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Work, care and gender during the 
covid-19 crisis1

Claudia Hupkau2 and Barbara Petrongolo3

Date submitted: 22 October 2020; Date accepted: 22 October 2020

We explore impacts of the pandemic crisis and associated restrictions to 
economic activity on paid and unpaid work for men and women in the 
UK. Using data from the Covid-19 supplement of Understanding Society, 
we find evidence that labour market outcomes of men and women were 
roughly equally affected at the extensive margin, as measured by the 
incidence of job loss or furloughing, but if anything women suffered 
smaller losses at the intensive margin, experiencing slightly smaller 
changes in hours and earnings. Within the household, women provided 
on average a larger share of increased childcare needs, but in an 
important share of households fathers became the primary childcare 
providers. These distributional consequences of the pandemic may be 
important to understand its inequality legacy over the longer term.

1 The authors thank Abi Adams-Prassl and Monica Costa Dias for helpful comments, and gratefully 
acknowledge financial support from the Nuffield Foundation (grant number WEL/34603).

2 Assistant Professor of Economics, CUNEF,  and Research Associate, Centre for Economic Performance, LSE.
3 rofessor of Economics, University of Oxford,  and Research Associate, Centre for Economic Performance, 

LSE.
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1 Introduction

Covid-19 is hitting most economies as hard as the deepest recessions, but given the excep-

tional nature of this crisis, the distribution of jobs and workers affected is quite different

from previous downturns. While sectors like construction and manufacturing are typically

most affected in regular recessions, including the Great Recession, the social distancing

and lockdown measures implemented in response to the Covid-19 crisis have naturally

hit service sectors with frequent interactions among consumers or between consumers

and providers, such as retail, hotels, restaurants and travel. But even among workers

whose activities are or were not directly subject to lockdowns, many are or have been

unable to work as normal, as their work would not comply with social distancing (e.g. in

construction, repairs and home services), and can be hardly performed from home.

Another distinctive feature of the pandemic crisis has been its impact on the volume

of home production, reversing by decree a secular process of marketisation of childcare

and home keeping. During lockdowns, virtually none of the typical components of home

production could be outsourced to the market, and the closure of schools and nurseries

meant that all education and childcare services were added to pre-existing home produc-

tion needs.

The impact of the pandemic on the labour market as well as the volume of home

production is likely to have consequences for the gender distribution of work. On the one

hand, women tend to be over-represented in service industries that have been subject

to lockdowns or social distancing measures. On the other hand, they are also over-

represented in sectors that have been defined as critical to the Covid-19 response, as

well as in occupations that can be performed from home. It is therefore ex-ante unclear

whether one should expect women’s labour market prospects to be more severely affected

than men’s. Another key aspect is that women on average perform the best part of home

production tasks, most notably childcare, and more in general they bear almost the

entirety of the earning penalty associated with childbearing (Kleven et al., 2019). Thus,

increased care responsibilities while Covid-19 restrictions last could negatively impact

gender inequality in earnings in the longer run.

This chapter contributes to a recent but growing economic literature investigating

unequal socio-economic impacts of Covid-19 across a number of dimensions (see, among

others, Adams-Prassl et al. 2020 and Blundell et al. 2020). A strand of this literature has
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devoted special attention to unequal gender impacts. For the US, Alon et al. (2020) doc-

ument larger employment losses for women than for men and explore their consequences

for macroeconomic adjustment and the household division of labour. For the UK, Andrew

et al. (2020) find that, in households with dependent children, mothers are more likely

than fathers to be out of work or furloughed during the crisis and that the substantial

increase in childcare for both parents has on average enlarged fathers’ share of total child-

care. Sevilla and Smith (2020) detect a larger increase in the overall childcare burden

for mothers, but, as for Andrew et al. (2020), this is associated with a slight increase

in father’s share of total childcare, simply because fathers’ contribution to childcare was

on average much lower before the crisis. Finally, Oreffice and Quintana-Domeque (2020)

find that poorer female employment outcomes during the crisis are also accompanied by

a higher incidence of mental health issues. For other countries, Farré et al. (2020) and

Del Boca et al. (2020) look into impacts on both paid and domestic work in Spain and

Italy, respectively. In both countries, women take over most of the increased childcare

burden, but evidence on their labour market outcomes is less clear-cut.

The majority of papers in this literature draw on evidence from ad hoc, real-time

surveys carried out during the pandemic. These typically contain rich information on

Covid-related aspects of work and family life, but they may not be linked to pre-pandemic

outcomes. Only more recently have regular household and labour market surveys started

to release waves of data that cover the pandemic period, with larger sample sizes and

richer information on work and employment patterns at baseline.

Our work contributes to the literature on the Covid-19 impacts on the gender division

of work in the labour market and the household, using data from the Covid-19 supplement

to the Understanding Society longitudinal study. In contrast to results from independent

surveys, we find evidence of roughly equal furloughing (and job loss) incidence across

genders, but women on average experience slightly smaller hours’ and earnings’ losses,

whether unconditional or controlling for a rich set of individual and job characteristics.

Within the household, women on average take over the majority of increased childcare

hours during the pandemic, but in a sizeable share of households fathers become the

primary providers of childcare. These distributional consequences of the pandemic are

important to understand its inequality legacy over the longer term.
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2 Work patterns at baseline

We start by showing a snapshot of male and female work patterns at baseline under the

lens of the Covid-19 incidence. This is done using data from the UK Quarterly Labour

Force Survey (LFS) for April-June 2019, whose large sample size and detailed occupation

and industry classifications allow us to precisely identify jobs subject to shut-downs and

those that have been defined as critical to the Covid-19 response.1

Figure 1: The composition of jobs according to Covid-19 incidence
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% Share of all employed men/women
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not WFH
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critical
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Notes. The bars show the incidence of critical jobs and shut-down jobs, as well as the
incidence of working from home among those not in critical or shut-down jobs. For
completeness, the percentage of critical jobs that can be done from home is 44 for men
and 41 for women, and the percentage of shut-down jobs that can be done from home is
22 for men and 24 for women. Sample: employed men and women aged 16-64. Source:
UK LFS, April-June 2019.

We classify jobs into four categories. The first group includes jobs in critical industries

(mostly health care, public services and security). The second group includes jobs in

shut-down industries (mostly non-essential retail, hospitality, accommodation and food

services).2 We categorise all remaining jobs into those that can be done from home

and those that cannot, which is plausibly the relevant distinction to predict employment

1This evidence was previously shown in Hupkau and Petrongolo (2020).
2We classify industries as critical if they are mentioned in Cabinet Office and Department for Educa-

tion (19 March 2020) and as shut-down if they are mentioned in Cabinet Office and Ministry of Housing,
Communities and Local Government (9 April 2020).
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and earning losses outside critical and shut-down sectors. This classification is done by

matching Dingel and Neiman (2020)’s classification of teleworkable occupations – based

on task descriptions in O*NET – with the UK classification of occupations in the LFS.3

The distribution of employment across these four categories is shown in Figure 1.

More women than men are employed in critical sectors (about 46% and 39% of working

women and men, respectively). Offsetting this, more women than men are employed in

shut-down sectors (about 19% and 13%, respectively). For the remaining 48% of men and

35% of women, the incidence of earnings losses is closely linked to their ability to work

from home (WFH). WFH is largely possible in female-dominated sectors like education,

where teachers support distance learning for many children and young people. In contrast,

WFH is not possible in many male-dominated sectors like construction, repairs, and large

parts of manufacturing. Indeed, about 24% of women and 19% of men are in jobs that can

be done from home – having excluded critical and shut-down sectors. Taking these factors

into account, it is ex-ante unclear whether women’s employment and earning prospects

should be more or less severely affected than men’s.

The other relevant aspect of the pandemic regards the gender distribution of home

production, including (most notably) childcare. One important factor behind changes in

childcare needs is marital or cohabitation status. Women are more likely than men to

raise children as single parents. Using LFS data, we estimate that 20.3% of households

with dependent children (aged 15 or below) are headed by single mothers, against 3.3%

headed by single fathers. Hence, for single parent households, women are far more likely

than men to be the sole providers of the sharp increase in childcare during the lockdown.

Second, the distribution of home production depends on the working status of partners

(if any), which is itself affected by the crisis.

3Dingel and Neiman (2020) use responses to O*NET surveys on work context and activities to classify
6-digit occupations into those that can be performed from home and those that cannot (binary classi-
fication). We map the resulting 6-digit O-NET-SOC2010 classification into the 4-digit UK SOC2010
classification available in the UK LFS based on a cross-walk from 6-digit O-NET-SOC2010 to 4-digit
US-SOC2010 and finally to 4-digit UK-SOC2010 occupations (369 categories). When a few 6-digit oc-
cupations feed into one 4-digit occupation, we classify the 4-digit occupation as doable from home if
the majority of 6-digit occupations associated with it are classified as such. We manually re-classify as
doable form home a handful of managerial and technical 4-digit occupations (e.g. elected officers and
representatives, financial administrative occupations); and manually re-classify as not doable from home
about 30 miscellaneous occupations (a few occupations in public transport, a few care and service occu-
pations, and a few technician occupations associated with workplaces, e.g. lab technicians). Overall, we
estimate that 43% of jobs in the UK can be done from home (based on LFS data for April-June 2019).
Dingel and Neiman (2020) perform a similar exercise and obtain an estimate of 43.5% for the UK, based
on ILO data from 2018.
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Figure 2: The distribution of partner’s status, by women’s status
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Notes. The “other” status indicates women staying at home during COVID-19 (includ-
ing: in shut-down jobs, in non-critical jobs, not employed). The sample does not include
households with two or more family units or same-sex couples with children (represent-
ing, respectively, 2.33% and 0.23% of households with children). Sample: Women with
dependent children aged 15 or below. Source: UK LFS, April-June 2019.

