this low scenario, 

the whole Africa could experience an increase in the number of poor people in comparison to 

the status quo in 2018, by 59 million. Under the medium scenario, the result indicate an increase 

in poverty incidence by 10% equivalent of 124.7 million new poor people relative to the status 

quo. In the most extreme scenario, that is a consumption contraction of 30%, the poverty 

headcount ratio would increase by about 16%. This suggests that comparing to the status quo, 

Africa would experience an increase in the number of poor people by almost 200 million. The 

results of the three scenario reveal that the poverty incidence in Africa would increase by 

between 5 - 16%. In absolute terms this means that the number of poor people in Africa would 

increase by between 59 – 200 million. 

Considering the fact that the impact of drops in consumption due to COVID-19 could differ 

depending on the regions, the impact is presented for the five regions in Africa (Table 2). In 

the case of Central Africa, Table 2 shows that under a decrease of 10% and relative to the 

reference year (2018), the poverty incidence at US$ 1.9 per day would increase by about 4.5 

percentage points; meaning that under this low scenario, in Central Africa the number of poor 

people would increase in comparison to the status quo in 2018, by 6.1 million. Under the 

medium scenario, the result indicate an increase in poverty incidence by 9 percentage points, 

equivalent of 12.4 million new poor people relative to the status quo. In the most extreme 

scenario (30% drops) the poverty headcount ratio would increase by about 13.7 percentage 

points. This suggests that comparing to the status quo, Central Africa would experience an 

increase in the number of poor people by almost 19 million. Similar results were found in 

Percentage decreases in 

consumption 

Number of poor people Additional percentage 

points in poverty incidence 

Percentage Millions Percentage Millions 

10% 

20% 

30% 

40.3 

45.6 

51.5 

502.8 

568.9 

642.5 

4.7 

10 

15.9 

58.6 

124.7 

198.3 

Status quo 35.6% 
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Southern Africa where the low scenario indicate an increase in the poverty incidence by about 

4 percentage points, corresponding to an increase in the number of poor people by 8.3 million 

comparing to the status quo. For the medium scenario, the result indicate an increase in poverty 

headcount ratio by about 9 percentage points equivalent of 17.5 million additional poor people 

relative to the status quo. In the most extreme scenario, the poverty incidence would increase 

by about 13.5 percentage points, suggesting that Southern Africa would experience an increase 

in the number of poor people by 27.4 million. 

The results of the low scenario (decrease of 10%) show that in the case of East Africa, the 

poverty incidence at US$ 1.9 per day would increase by 6 percentage points, equivalent to 20.2 

million increase in a number of poor people in comparison to the status quo in 2018. Under the 

medium scenario, the result indicate an increase in poverty incidence by about 13 percentage 

points equivalent of 43.2 million new poor people relative to the status quo. In the most extreme 

scenario, the poverty headcount ratio would increase by about 20.2 percentage points. This 

suggests that comparing to the status quo, East Africa would experience an increase in the 

number of poor people by 68.2 million. Similar results were found in West Africa. Indeed the 

low scenario indicate an increase in the poverty incidence by about 6 percentage points. This 

corresponds to an increase in the number of poor people by 21.8 million comparing to the status 

quo. For the medium scenario, the result indicate an increase in poverty incidence by about 12 

percentage points equivalent of 45 million additional poor people relative to the status quo. In 

the most extreme scenario, the poverty incidence would increase by about 19 percentage points, 

suggesting that West Africa would experience an increase in the number of poor people by 

almost 71 million. 

In the case of North Africa, a decrease of 10% in the consumption would increase the poverty 

headcount ratio by about 1.2 percentage points; meaning that under this low scenario, in North 

Africa the number of poor people would increase in comparison to the status quo in 2018, by 

2.3 million. Under the medium scenario, the result indicate an increase in poverty incidence by 

3.5 percentage points, equivalent to 6.7 million additional poor people relative to the status 

quo. In the most extreme scenario (30% drops) the poverty headcount ratio would increase by 

about 7 percentage points, suggesting that comparing to the status quo, North Africa would 

experience an increase in the number of poor people by 13.2 million. 
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Table 2. Increase in poverty by regions in Africa due to consumption drops as a result of 

COVID-19 pandemic 

Source: Estimates based on PovcalNet 

Overall, the results of the three scenario indicate an increase of poverty in all the five regions. 