Figure 2 shows the distribution of partner status for women with dependent children.

Around one third of all women with dependent children work in critical jobs (as opposed

to 46% of all working women). Of these, 57% have either no partner or a partner who

also works in a critical job, and are likely to rely on basic childcare services guaranteed by

the education system to parents in critical jobs. The remaining 43% has a partner who

is staying at home – whether he is employed in a shut-down sector (6%), or cannot go to

work due to social distancing (33%), or does not work at all (4%). In these households,

we would expect a reversal of the home production gap, with men taking over the bulk of

increased childcare and housekeeping needs. Among mothers who are not in critical jobs,

and therefore stay at home during the lockdown, 21% have no partner and 26% have a

partner in a critical job, and hence are likely fully in charge of home production. The

other 53% has a stay-at-home partner, and home production is somehow shared between

spouses.

There is plenty of pre-Covid-19 evidence on the contribution of men and women to

home production from time use data. According to the 2014-15 Time Use Survey for the
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UK, women do 27 hours per week of home production on average, while men do 16 hours

on average. Among households with dependent children, weekly home production hours

are 40 for mothers and 20 for fathers, of which 17 and 8, respectively, represent childcare.

The key question is therefore whether the additional home production falls on men and

women according to baseline specialization patterns, in which case women would be at

the receiving end of the best part of increased home production requirements.

Below we address questions on impacts of Covid-19 on the gender division of both paid

and unpaid work using the Covid-19 supplement of the Understanding Society (USoc)

study. Relative to the UK LFS, the Covid-19 study has the advantage of surveying

participants at the monthly frequency, linking their answers to regular USoc waves, and

providing detailed information on domestic work, including childcare and home schooling.

The disadvantage of the Covid-19 study, however, is that it does not contain fine-grained

information on occupation or industry at baseline, hence we cannot identify jobs that are

subject to shut-downs or jobs that have been defined as critical. The next section will

give details on this dataset.

3 Data

With the introduction of the Covid-19 Study in April 2020 (ISER, 2020a,b),4 participants

from the main USoc sample have been asked to complete a short web-based survey each

month, eliciting information on the impact of the pandemic on their work and family

lives. These data have some clear strengths. First, they record retrospective information

on outcomes of interest at baseline, i.e. before the onset of the pandemic, as of January-

February 2020,5 as well as contemporaneous information from April onwards. Second,

individual records can be linked to past and future waves of the annual USoc survey,

facilitating long-run analyses of Covid-19 impacts. Third, selective non-response can be

tracked down to a rich set of individual characteristics (available from the earlier USoc

annual waves) and accounted for using the weights provided.

We use information from the first two Covid-19 monthly surveys, which were carried

out between 24-30 April and between 27 May and 2 June, respectively, among all USoc

participants who had responded in at least one of the two previous annual surveys (wave

4This is available through the UK Data Service (SN8644)
5For simplicity we will refer to the baseline period as January 2020.
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Table 1: Characteristics of survey respondents

(1) (2) (3) (4)
Wave 9 Covid-19 Study Difference

% share of respondents respondents respondents (1)-(2) (p-value)

Female 55.71 57.96 -2.25 (0.00)
16-19 5.81 3.94 1.87 (0.00)
20-29 12.13 10.26 1.87 (0.00)
30-29 14.21 14.67 -0.46 (0.17)
40-49 17.57 19.02 -1.45 (0.00)
50-59 18.77 21.63 -2.86 (0.00)
60+ 31.50 30.47 1.03 (0.02)
College and above 29.84 37.50 -7.66 (0.00)
Non-British ethnicity 22.50 16.49 6.01 (0.00)
Married 54.04 59.54 -5.50 (0.00)
Living as couple 9.85 10.96 -1.11 (0.00)
Never married 22.42 18.02 4.40 (0.00)
Working at wave nine 57.91 63.71 -5.79 (0.00)
Human health and social work 6.51 7.59 -1.08 (0.00)
Public administration and defence 3.92 4.95 -1.02 (0.00)
Accomodation and food service 2.84 2.44 0.40 (0.01)
HH income quintile 1 13.36 9.48 3.87 (0.00)
HH income quintile 2 16.73 15.01 1.72 (0.00)
HH income quintile 3 20.06 20.75 -0.68 (0.07)
HH income quintile 4 22.66 24.54 -1.87 (0.00)
HH income quintile 5 24.76 28.20 -3.43 (0.00)
HH income quintile unknown 2.43 2.03 0.40 (0.01)
Children aged 15 and below 25.43 26.05 -0.62 (0.13)
Age of youngest child 7.14 7.21 -0.07 (0.36)
N 32,596 16,934

Notes: The table compares the characteristics of individuals who gave a full adult inter-
view in USoc wave nine with the subset who also gave a full or partial interview in wave
one or two of the Covid-19 Study. All individual and household characteristics are mea-
sured in wave nine. P-value of two-sample t-test for equal means in parenthesis (column
4). Source: USoc wave nine and Covid-19 Study, waves one and two.

nine and ten, carried out in 2017-18 and 2018-19, respectively). The response rates

are 46% and 48.5% in the April and May waves, respectively (slightly rising to 48.6%

and 49.1% if one includes partial responses), among those who responded in wave nine.

Compared to the 86% response rate in wave nine, relative to wave eight participants,

retention in the Covid-19 study is considerably lower.6

To get a sense of selective attrition in the data, Table 1 compares descriptive statis-

tics among USoc wave nine and Covid-19 waves one and two respondents (data from

6Because the Covid-19 study is treated as an instrument of the wave nine annual interview, respon-
dents who did not complete a wave nine interview are assigned a zero weight. More information on how
weights were developed can be found in ISER (2020b).
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wave ten will only be released in November 2020). Covid-19 respondents are on average

slightly older, more likely to be female, college educated, British, married, employed at

wave nine and higher earners. To facilitate population inferences, the Covid-19 Study

provides weights to account for differential selection probabilities and nonresponse. These

are based on information from wave nine, allowing to estimate differential response con-

ditional on a very rich set of individual and household characteristics. All descriptive

evidence and regression results based on Covid-19 data below are obtained using such

weights.7

For validation, we compare retrospective information on labour market outcomes in

the Covid-19 Study with information from the January-March 2020 UK Labour Force

Survey. Table 2 reports descriptive statistics on employment rates and working hours for

the overall population and for men and women separately. Figures on employment rates

are remarkably close across the two data sources, but there are some slight differences in

working hours. A potential reason for small divergences is that the weighted Covid-19

data provide estimates that are representative of the UK adult population as of the USoc

wave nine, which was conducted during 2017 and 2018. This implies that the weights

provided might not be exactly representative of the adult population in 2020.

To describe Covid-19 impacts on labour market outcomes, we select all individuals

aged 16 to 64 who participated in at least one of the Covid-19 waves and who had

previously participated in USoc wave nine (N = 10, 703). We restrict further to those who

report being employed as of January 2020 (N = 8, 362), and drop individuals with missing

information on age, education, region, or basic employment characteristics, leaving us

with a sample of 8,073 individuals. Descriptive statistics for this sample are reported in

Table 3.

The analysis of outcomes relating to domestic work and childcare combines the Covid-

19 Study with pre-Covid data sources. For information on hours of housework, we select

individuals living as a couple, who participated in at least one of the Covid-19 waves.

Having dropped individuals with missing information on basic individual or employment

controls, or missing information on household composition, we are left with a sample of

10,643 individuals (17,614 observations). Pre-Covid information on housework is obtained

from USoc wave eight (2016-17, N = 17, 610).

7Indeed, we found some of the results on gender differences to be sensitive to the use of weights
(unweighted estimates not reported).
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Table 2: Employment statistics validation

(1) (2) (3)
LFS USoc Difference

Jan-Mar 2020 Jan-Feb 2020 (1)-(3)

All
Employment rate (%) 76.60 77.38 -0.78

[42.34] [41.84] (0.06)
Weekly working hours 31.77 34.44 -2.67

[17.09] [12.51] (0.00)
Men
Employment rate (%) 79.87 80.80 -0.92

[40.09] [39.39] (0.14)
Weekly working hours 35.95 38.22 -2.27

[16.54] [11.20] (0.00)
Women
Employment rate (%) 73.35 74.17 -0.82

[44.21] [43.77] (0.14)
Weekly working hours 27.36 30.56 -3.20

[16.54] [12.60] (0.00)

Notes: Standard deviations in brackets. All figures are obtained us-
ing weights. P-value of two-sample t-test for equal means in paren-
thesis (column 3). Weekly hours in the LFS correspond to total
actual hours worked in the reference week. Weekly hours in the
Covid-19 Study correspond to usual hours worked in January and
February 2020. All samples include individuals aged 16-64. Source:
UK Labour Force Survey January-March 2020 for column 1; USoc
Covid-19 Study, waves one and two, for column 2.

For the analysis of childcare we further select individuals with children aged 15 and

below, leaving us with a sample of 3,384 individuals and 5,384 observations across the

two waves of the Covid-19 study. For the pre-Covid period, we only have limited infor-

mation on childcare provision, as individuals are only asked in USoc wave eight about

the person mainly in charge of childcare in their household (N=5,892), and no infor-

mation on childcare hours is provided. We therefore compare descriptive statistics on

childcare hours during Covid-19 to corresponding statistics from the latest UK Time Use

Survey (2014-15). Table 4 provides detailed summary statistics for variables regarding

non-market work.

4 Labour market outcomes

The (short-run) impact of the pandemic on the labour market can be assessed by compar-

ing information on outcomes as of the April and May 2020 survey dates with retrospective
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Table 3: Summary Statistics - Market work

(1) (2) (3)
All Male Female

Age (years) 42.06 42.47 41.64
College and above (%) 37.99 36.86 39.14
Female (%) 49.55 0.00 100.00
Children aged 0-15 (%) 37.49 37.71 37.28
Labour market characteristics Jan/Feb 2020:

Working (%) 100.00 100.00 100.00
Weekly working hours 34.57 38.44 30.63
Weekly earnings (£) 418.38 489.48 344.85
Type of employment:

Employed (%) 85.94 83.24 88.69
Self-employed (%) 11.09 13.58 8.55
Both employed and self-employed (%) 2.97 3.18 2.76
Worked from home:

Always (%) 5.18 4.75 5.63
Often (%) 5.88 6.49 5.26
Sometimes (%) 17.54 18.05 17.01
Never (%) 71.40 70.71 72.10
Contract type:

Fixed hours (%) 67.69 63.50 71.95
Fixed salary (%) 60.14 59.34 60.95
Paid by hours worked (%) 24.44 22.01 26.90
Labour market outcomes April/May 2020:

Ever job loss since baseline (%) 4.27 4.41 4.13
Ever furloughed since baseline (%) 28.59 30.14 27.10
Reduced hours (%) 49.62 48.87 50.35
Reduced earnings (%) 36.40 38.60 34.24
Weekly working hours 23.25 25.82 20.76
Change in working hours -11.20 -12.62 -9.83
Weekly earnings (£) 382.54 443.23 323.45
Change in weekly earnings (£) -36.35 -50.31 -22.67
No. Individuals 8,073 3,389 4,684

The sample includes individuals aged 16-64 who were employed
in January-February 2020 and have no missing control variables.
Summary statistics are derived using cross-sectional weights.
Source: USoc, wave nine, and Covid-19 Study, waves one and two.

information referring to January 2020. Among individuals who report being employed

in January 2020 (including employees and the self-employed), about 4.3% report being

out of work by May 2020, including involuntary separations and quits.8 Most of the

8For comparison, ONS (2020b) estimates of UK employment based on the Quarterly Labour Force
Survey show only slight variations in employment and unemployment rates between the first and second
quarter of the year. Despite relatively flat unemployment figures, the number of people claiming benefits
roughly doubled from 1.3 to 2.7 million between March and May 2020, corresponding to 3.5 and 7.4 of
the workforce, respectively, in large part due to enhancements to Universal Credit coverage, which made
a higher share of workers eligible for unemployment-related benefits while still in work.
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Table 4: Summary Statistics - Non-market work

(1) (2) (3) (4) (5) (6)
All couples Couples w children

aged 0-15
All Male Female All Male Female

Household work:
Weekly hours housework (Covid-19) 12.77 9.78 15.83 13.83 10.89 16.80
N 17,614 7,939 9,675 5,402 2,266 3,136
Weekly hours housework (USoc wave 8) 10.25 6.46 14.11 10.90 6.63 15.14
N 17,610 8,365 9,245 5,821 2,681 3,140
Childcare hours:

Weekly hours childcare (Covid-19) 20.58 14.76 26.50
N 5,384 2,262 3,122
Weekly hours childcare (UK TUS 2014-15) 12.43 7.81 16.99
Main responsible childcare (Covid-19):

Mainly self 34.85 18.60 57.49
Mainly partner 39.44 55.41 17.20
Shared 20.82 21.03 20.54
Couple reports 0 hours childcare in total 4.88 4.96 4.77
N 3,147 1,557 1,590
Main responsible childcare (USoc wave 8):

Mainly self 29.70 2.60 56.81
Mainly partner 22.10 41.34 2.86
Shared 47.94 55.68 40.20
Someone else 0.26 0.39 0.13
N 5,892 2,718 3,174

Source: Understanding Society wave eight and nine and COVID-19 Study, waves one and two.
UK Time Use Survey 2014/15.
Notes: Columns (1)-(3) refer to the sample of individuals who are living in couple, columns
(4)-(6) refer to the subsampe of those with children aged 15 and below. Summary statistics
are derived using cross-sectional weights.

adjustment in working hours during the downturn has taken place via furloughing under

the Coronavirus Job Retention Scheme introduced on 20 March 20209 and, according to

Government guidance, those on furlough are classified as being employed. By the end of

May, about 29% of employees report having ever been furloughed in the Covid-19 Study,

in line with evidence collected by ONS (2020a) in a survey of businesses.10 Over the same

period, working hours among those employed in Janurary 2020 fell by 11.2 hours weekly

9This provides grants to employers to pay 80% wages to furloughed employees, up to a cap of £2,500
per person per month.

10This overall picture is in contrast with corresponding evidence for the US, where furloughing was
much less prevalent and the overall employment rate fell by about 11 percentage points according to
the Current Population Survey and 19 percentage points percentage points according to the Real-Time
Population Survey (Bick and Blandin, 2020), where the difference between the two figures in large part
accounts for the number of individuals who are employed but not at work in the reference week, and
hence akin to being furloughed.
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on average and earnings fell by 9.5% on average (or £36).

Table 5: Job loss during COVID-19

(1) (2) (3) (4) (5) (6)
All All All All Males Females

Female -0.00355 -0.00525 -0.00457 -0.00528
(0.0100) (0.00946) (0.00887) (0.0101)

Living as a couple -0.0165 -0.0124 -0.0151 -0.0141 -0.0155
(0.0110) (0.0108) (0.00905) (0.0159) (0.0109)

Has children age 0-4 -0.00106 -0.000859 0.00506 -0.00139 0.0129
(0.0124) (0.0122) (0.0116) (0.0166) (0.0174)

Has children age 5-15 0.0120 0.0112 0.00753 0.00779 0.00507
(0.0142) (0.0137) (0.0119) (0.0118) (0.0196)

Always WFH -0.00106 -0.00164 0.00891 -0.00788
(0.0190) (0.0150) (0.0298) (0.0134)

Often WFH -0.00886 -0.00629 0.00303 -0.00985
(0.0125) (0.0131) (0.0214) (0.0136)

Sometimes WFH -0.0136∗ -0.0109 -0.00837 -0.00653
(0.00629) (0.00682) (0.00957) (0.00976)

Constant 0.0473∗∗∗ 0.108∗ 0.130∗ 0.0508 0.101 0.0354
(0.00860) (0.0463) (0.0572) (0.0524) (0.122) (0.0602)

Observations 8073 8073 8073 8073 3389 4684
Age and Education No Yes Yes Yes Yes Yes
Region FE No Yes Yes Yes Yes Yes
Job characteristics No No Yes Yes Yes Yes
Occupation FE No No No Yes Yes Yes
Industry FE No No No Yes Yes Yes

Notes. The dependent variable is equal to one if the individual reports to be non-employed in
April or May 2020, and zero otherwise. Non-employment in April is treated as an absorbing state.
Age controls are dummy variables for ages 20-29, 30-39, 40-49, 50-59, 60+ (16-19 is the excluded
category); education controls are dummy variables for GCSEs or equiv., A-levels or equiv., and
college education or higher; job characteristics are indicators for self employment, fixed hours,
fixed salary and paid by the hour; occupation and industry fixed-effects are at the 2-digit level.
All covariates refer to January 2020, except education, occupation and industry, which are im-
ported from USoc wave nine (2017-18). All specifications control for an April wave dummy and
use cross-sectional weights. * p < 0.05, ** p < 0.01, *** p < 0.001. Sample: all employed indi-
viduals in January 2020, aged 16-64. Source: Understanding Society (wave nine) and Covid-19
Study (waves one and two).

Table 5 shows results from linear probability models for the incidence of job loss. The

dependent variable is equal to one for all individuals who report being out of work in

either April or May 2020, having reported to be in work in January. We treat job loss as

an absorbing state, and the sample contains one observation per individual. Regressions

control for a set of individual and job-related characteristics. Most characteristics are

recorded in the Covid-19 Study and refer to January 2020. Whenever relevant controls are

not available in the Covid-19 Study, as is the case for education, industry and occupation,

we use information recorded in wave nine.

The specification in column 1 only controls for a female dummy (and a dummy for
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survey wave), and shows evidence of virtually no gender differences in the likelihood of

job loss. In column 2, we control for household composition (as well as age, education

and region dummies), in column 3 we introduce job controls, including WFH habits,

and in column 4 we additionally control for two-digit industry and occupation, the finest

classification available in USoc.11 While there is some indication that WFH at baseline

reduces the probability of job loss (from column 3), the incidence of job loss is very similar

across genders. This result is in contrast with evidence for the US reported by Alon et al.

(2020), who find much larger (and unprecedented) unemployment increases among women

than men. It also somewhat differs from evidence based on real-time data for the UK

analysed by Adams-Prassl et al. (2020), who find that women are about 2-3 percentage

points more likely to report job losses than men, having controlled for individual and

job characteristics. Colums 5 and 6 report results from separate regressions for men and

women and show no evidence of gender differences in the impacts of household and job

characteristics.

Table 6 reports corresponding evidence for the incidence of furloughing among em-

ployees. The dependent variable is equal to one for individuals who report having ever

been furloughed by May 2020. The raw gender differential reported in column 1 implies

that women are nearly three percentage points less likely to be furloughed than men, but

this effect is imprecisely estimated. The gender differential turns positive when including

occupation and industry controls in column 4, consistent with lower furlough incidence

in female-dominated jobs, but again the associated coefficient does not reach standard

significance levels. As one would expect, the likelihood of furloughing is negatively and

strongly correlated with the incidence of WFH before Covid-19, both in the whole sample

(columns 3 and 4) and for each gender taken separately (columns 5 and 6).