This increase is between 4.5 - 14 percentage points for Central Africa, 6 – 21 percentage points 

for East Africa, 1–7 percentage points for North Africa, 4 – 14 percentage points for Southern 

Africa, and between 5 – 19 percentage points for West Africa. In absolute terms this 

corresponds to an increase between 6 - 19 million for Central Africa, 20 – 69 million for East 

Africa, 2 – 14 million for North Africa, 8 – 28 million for Southern Africa, and between 21 – 

71 million for West Africa.  

Percentage decreases in 

consumption 

Number of poor people Additional number of poor 

people 

Percentage Millions Percentage Millions 

Central Africa 

10% 

20% 

30% 

60.5 

65.1 

69.7 

82.8 

89.1 

95.4 

4.5 

9.1 

13.7 

6.1 

12.4 

18.7 

Status quo 56.0% 

East Africa 

10% 

20% 

30% 

40.2 

47.0 

54.4 

135.7 

158.7 

183.7 

6.0 

12.8 

20.2 

20.2 

43.2 

68.2 

Status quo 34.2% 

North Africa 

10% 

20% 

30% 

3.2 

5.5 

8.9 

6.1 

10.5 

17.1 

1.2 

3.5 

6.9 

2.3 

6.7 

13.2 

Status quo 2.0% 

Southern Africa 

10% 

20% 

30% 

49.4 

53.9 

58.8 

100.5 

109.6 

119.6 

4.1 

8.6 

13.5 

8.3 

17.5 

27.4 

Status quo 45.3% 

West Africa 

10% 

20% 

30% 

47.0 

53.1 

60.0 

177.0 

200.0 

226.0 

5.8 

11.9 

18.8 

21.8 

44.8 

70.8 

Status quo 41.2% 

190
C

ov
id

 E
co

no
m

ic
s 1

5,
 7

 M
ay

 2
02

0:
 1

84
-1

95



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 
 

Table 3 presents the share of additional poor for each region in the global increase in poverty 

in Africa.  

 Table 3. Share of poor by region in the global increase in poverty in Africa  

Regions  Population 

(millions) 

Number of additional 

poor people (millions) 

Share in percentage 

10% 20% 30% 10% 20% 30% 

Central Africa 

East Africa 

North Africa 

Southern Africa 

West Africa 

137.0031 

337.8018 

192.6497 

203.4939 

376.7934 

6.1 

20.2 

2.3 

8.3 

21.8 

12.4 

43.2 

6.7 

17.5 

44.8 

18.7 

68.2 

13.2 

27.4 

70.8 

10.4 

34.4 

4.0 

14.1 

37.1 

10.0 

34.6 

5.4 

14.0 

36.0 

9.4 

34.4 

6.7 

13.8 

35.7 

Africa 1247.7419 58.7 124.6 198.3 100 100 100 

Source: Estimates based on PovcalNet 

Focusing on a 10% drops in consumption and under the US $ 1.9 per day poverty line, Table 

3 shows that about 71% of those additional poor would be located in two regions including 

East Africa (34.4%) and West Africa (37.1%). North Africa accounted for the lowest share 

with about 4% of the additional poor in Africa as a result of COVID-19 pandemic. Similar 

results were found with 20% and 30% decrease in consumption respectively. Based on the 

three scenario, West Africa and East Africa appear to be more affected by contractions in 

consumption due to the COVID-19 pandemic, while North Africa is the least affected among 

the five regions in Africa. This contrasts with the fact that North Africa is the hardest-hit of the 

continent’s five regions in term of confirmed case of COVID-19. However, it can be noted that 

in contrast to the other regions, North Africa has benefited from a lower level of poverty.   