We next present evidence on working hours in Table 7. As changes in hours may

not be absorbing states, we exploit information on hours contained in each Covid-19

wave, and the sample includes repeated observations for individuals who responded in

both waves. Panel A estimates a linear probability model for reduced working hours

11WFH variables refer to how often an individual was working from home in January 2020. While
the frequency of WFH is directly related to the share of job tasks that can be performed remotely,
it is also affected by other personal and workplace factors, thus it is not directly comparable to the
WFH definition that we have used to classify jobs in Figure 1. Unfortunately, the coarser occupational
classification available in the USoc Covid-19 Study does not allow us to implement the Dingel and Neiman
(2020) classification of jobs that can be performed from home.
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Table 6: Ever furloughed during Covid-19

(1) (2) (3) (4) (5) (6)
All All All All Males Females

Female -0.0291 -0.0283 -0.0277 0.0174
(0.0168) (0.0164) (0.0164) (0.0163)

Living as a couple -0.0252 -0.00844 -0.0103 -0.0224 0.00259
(0.0197) (0.0199) (0.0176) (0.0289) (0.0219)

Has children age 0-4 0.00236 0.00231 0.0216 0.0435 -0.00154
(0.0298) (0.0288) (0.0256) (0.0342) (0.0362)

Has children age 5-15 0.0209 0.0226 0.0265 0.0176 0.0362
(0.0198) (0.0200) (0.0172) (0.0253) (0.0220)

Always WFH -0.121∗∗∗ -0.118∗∗∗ -0.137∗∗ -0.0930∗

(0.0310) (0.0315) (0.0428) (0.0433)
Often WFH -0.0790∗ -0.0586∗ -0.0303 -0.0760∗

(0.0309) (0.0271) (0.0424) (0.0319)
Sometimes WFH -0.107∗∗∗ -0.0923∗∗∗ -0.0676∗ -0.109∗∗∗

(0.0175) (0.0169) (0.0272) (0.0203)
Constant 0.295∗∗∗ 0.577∗∗∗ 0.663∗∗∗ 0.182 0.167 0.540∗

(0.0142) (0.0833) (0.0922) (0.114) (0.192) (0.230)
Observations 7118 7118 7118 7118 2878 4240
Age and Education No Yes Yes Yes Yes Yes
Region FE No Yes Yes Yes Yes Yes
Job characteristics No No Yes Yes Yes Yes
Occupation FE No No No Yes Yes Yes
Industry FE No No No Yes Yes Yes

Notes. The dependent variable is equal to one if the individual reports to be furloughed in
April or May 2020, and zero otherwise. Furloughing in April is treated as an absorbing state.
Age controls are dummy variables for ages 20-29, 30-39, 40-49, 50-59, 60+; education controls
are dummy variables for GCSEs or equiv., A-levels or equiv., and college education or higher;
job characteristics are indicators for self employment, fixed hours, fixed salary and paid by the
hour; occupation and industry fixed-effects are at the 2-digit level. All covariates refer to Jan-
uary 2020, except education, occupation and industry, which are imported from USoc wave
nine (2017-18). All specifications control for an April wave dummy and use cross-sectional
weights. * p < 0.05, ** p < 0.01, *** p < 0.001. Sample: all employees in January 2020, aged
16-64. Source: Understanding Society (wave nine) and Covid-19 Study (waves one and two).

among those employed in January 2020, whether they are fully employed, furloughed or

nonemployed. In May 2020, About 51% of men and 52% of women report reduced weekly

hours (from column 1), but the gender differential is not statistically significant. Only

when controlling for job characteristics in columns 3 and 4 does the gender differential

become significant (and larger in magnitude). As expected, the likelihood of working

shorter hours increases with the presence of young kids in the household, and decreases

with WFH habits. While women are more likely to experience hours losses, their average

hours reduction is smaller than for men, as shown in Panel B. The raw differential is

about 2.8 weekly hours (column 1) and shrinks by about a half when controlling for the

full set of job characteristics (column 4).

Evidence on changes in earnings is shown in Table 8. Differently from hours losses, raw
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Table 7: Working hours during Covid-19

Panel A: Incidence of reduced weekly hours
(1) (2) (3) (4) (5) (6)
All All All All Males Females

Female 0.0148 0.0168 0.0367∗ 0.0310∗

(0.0153) (0.0150) (0.0146) (0.0157)
Living as a couple -0.0319 -0.0219 -0.0194 -0.0261 -0.0108

(0.0190) (0.0180) (0.0158) (0.0257) (0.0194)
Has children age 0-4 0.0605∗ 0.0615∗∗ 0.0705∗∗ 0.0767∗ 0.0607∗

(0.0254) (0.0236) (0.0216) (0.0306) (0.0301)
Has children age 5-15 0.0280 0.0228 0.00963 -0.0166 0.0378

(0.0177) (0.0166) (0.0153) (0.0224) (0.0204)
Always WFH -0.0836∗∗ -0.0730∗∗ -0.0678 -0.0593

(0.0267) (0.0270) (0.0427) (0.0350)
Often WFH -0.0784∗∗ -0.0531∗ -0.0395 -0.0618

(0.0260) (0.0246) (0.0359) (0.0333)
Sometimes WFH -0.0595∗∗∗ -0.0380∗ -0.0290 -0.0444∗

(0.0172) (0.0165) (0.0247) (0.0214)
Constant 0.507∗∗∗ 0.605∗∗∗ 0.711∗∗∗ 0.100 0.133 0.0729

(0.0133) (0.0712) (0.0806) (0.147) (0.230) (0.195)
Panel B: Change in weekly hours

(1) (2) (3) (4) (5) (6)
Female 2.782∗∗∗ 2.643∗∗∗ 2.108∗∗∗ 1.371∗

(0.594) (0.583) (0.584) (0.613)
Living as a couple 1.375 0.985 1.147 1.300 0.672

(0.740) (0.723) (0.633) (1.095) (0.737)
Has children age 0-4 -0.583 -0.594 -0.970 -1.189 -0.537

(0.957) (0.933) (0.814) (1.345) (0.871)
Has children age 5-15 -0.570 -0.467 0.189 0.484 -0.254

(0.669) (0.633) (0.576) (0.921) (0.667)
Always WFH 5.648∗∗∗ 4.927∗∗∗ 5.204∗∗ 4.215∗∗

(1.131) (1.119) (1.894) (1.355)
Often WFH 2.896∗∗ 1.944∗ 0.730 2.948∗∗

(1.046) (0.970) (1.534) (1.118)
Sometimes WFH 3.279∗∗∗ 2.524∗∗∗ 2.318∗ 2.460∗∗∗

(0.633) (0.597) (0.929) (0.716)
Constant -11.89∗∗∗ -12.06∗∗∗ -16.42∗∗∗ -1.020 2.880 4.514

(0.535) (2.981) (3.306) (6.273) (9.833) (7.416)
Observations 14133 14133 14133 14133 5860 8273
Age and Education No Yes Yes Yes Yes Yes
Region FE No Yes Yes Yes Yes Yes
Job characteristics No No Yes Yes Yes Yes
Occupation FE No No No Yes Yes Yes
Industry FE No No No Yes Yes Yes

Notes. The dependent variable in Panel A is equal to one if the individual reports fewer work-
ing hours in April-May than in January 2020 and zero otherwise; in Panel B it is equal to
the change in weekly hours between January and April-May 2020. Each individual contributes
a number of observations equal to the number of Covid-19 waves s/he participated to. Age
controls are dummy variables for ages 20-29, 30-39, 40-49, 50-59, 60+; education controls are
dummy variables for GCSEs or equiv., A-levels or equiv., and college education or higher; job
characteristics are indicators for self employment, fixed hours, fixed salary and paid by the
hour; occupation and industry fixed-effects are at the 2-digit level. All covariates refer to Jan-
uary 2020, except education, occupation and industry, which are imported from USoc wave nine
(2017-18). All specifications control for an April wave dummy and use cross-sectional weights.
Standard errors are clustered at the individual level. * p < 0.05, ** p < 0.01, *** p < 0.001.
Sample: all employed individuals in January 2020, aged 16-64. Source: Understanding Society
(wave nine) and Covid-19 Study (waves one and two).
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Table 8: Earnings losses during Covid-19

Panel A: Incidence of earnings losses
(1) (2) (3) (4) (5) (6)
All All All All Males Females

Female -0.0437∗∗ -0.0387∗∗ -0.0188 0.00677
(0.0156) (0.0149) (0.0142) (0.0152)

Living as a couple -0.0119 -0.00107 -0.0110 0.00474 -0.0135
(0.0195) (0.0177) (0.0159) (0.0259) (0.0196)

Has children age 0-4 0.0448 0.0441 0.0478∗ 0.0478 0.0435
(0.0276) (0.0248) (0.0224) (0.0327) (0.0281)

Has children age 5-15 0.0194 0.0119 0.00969 0.00658 0.0166
(0.0184) (0.0175) (0.0163) (0.0234) (0.0216)

Always WFH -0.0524 -0.0417 -0.0509 -0.0197
(0.0295) (0.0291) (0.0462) (0.0340)

Often WFH -0.0212 -0.00886 0.0316 -0.0363
(0.0257) (0.0254) (0.0372) (0.0333)

Sometimes WFH -0.0295 -0.0197 -0.0286 -0.00310
(0.0166) (0.0160) (0.0241) (0.0210)

Constant 0.417∗∗∗ 0.466∗∗∗ 0.669∗∗∗ 0.246 0.253 0.173
(0.0137) (0.0734) (0.0839) (0.178) (0.289) (0.150)

Panel B: Change in weekly earnings
(1) (2) (3) (4) (5) (6)

Female 27.62∗∗ 27.79∗∗ 21.97∗ 16.05∗

(8.552) (8.666) (8.590) (7.337)
Living as a couple 13.16 13.38 14.56 20.16 9.879

(11.79) (11.61) (10.40) (21.95) (9.509)
Has children age 0-4 -4.685 -5.270 -11.27 -2.700 -22.81∗

(13.89) (13.77) (12.07) (21.85) (9.589)
Has children age 5-15 -11.19 -8.053 -6.640 -12.95 -3.377

(10.14) (9.445) (8.002) (12.66) (8.597)
Always WFH 11.54 16.54 36.21 -8.794

(17.13) (19.29) (31.04) (23.29)
Often WFH -14.13 -0.693 -12.51 12.85

(14.39) (20.14) (37.77) (12.11)
Sometimes WFH 0.187 7.982 0.795 6.740

(10.55) (13.00) (24.32) (8.307)
Constant -37.63∗∗∗ -24.88 -86.61∗ 238.2 167.4 86.66

(10.77) (30.79) (34.80) (219.8) (280.9) (45.56)
Observations 12813 12813 12813 12813 5337 7476
Age and Education No Yes Yes Yes Yes Yes
Region FE No Yes Yes Yes Yes Yes
Job characteristics No No Yes Yes Yes Yes
Occupation FE No No No Yes Yes Yes
Industry FE No No No Yes Yes Yes

Notes. The dependent variable in Panel A is equal to one if the individual reports lower
weekly earnings in April/May than in January 2020 and zero otherwise; in Panel B it is equal
to the change in weekly earnings between January and April/May 2020. Each individual con-
tributes a number of observations equal to the number of Covid-19 waves s/he participated
to. Age controls are dummy variables for ages 20-29, 30-39, 40-49, 50-59, 60+; education
controls are dummy variables for GCSEs or equiv., A-levels or equiv., and college education
or higher; job characteristics are indicators for self employment, fixed hours, fixed salary and
paid by the hour; occupation and industry fixed-effects are at the 2-digit level. All covari-
ates refer to January 2020, except education, occupation and industry, which are imported
from USoc wave nine (2017/18). All specifications control for a April wave dummy and use
cross-sectional weights. Standard errors are clustered at the individual level. * p < 0.05,
** p < 0.01, *** p < 0.001. Sample: all employed individuals in January 2020, aged 16-64.
Source: Understanding Society (wave nine) and Covid-19 Study (waves one and two).
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earnings losses are less frequent among women (Panel A, column 1), but this differential

is fully explained by job characteristics (columns 3 and 4). Moreover, earnings’ losses for

women are on average smaller than for men (Panel B). Using estimates for raw differences

in column 1 of Panel B, men lose on average about 38 £per week, corresponding to a

7.7% fall with respect to their January 2020 earnings. Women lose on average 10 £per

week, corresponding to about 3% of their January 2020 earnings. More than 40% of this

differential is explained by job characteristics (column 4).

In summary, we find evidence that labour market outcomes of men and women were

roughly equally affected at the extensive margin, as measured by the incidence of job loss

or furloughing, but if anything, women suffered smaller losses at the intensive margin,

experiencing slightly smaller changes in both working hours and earnings. This finding

is broadly in line with evidence from administrative data on the claimant count, which

includes both those out of work and those working on low earnings or hours, and thus

represents an indicator of overall economic disadvantage for those who participate in

the labour force. Between March and May 2020, the proportion of the male labour

force in the claimant count rose from 3.9% to 8.6%, while the corresponding figure for

women rose from 3.1% to 6.1%, thus showing a slightly higher increase for men than for

women, both in absolute and relative terms. These gender differentials are also echoed

by information on welfare receipt from the Covid-19 Study: 4.5% and 3.3% of men and

women, respectively, report to have applied for Universal Credit since January 2020, with

3.5% and 2.5%, respectively, already in receipt by May 2020.

5 Home production

Measuring changes in home production (and childcare in particular) during the pandemic

is complicated by the fact that the Covid-19 Study does not contain retrospective infor-

mation on these variables. We thus benchmark information provided in the Covid-19

Study to comparable information from previous USoc surveys and the UK Time Use Sur-

vey. As we are primarily interested in the gender division of work within the household,

we restrict our working sample to heterosexual couples, whether married or cohabiting.
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Figure 3: Gender gaps in housework hours, before and during Covid-19
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Notes. The bars show usual weekly hours spent on housework before Covid-19 (2016-
17) and during Covid-19 (April-May 2020). Sample: men and women living in couple.
Source: USoc wave nine and Covid-19 Study, waves one and two.

The Covid-19 questionnaire covers several aspects of domestic work, including hours

spent on housework (cooking, cleaning and doing the laundry) and hours spent on child-

care (including home schooling). Figure 3 gives a snapshot of the gender division of

housework before and during Covid-19. Information on housework for th eearlier period

is available from USoc wave eight. This shows that, in 2016-17, women were doing just

over 14 hours of housework weekly, while men were doing about 6.5 hours. Corresponding

Figures for the Covid-19 period have risen to about 16 and 10 hours for women and men,

respectively. The overall amount of housework for the average 2-adult household has thus

increased by about 25%, with a higher absolute and proportional increase for men, and

a reduction of the corresponding gender gap from 7.6 to 6 hours.

Regression results reported in Table 9 show that the gender gap in housework hours

is only slightly affected by individual and job characteristics, whether before or during

Covid-19 (see columns 1-3 in Panels A and B, respectively). While the overall gender gap

in housework hours has fallen during Covid-19, it remains more sensitive to the presence

of children, own employment status and partner’s employment status for women than for

men, as shown in columns 4 and 5.
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Table 9: Hours spent on housework before and during Covid-19

Panel A: Hours of housework in 2016-17
(1) (2) (3) (4) (5)

Female 7.651∗∗∗ 7.808∗∗∗ 7.320∗∗∗

(0.131) (0.130) (0.135)
Has children age 0-4 1.981∗∗∗ 1.828∗∗∗ 0.854∗∗ 2.836∗∗∗

(0.241) (0.241) (0.267) (0.411)
Has children age 5-15 2.418∗∗∗ 2.255∗∗∗ 0.755∗∗∗ 3.962∗∗∗

(0.181) (0.182) (0.193) (0.318)
Not working (wave 8) 4.049∗∗∗ 2.727∗∗∗ 4.849∗∗∗

(0.227) (0.273) (0.343)
Not working (wave 8) (partner) -1.099∗∗∗ -0.846∗∗∗ -1.293∗∗∗

(0.189) (0.203) (0.351)
Constant 6.461∗∗∗ 0.564 0.440 2.589 6.468∗∗∗

(0.0730) (1.196) (1.379) (2.018) (1.609)
Observations 17610 17610 16035 7829 8206

Panel B: Hours of housework in April/May 2020
(1) (2) (3) (4) (5)
All All All Males Females

Female 6.057∗∗∗ 6.226∗∗∗ 6.531∗∗∗

(0.258) (0.253) (0.287)
Has children age 0-4 2.626∗∗∗ 2.351∗∗∗ 1.727∗ 3.221∗∗∗

(0.500) (0.582) (0.747) (0.893)
Has children age 5-15 2.239∗∗∗ 2.275∗∗∗ 1.715∗∗∗ 2.889∗∗∗

(0.349) (0.389) (0.496) (0.617)
Furloughed 1.864∗∗∗ 1.112 3.004∗∗∗

(0.521) (0.689) (0.766)
Not working (Jan 2020) 2.807∗∗∗ 2.079∗∗ 3.477∗∗∗

(0.445) (0.648) (0.594)
Furloughed (partner) -1.392∗∗ -1.315∗ -1.417

(0.499) (0.602) (0.764)
Not working (Jan 2020) (partner) -0.820 -0.821 -1.271∗

(0.444) (0.588) (0.607)
Constant 9.986∗∗∗ 0.385 6.357∗∗∗ 8.162∗∗∗ 11.23∗∗∗

(0.205) (1.339) (0.920) (1.314) (1.201)
Observations 17614 17614 11628 5712 5916
Individual controls No Yes Yes Yes Yes
Own job characteristics No No Yes Yes Yes
Partner job characteristics No No Yes Yes Yes

Notes. The dependent variable is the number of weekly hours spent on housework, measured
in USoc wave eight (Panel A) and in Covid-19 waves one and two (Panel B). In Panel B, each
individual contributes a number of observations equal to the number of Covid-19 waves s/he
participated to. Age controls are dummy variables for ages 20-29, 30-39, 40-49, 50-59, 60+
(16-19 is the excluded category); education controls are dummy variables for no qualifications,
GCSEs or equiv., A-levels or equiv., and college education or higher. Own employment controls
are indicators for being employed, frequency of working from home dummies, 2-digit industry
and occupation dummies. All job-related dummies have an extra category for non-employed
individuals. Partner’s employment controls are only available for those whose partners gave a
full interview. In Panel B, all covariates refer to January 2020, except education, occupation
and industry, which are imported from USoc wave nine (2017-18). All specifications control
for an April wave dummy and use cross-sectional weights. Standard errors are clustered at
the individual level. * p < 0.05, ** p < 0.01, *** p < 0.001. Sample: all individuals living in
couple. Source: Understanding Society (wave nine) and Covid-19 Study (waves one and two).
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Figure 4: Gender gaps in childcare hours, before and during Covid-19
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Notes. The bars show usual weekly hours spent on childcare and home schooling before
Covid-19 (2014-15) and during Covid-19 (April-May 2020). Sample: men and women
living in couple, with children aged 15 and below. Source: UK Time Use Survey 2014-15
and Covid-19 Study, waves one and two.

To show evidence on changes in childcare hours (including home schooling), we com-

bine information in the Covid-19 study with comparable information from the UK Time

Use Data from 2014-15. Figure 4 shows average weekly childcare hours by gender, before

and after Covid-19. The sample refers to couples with children aged 15 and under. The

first salient fact is the sharp increase in total childcare time, from nearly 25 to over 41

hours weekly. In 2014-15, mothers were doing on average 17 hours of childcare, while

fathers were doing just under 8 hours. In 2020, mothers’ hours have risen to 26.5, and

fathers’ hours have risen to 14.8. Women take on board a higher share of increased child-

care needs than men (9.5 extra hours as opposed to 6.9 extra hours), with a corresponding

increase in the gender differential from 9.2 hours in 2014-15 to 11.7 hours in 2020 (more

than offsetting the fall in the gender differential in housework time).