4. Conclusion  

The COVID-19 pandemic continues to affect the African continent. Though the continent still 

accounts for relatively few confirmed cases, the numbers are rising. As African countries 

struggle to contain the virus, they are affected by the efforts of other countries doing the same, 

and the economic impacts of COVID -19 pandemic grow. This paper estimates the short-term 

impact of COVID-19 on poverty in Africa using the World Bank’s PovcalNet dataset. Three 

scenario were proposed in this study: low, medium and high consumption contractions of 10%, 

20% and 30% based on the US$ 1.90 per day poverty line. The results of the three scenario 

show that, the poverty incidence in Africa would increase by between 5 - 16%. In absolute 

terms this means that the number of poor people in Africa would increase by between 59 – 200 
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million due to contractions in consumption as a result of COVID-19 pandemic. The results also 

indicate an increase in poverty between 4.5 - 14 percentage points for Central Africa, 6 – 21 

percentage points for East Africa, 1–7 percentage points for North Africa, 4 – 14 percentage 

points for Southern Africa, and between 5 – 19 percentage points for West Africa. In absolute 

terms this corresponds to an increase between 6 - 19 million for Central Africa, 20 – 69 million 

for East Africa, 2 – 14 million for North Africa, 8 – 28 million for Southern Africa, and between 

21 – 71 million for West Africa. Finally, based on the three scenario, West Africa and East 

Africa are the most affected by contractions in consumption due to the COVID-19 pandemic, 

while North Africa is the least affected among the five regions in Africa. 

While interesting, these findings have important limitations. Using the PovcalNet dataset, the 

estimates are based on distribution neutral assumptions, and therefore some interactions with 

labour market, household-level responses to economic contractions, and government responses 

to COVID-19 pandemic are not accounted in the analysis. Also, the potential impact of 

COVID-19 could be bias (overestimated or underestimated) because the real impact may 

depend on how long the pandemic will last or the effectiveness of responses by governments 

and international organizations. Further studies should explore how responses from 

governments, international organizations and households can reduce the impact of COVID-19 

pandemic. Despite all these, the findings are very useful and practical. These findings cast 

doubt on the fact that the impact of COVID-19 would be extreme. Thus, the study calls for 

rapid public policy (governments and international organizations) interventions to support the 

economic activities in all countries especially in African countries. 
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Annex 1. Countries list and codes 

Countries Codes 

Central Africa 

1. Cameroon  

2. Central African Republic 

3. Chad 

4. Congo Dem Rep 

5. Congo Rep  

6. Equatorial Guinea* 

7. Gabon  

8. Sao Tome 

CMR 

CAF 

TCD 

COD 

COG 

GNQ 

GAB 

STP 

East Africa 

9. Burundi 

10. Comoros 

11. Djibouti 

12. Eritrea* 

13. Ethiopia 

14. Kenya 

15. Rwanda 

16. Seychelles* 

17. Somalia 

18. South Sudan 

19. Sudan 

20. Tanzania 

21. Uganda  

BDI 

COM 

DJI 

ERI 

ETH 

KEN 

RWA 

SYC 

SOM 

SSD 

SDN 

TZA 

UGA 

North Africa 

22. Algeria 

23. Egypt 

24. Libya* 

25. Mauritania 

26. Morocco 

27. Tunisia 

DZA 

EGY 

LBY 

MRT 

MAR 

TUN 

Southern Africa 

28. Angola 

29. Botswana 

30. Lesotho 

31. Madagascar 

32. Malawi 

33. Mauritius 

34. Mozambique 

35. Namibia 

36. South Africa 

37. Eswatini 

38. Zambia 

39. Zimbabwe  

AGO 

BWA 

LSO 

MDG 

MWI 

MUS 

MOZ 

NAM 

ZAF 

SWZ 

ZMB 

ZWE 

West Africa 

40. Benin 

41. Burkina  

42. Cabo Verde 

BEN 

BFA 

CPV 
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43. Cote d’Ivoire 

44. Gambia 

45. Ghana 

46. Guinea 

47. Guinea Bissau 

48. Liberia 

49. Mali 

50. Niger 

51. Nigeria 

52. Senegal 

53. Sierra Leone 

54. Togo  

CIV 

GMB 

GHA 

GIN 

GNB 

LBR 

MLI 

NER 

NGA 

SEN 

SLE 

TGO 

Note. * denotes countries that are not covered by the World Bank’s PovcalNet dataset. 
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