Table 10 shows evidence on the determinants of the childcare differential. Controlling

for individual characteristics and own job characteristics in column 2 explains about one

hour of the overall differential, and controlling for own and partner’s employment status

in column 3 explains nearly another hour.

While there is no earlier information on childcare hours in the USoc, wave eight

respondents are asked about the main provider of childcare in their household (with

possible answers being: (a) mainly self, (b) mainly partner, (c) shared, (d) someone
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Table 10: Hours spent on childcare and home schooling during Covid-19

(1) (2) (3) (4) (5)
All All All Males Females

Female 11.72∗∗∗ 10.73∗∗∗ 9.978∗∗∗

(1.118) (1.101) (1.438)
Has children age 0-4 13.89∗∗∗ 12.48∗∗∗ 9.199∗∗∗ 16.77∗∗∗

(1.265) (1.498) (1.838) (2.485)
Furloughed 4.357∗ 7.665∗∗ -0.557

(1.860) (2.473) (2.467)
Not working (Jan 2020) 6.225∗ 7.727 6.082∗

(2.580) (5.387) (3.066)
Furloughed (partner) 0.778 -1.361 3.781

(2.048) (1.969) (3.703)
Not working (Jan 2020) (partner) -2.397 -2.559 -8.095∗

(2.185) (2.418) (3.380)
Constant 14.08∗∗∗ 1.400 9.054 18.19∗ 4.341

(0.940) (14.25) (5.077) (7.113) (5.867)

Observations 5384 5384 3348 1647 1701
Individual controls No Yes Yes Yes Yes
Own job characteristics No No Yes Yes Yes
Partner job characteristics No No Yes Yes Yes

Notes. The dependent variable is the number of weekly hours spent on childcare and
home schooling, measured in April-May 2020. Each individual contributes a number of
observations equal to the number of Covid-19 waves s/he participated to. Age controls
are dummy variables for ages 20-29, 30-39, 40-49, 50-59, 60+ (16-19 is the excluded cat-
egory); education controls are dummy variables for no qualifications, GCSEs or equiv.,
A-levels or equiv., and college education or higher. Own employment controls are indica-
tors for being employed, frequency of working from home dummies, 2-digit industry and
occupation dummies. All job-related dummies have an extra category for non-employed
individuals. Partner’s employment controls are only available for those whose partners
gave a full interview. All covariates refer to January 2020, except education, occupation
and industry, which are imported from USoc wave nine (2017-18). All specifications con-
trol for a April wave dummy and use cross-sectional weights. Standard errors are clus-
tered at the individual level. * p < 0.05, ** p < 0.01, *** p < 0.001. Sample: individuals
living in couple, with children aged ≤ 15. Source: Understanding Society (wave nine) and
Covid-19 Study (waves one and two).

else.) We create comparable information in the Covid-19 survey for households in which

both partners answer the question on total childcare time. We define the main provider

of childcare in April 2020 as (a) mainly self, if the respondent does 60% or more of the

total reported childcare hours for the couple; (b) mainly partner, if the respondent does

less than 40% of the total; (c) shared, if the respondent does between 40% and 60% of

the total.

Column 1 in Panel A of Table 11 shows that about 57% of women were the main

providers of childcare in 2016-17, against about 2.6% of men. Just over 10% of this
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Table 11: Parent mainly in charge of childcare before and during Covid-19

Panel A: Main childcare provider in 2016-17
(1) (2) (3) (4) (5)

Female 0.542∗∗∗ 0.540∗∗∗ 0.484∗∗∗

(0.011) (0.011) (0.012)
Has children age 0-4 0.052∗∗∗ 0.053∗∗∗ 0.008 0.097∗∗∗

(0.013) (0.013) (0.010) (0.027)
Not working (wave 8) 0.189∗∗∗ 0.114∗∗∗ 0.217∗∗∗

(0.018) (0.027) (0.025)
Not working (wave 8) (partner) -0.104∗∗∗ -0.025∗∗ -0.261∗∗∗

(0.013) (0.008) (0.039)
Constant 0.026∗∗∗ 0.373∗∗∗ 0.223∗∗∗ 0.003 0.574∗∗∗

(0.003) (0.028) (0.033) (0.015) (0.054)
Observations 5892 5892 5397 2596 2801

Panel B: Main childcare provider in April-May 2020
(1) (2) (3) (4) (5)
All All All Males Females

Female 0.389∗∗∗ 0.390∗∗∗ 0.345∗∗∗

(0.024) (0.023) (0.025)
Has children age 0-4 0.011 -0.000 -0.004 0.023

(0.026) (0.026) (0.031) (0.040)
Furloughed 0.105∗∗∗ 0.101∗ 0.120∗∗

(0.031) (0.040) (0.043)
Not working (Jan 2020) 0.155∗∗∗ 0.297∗∗ 0.120∗

(0.043) (0.090) (0.047)
Furloughed (partner) -0.139∗∗∗ -0.061 -0.226∗∗∗

(0.030) (0.038) (0.046)
Not working (Jan 2020) (partner) -0.133∗∗∗ -0.105∗∗ -0.208∗

(0.034) (0.039) (0.088)
Constant 0.198∗∗∗ 0.177 0.232∗∗ 0.293∗∗ 0.487∗∗∗

(0.021) (0.091) (0.087) (0.100) (0.118)
Observations 3147 3147 3147 1557 1590
Individual controls No Yes Yes Yes Yes
Own job characteristics No No Yes Yes Yes
Partner job characteristics No No Yes Yes Yes

Notes. The dependent variable is equal to one if the respondent is the main childcare provider
and zero otherwise, measured in USoc wave eight (Panel A) and in Covid-19 waves one and
two (Panel B). This information is elicited directly in USoc wave 8, while it is obtained from
reported hours of childcare and home schooling in the Covid-19 Study. We define the main
provider as (a) mainly self, if the respondent does 60% or more of the total reported childcare
hours for the couple; (b) mainly partner, if the respondent does less than 40%. In panel B
each individual contributes a number of observations equal to the number of Covid-19 waves
s/he participated to. Age controls are dummy variables for ages 20-29, 30-39, 40-49, 50-59,
60+ (16-19 is the excluded category); education controls are dummy variables for GCSEs or
equiv., A-levels or equiv., and college education or higher. Own employment controls are in-
dicators for being employed, frequency of working from home dummies, 2-digit industry and
occupation dummies. All job-related dummies have an extra category for non-employed in-
dividuals. Partner’s employment controls are only available for those whose partners gave a
full interview. In Panel B, all covariates refer to January 2020, except education, occupation
and industry, which are imported from USoc wave nine (2017-18). All specifications control
for an April wave dummy and use cross-sectional weights. Standard errors are clustered at
the individual level. * p < 0.05, ** p < 0.01, *** p < 0.001. Sample: individuals living in
couple, with children aged ≤ 15. Source: Understanding Society (waves eight and nine) and
Covid-19 Study (waves one and two).
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differential is explained by differences in the employment status of parents (column 3),

while individual characteristics hardly make a difference (column 2). The change brought

about by the pandemic is striking, with about one fifth of fathers mainly in charge of

childcare in May 2020, against a roughly unchanged proportion of mothers (column 1,

Panel B). With the adjustment to the lockdown, fathers seem to have taken over some

of the childcare previously outsourced to the market or to extended family members,

without directly biting into mothers’ exclusive share of childcare.

While the best part of the additional childcare load has on average been taken over by

mothers – largely according to pre-existing specialization patterns of spouses – the share

of households in which the father is the main childcare provider has risen by nearly 8

times from 2.6% in 2016-17 to about 20% in May 2020. Distributional aspects of increased

childcare needs are thus important to understand changes in gender roles during Covid-19.

Gender differences in the role played by observable characteristics are also noteworthy.

At baseline, both the presence of young children and the employment status of spouses

has a much stronger impact on mothers’ likelihood of being mainly in charge of childcare,

as opposed to fathers’. Such gender differences are milder during the Covid-19 period,

and in particular, being out of work is nudging fathers to be in charge of childcare more

than mothers.

6 Conclusion

The recession caused by the pandemic has produced unprecedented economic losses and

it has become clear that its effect has exacerbated existing inequalities along a number

of dimensions, most notably socio-economic status and ethnicity, and have created new

divides, for example between those who can work from home and those who cannot.

Evidence on the gender dimension is somehow mixed. We find that, in what concerns

the labour market, men and women experience similar employment losses or furloughing

in the UK, although women suffer slightly smaller hour and earning losses overall. In

the household, however, women provide on average for about 60% of increased childcare

needs, implying a widening of pre-existing inequalities of parental roles. As school and

nursery closures are ongoing in a number of countries around the world, including the

US, women’s increased care burden may build into longer-lasting inequalities via reduced

labour market involvement. In this respect, prioritizing school openings over other sectors
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subject to restrictions and introducing subsidies for individuals with care responsibilities

could help alleviate some of the gendered effects of Covid-19.

Several of the impacts discussed are temporary in nature and can in principle be re-

versed with the end of the restrictions and the restart of usual economic activity. But

given the recent radical changes to the organisation of work and family life, it is natural to

reflect on potentially legacies of the crisis, via learning, habit formation and the evolution

of social norms. First, the massive increase in the incidence of WFH has suddenly ac-

celerated a pre-existing but slowly evolving tendency towards smart working and flexible

work arrangements. The number of people working from home in the UK has risen from

2.9 million in 1998 to 4.2 million in 2014, representing 14% of employment, and an addi-

tional 1.8 million people report they would prefer to work from home if they were given

the chance. According to a recent survey (CIPD (2020)), 86% of UK managers foresee

organisational barriers to the adoption of flexible working in their workplaces. But it is

possible that some of the perceived barriers will be eventually cracked by actual remote

work patterns implemented during Covid-19. The demand for remote work varies across

genders, with 48% of women employed in jobs that can be done from home in the UK,

compared with 39% of men. Due to heavier household responsibilities, women also value

flexible work schedules and shorter commutes more than men (Mas and Pallais, 2017;

LeBarbanchon et al., 2020), and thus may be more beneficially affected by remote work

opportunities. But while WFH may provide women with the flexibility to combine mar-

ket work and family commitments, it may also dilute employee presence and attachment

to the workplace, with possibly detrimental effects on career progression.

Second, the pandemic crisis has witnessed the reversal of traditional gender roles in

a sizeable share of UK households, in which fathers took the role of primary childcare

providers. There is evidence that the spousal allocation of childcare is shaped in large

part by social norms on gender roles, and that gender identity norms are only slowly

evolving (Bertrand, 2018). But evidence has also shown that “forced” changes in gender

roles may have permanent consequences beyond short-term circumstances, by accelerating

the evolution of norms and eroding gender comparative advantages. For example, the

mobilisation of men during the Second World War in the United States induced more

women to enter the labour market, and thereby shaped the norms and preferences of

younger generations who were exposed to those early labour market entrants (Fernández
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et al., 2004). Relatedly, there is evidence that the introduction of fathers’ quotas of

parental leave has induced them to spend more time with their children in the longer run

in some (though not all) contexts (see Farré et al. (2020); Farré and González (2019);

Patnaik (2019) and references therein). One may therefore expect that the substantial

redistribution of childcare involvement in nearly a fifth of UK households during the

crisis may ease the breakdown of traditional gender roles come the recovery. We leave

this analysis to future research.
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, Yarine Fawaz, Libertad González, and Jennifer Graves, “How the COVID-

19 Lockdown Affected Gender Inequality in Paid and Unpaid Work in Spain,” IZA

Discussion Paper 13434, 2020.

27
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 1
-2

8



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Fernández, Raquel, Alessandra Fogli, and Claudia Olivetti, “Mothers and Sons:

Preference Formation and Female Labor Force Dynamics,” Quarterly Journal of Eco-

nomics, 2004, 119 (4), 1249–1299.

Hupkau, Claudia and Barbara Petrongolo, “Work, care and gender during the

Covid-19 crisis,” CEP Covid-19 analysis No. 002, 2020.

ISER, “Understanding Society: COVID-19 Study,” 2020, SN: 8644, 10.5255/UKDA-

SN-8644-1 (1st Edition).

, “Understanding Society COVID-19 User Guide,” Technical Report 2020.

Kleven, Henrik, Camille Landais, and Jakob Egholt Sogaard, “Children and

Gender Inequality: Evidence from Denmark,” American Economic Journal: Applied

Economics, 2019, 37, 181–209.

LeBarbanchon, Thomas, Roland Rathelot, and Alexandra Roulet, “Gender

Differences in Job Search: Trading off Commute Against Wage,” CEPR Discussion

Paper 15181, 2020.

Mas, Alex and Amanda Pallais, “Valuing Alternative Work Arrangements,” Ameri-

can Economic Review, 2017, 107, 3722–3759.

ONS, “Coronavirus and the economic impacts on the UK: 18 June 2020,” Technical

Report 2020.

, “Labour market overview, UK: August 2020,” Technical Report 2020.

Oreffice, Sonia and Quintana-Domeque, “Gender Inequality in COVID-19 Times:

Evidence from UK Prolific Participants,” mimeo, 2020.

Patnaik, Ankita, “Reserving Time for Daddy: The Consequences of Fathers’ Quotas,”

Journal of Labor Economics, 2019, 11, 1009–1059.

Sevilla, Almudena and Sarah Smith, “Baby steps: The gender division of childcare

during the COVID19 pandemic,” mimeo, 2020.

28
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 1
-2

8



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Covid Economics Issue 54, 29 October 2020

Copyright: Charles Sims and David Finnoff

Uncertainty, hysteresis and 
lockdowns

Charles Sims1 and David Finnoff2

Date submitted: 23 October 2020; Date accepted: 25 October 2020

Using currently available data we develop a benchmark scenario that 
finds that a publicly-imposed social distancing rule to curb the spread 
of COVID-19 ought to be implemented for 12 weeks.  We also identify 
alternative scenarios where the shorter duration social distancing 
programs seen throughout the United States may be efficient.  Our 
approach is novel in that it accounts for uncertainty in transmission 
of the disease and the potential for permanent economic effects of 
social distancing rules. The social distancing rule is treated as an asset 
whose benefit is uncertain due to the inability to predict the evolution 
of the disease. The novel features of our approach allow us to draw 
two conclusions about the efficient timing of public social distancing 
programs in response to COVID-19.  First, uncertainty in transmission 
leads to a risk premium that creates a modest incentive to delay closing 
and reopening the economy.  Second, hysteresis in economic impacts of 
social distancing leads to hysteresis in the efficient time to reopen the 
economy.  Because reopening results in a second wave of infections that 
may be worse than expected and social distancing rules create permanent 
economic impacts, it is efficient to delay reopening the economy longer 
than suggested by benefit-cost analyses of social distancing programs.  In 
our benchmark scenario, this bias results in reopening 27 days too soon.
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1 Introduction 

To date, social distancing rules (e.g., stay at home orders, shelter in place orders, non-essential 

business closures) have been the primary public policy tool used to respond to the COVID-19 

outbreak.  These “one size fits all” policies require a severe reduction in economic activity where 

nonessential businesses are closed and individuals are encouraged to stay home to minimize 

contacts between susceptible and infected individuals and slow the spread of the disease.  

Governments are now grappling with a fundamental question: When should the economy 

reopen?  Reopening too soon risks an increase in infected cases and a second round of social 

distancing.  Reopening too late risks unnecessary economic impacts.  Further, these decisions 

will have long-lasting effects and must be made in the face of considerable uncertainty.   

We treat the social distancing program as a risky asset whose benefit is uncertain due to 

the inability to predict the evolution of the disease. We identify the economically efficient point 

in the COVID-19 outbreak to implement public social distancing rules and close the economy. In 

addition, we are able to find the point at which to suspend social distancing rules and reopen the 

economy.  We extend the framework of Sims, et al. (2016) in three major steps.  First, we use an 

SIR compartmental model instead of SIS which adds a second stochastic variable and greatly 

complicates the analysis and solution methodology.  Second, instead of sunk costs of public 

health programs, permanent effects are caused by deferred consumption losses that never 

materialize after reopening.  Third, we identify and estimate two risk adjustments that influence 

when to close and reopen the economy. Using currently available data, a benchmark scenario 

finds a social distancing program ought to be implemented for 86 days and results in control of 

the virus (defined to be less than 1% increase in cummulative cases; Tellis, et al. 2020).  

Our results come with a warning.  Following the implementation of social distancing, 

there will be an interval or window of hysteresis during which benefit-cost analysis will advocate 

the reopening of the economy.  However, because reopening results in a second wave of 

infections that may be worse than expected and social distancing rules have permanent impacts 

on the economy, it will remain optimal to delay reopening the economy until the recovered 

population has grown to sufficient size that a second round of social distancing rules is unlikely.  

In our benchmark specification, the hysteresis window increases the expected duration of 

efficient social distancing rules by over 30 percent.  By comparison, a 20 percent increase in the 

value of mortality risk reduction (i.e, value of statistical life) increases the duration of social 
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distancing rules by only 7 percent. Importantly, the higher the percentage of impacts that are 

permanent the longer the duration of the hysteresis window.      

Unlike individual responses to infection risk that create endogenous social distancing 

(including but not limited to Eichenbaum, et al. 2020;Fenichel 2013;Fenichel, et al. 

2011;Toxvaerd 2020), the mass quarantines of public social distancing rules are lumpy and ill-

suited for daily adjustments.  Firms respond to imposition of stay at home orders and non-

essential business closures by laying off or furloughing workers and shuttering facilities.  These 

responses lead to consumption losses as consumers are unable to patronize closed businesses and 

workers experience reductions in income.  Some of the consumption losses triggered by the 

imposition of social distancing rules may be recouped after the economy is reopened as some 

businesses reopen and some employees return to work.  However, like other rare macroeconomic 

disasters, there is a real threat that social distancing mandates meant to control COVID-19 may 

have permanent effects on the economy (Barro, et al. 2020;Bénassy-Quéré, et al. 2020;Fornaro 

and Wolf 2020).  Nakamura, et al. (2013) and Barro and Jin (2020) find that about half of 

disaster-related declines in consumption since 1900 were permanent.  Some businesses will not 

survive stay at home orders and non-essential business closures and will not reopen after these 

mandates are lifted.1  Some workers will not return to the labor force after the economy is 

reopened.2   

We show how this hysteresis in the economy bleeds back to create hysteresis in the 

optimal policy response to COVID-19.  If social distancing mandates have permanent effects on 

the economy, part of the economic impacts of these mandates is sunk.  The sunk costs of social 

distancing imply there will be a “window of inaction” in which a social distancing program 

should not be implemented but an existing social distancing program should not be suspended 

(Dixit 1992).  The window of inaction, which we term a hysteresis window, highlights how the 

social distancing mandates have lasting effects on the economy and the optimal policy response 

to COVID-19 depends on past decisions to implement (or not) social distancing.  A critical 

implication of the hysteresis window is that reopening should be delayed longer than suggested 

by a discounted cash flow, benefit-cost analysis of the social distancing program.   

                                                             
1 From March 1 through June 25th, of the businesses registered on “yelp.com” that closed, 41% were permanently 
shut down: https://www.yelpeconomicaverage.com/yelp-coronavirus-economic-impact-report.html 
2 Labor force participation has been shown to decline by 7 percentage points due to COVID-19 (Coibion, et al. 
2020a).  
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In addition, we realize there are tremendous uncertainties, problems with the 

identification of epidemiological parameters, and challenges to accurately estimate the benefits 

and costs of policies (Gollier 2020;Manski 2020;Pindyck 2020).  The inability to predict the 

benefits and costs of social distancing mandates will increase the window of inaction (Dixit 

1992) but its effect on the duration of social distancing mandates is unclear.  In response to 

concerns about the multitude of uncertainties facing model-based policy recommendations for 

COVID-19 and its implications for optimal policy response to COVID-19, we extend the 

deterministic approach to consider a setting when the evolution of the outbreak is unpredictable.  

In this setting, it pays to keep society’s options open and delay reopening the economy since 

reopening results in a second wave of infections, the magnitude of this second wave is uncertain, 

and a second round of social distancing imposes more sunk costs.  This hysteresis window, and 

what drives it to be longer or shorter, is important when providing policy advice regarding 

reopening of the economy to the risk of COVID-19.   

Uncertainty, sunk costs, and inflexibility characterize most social distancing policies, yet 

are not the focus of most related work that identifies a top down planner’s program of social 

distancing (e.g., Bolzoni, et al. 2019;Gonzalez-Eiras and Niepelt 2020;Hansen and Day 

2011;Lee, et al. 2010;Rowthorn, et al. 2009).  Throughout this work, and that of the Ramsey 

model extensions of Alvarez, et al. (2020), Kruse and Strack (2020), and Piguillem and Shi 

(2020), optimal time paths of instantaneously adjustable social distancing controls, infections, 

and deaths are generated for a deterministic outbreak.  The results regarding social distancing 

measures are consistent – let infections rise until they are close to the medical system capacity, 

implement social distancing measures in an aggressive fashion to keep the number of infections 

below the medical system’s capacity constraint, and then continuously relax social distancing 

rules resulting in a muted (if any) second wave of infections.  This strategy of aggressive social 

distancing policies followed by frequent marginal adjustments effectively shaves off the top of 

the infection curve instead of flattening it.   

The hysteresis window we highlight results in a departure from recent insights based on 

instantaneously adjustable policies. In our case of commonly observed, broad scale social 

distancing policies that are not instantaneously adjustable, the infection curve is flattened instead 

of being shaved. When considering policies that flatten the curve, decision makers’ ought to 

implement social distancing mandates much earlier than deterministic policies that allow for 
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marginal adjustments.  While the uncertainty in the evolution of the outbreak means it is 

impossible to avoid the medical system threshold with certainty, the implementation at low 

prevalence is necessary to flatten the curve out enough to lower the probability the medical 

system threshold is crossed.     

 

2 Methods 

We model the spread of COVID-19 through the U.S. population (𝑁 = 327 million) using a 

stochastic version of the standard SIR framework parameterized for the current COVID-19 

situation in the U.S.A.  Compartmental models of this type track the numbers of susceptible, 

infected, and recovered individuals over the course of an infectious disease outbreak (Hethcote 

2000;Kermack and McKendrick 1927).  The transmission rate 𝛽 is a lumped parameter that 

reflects the infectiousness of COVID-19 and the contact rate of individuals. 𝛽 is a random 

variable, with variability due to environmental stochasticity (more infectious during cold 

weather) or stochasticity in contact rates (e.g., superspreader events).3  Following Gray, et al. 

(2011), the transmission rate over dt is normally distributed with mean 𝛽dt and variance 𝜎2dt: 

𝛽dt =𝛽dt + 𝜎2dz where dz is the increment of a standard Wiener process.  This specification 

implies that the effective reproduction number, 𝑅𝑒,which is equivalent to the basic reproduction 

number, 𝑅0, at the start of the epidemic, evolves stochastically over time.4  When accounting for 

this inability to predict COVID-19 transmission, the SIR epidemiological system becomes:   

𝑑𝑆(𝑡) = −𝛽𝐼(𝑡)𝑆(𝑡)𝑑𝑡 − 𝜎𝐼(𝑡)𝑆(𝑡)𝑑𝑧                                                    (1) 

𝑑𝐼(𝑡) = [𝛽𝐼(𝑡)𝑆(𝑡) −
𝛾

1 − 𝑚(𝐼)
𝐼(𝑡)] 𝑑𝑡 + 𝜎𝐼(𝑡)𝑆(𝑡)𝑑𝑧                                          (2) 

𝑑𝑅(𝑡) = 𝛾𝐼(𝑡)𝑑𝑡                                                                            (3) 

where 𝐼(𝑡), 𝑆(𝑡), and 𝑅(𝑡) are the proportion of the total population N that is infected, 

susceptible, and recovered respectively.  The stochastic epidemiological system in (1)-(3) 

                                                             
3 Specifically, the transmission of COVID-19 will vary over time because some cases transmit to many others 
(superspreader events), while many other cases transmit much less (Kucharski, et al. 2020;Tuite, et al. 2020).   
4 In this case 𝑅0 = 𝛽(1 − 𝑚) 𝛾⁄  where m is the initial probability of mortality in the infected state and 𝛾 the duration 
of infectiousness.   
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assumes the current proportion of the population infected, susceptible, and recovered is known 

but the future course of the outbreak is unknown.5   

     

Epidemiological Specification. Our benchmark parameterization is given in Table 1. We follow 

the work of Thunstrom, et al. (2020) and assume R0 is 2.4 as seen in China and elsewhere  

(Ferguson, et al. 2020;Liu, et al. 2020). The average infectious period is taken to be 6.5 days: 

𝛾 = 1/6.5 (Lauer, et al. 2020;Liu, et al. 2020). The probability an infected individual dies before 

recovering is 𝑚(𝐼), and taken to be responsive to the evolution of infected cases.  As the number of 

infected individuals requiring medical care grows, the health care system becomes stressed, health 

care resources become scarcer, and infected individuals receive a lower standard of care.  We model 

this medical system feedback as a logistic function (Newbold, et al. 2020): 

𝑚(𝐼) = 𝑚𝑙 +
𝑚ℎ − 𝑚𝑙

1 + 𝑒−𝑔(𝐼(𝑡)−𝐼̅)
                                                           (4) 

where 𝑔 is large so that the relationship is a step function with 𝑚𝑙 the probability an infected 

individual dies before recovering when the number of infected cases is below the health care 

system capacity (𝐼 < 𝐼 )̅ and 𝑚ℎ > 𝑚𝑙 when the number of infected cases is above the health care 

system capacity (𝐼 > 𝐼 )̅.  Following Thunstrom, et al. (2020), we assume that the health care 

system has sufficient resources to provide adequate treatment for one half of the maximum 

number of individuals who would be infected at any one time with no social distancing to slow 

the spread of the virus.  In the benchmark case, this threshold is 35.3 million infected people 

(approximately 11 percent of the population).  When the health care system is not overwhelmed, 

the probability an infected individual dies before recovering is 0.5%, which is greater than 

seasonal influenza.  When the health care system is overwhelmed, the probability an infected 

individual dies before recovering is 1.5%.  Together, these parameter values imply an expected 

transmission rate of 𝛽 = 0.37.  We set the standard deviation of the transmission rate (𝜎) to 0.15 

which is consistent with how transmission varied over time in Wuhan, China between January, 

2020, and February, 2020 (Kucharski, et al. 2020).   

 

 

 

                                                             
5 Our focus on uncertainty in transmission abstracts from uncertainty in the current number of infected individuals 
and the mortality rate which we leave for future work. 
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Table 1. Parameter values for benchmark specification 

Parameter Definition Parameter 
value 

Economics 
K Deferred consumption losses due to social distancing $2.1 trillion 
𝑘𝑆 Non-deferable consumption losses due to social distancing ($ per 

susceptible individual per day) 
$35 

𝑘𝑅 Non-deferable consumption losses due to social distancing ($ per 
recovered individual per day) 

$0 

𝑐𝐼 Daily consumption reduction per infected due to outbreak $55 
𝑐𝑆 Daily consumption reduction per susceptible due to outbreak $50 
𝜌 Discount rate 0.03 
𝜇 Percent of deferred consumption losses recouped after reopening the 

economy 
0.75 

𝜐 Value of mortality risk reduction $7 million 
�̃�𝑠𝑑 Mean transmission rate during social distancing 0.230* 
𝜎𝑠𝑑  Standard deviation of transmission rate during social distancing 0.093 

Epidemiology 
𝐼  ̅ Infected threshold where health care system is stressed 0.108 

𝑚𝑙 Probability of mortality when health care system is not stressed 0.005 
𝑚ℎ Probability of mortality when health care system is stressed 0.015 
𝛾 Recovery rate 0.154 
𝛽 Mean transmission rate with no social distancing 0.371 
𝜎 Standard deviation of transmission rate with no social distancing 0.15 

* For the benchmark, the basic reproduction number without social distancing would be 𝑅0 =
𝛽(1−𝑚)

𝛾
=

.371(1−0.005)

.154
≈ 2.4 and with social distancing it becomes 𝑅0

𝑠𝑑 =
𝛽𝑠𝑑(1−𝑚)

𝛾
=

.230(1−.005)

.154
≈ 1.49 

 

 

Economic Specification. The welfare implications of the virus can be lost consumption or lost 

lives as documented by Martin and Pindyck (2020).  We extend this notion to account for the 

evolution of these elements over the course of the pandemic as well as with, and without, 

mandated social distancing.  The stream of COVID-19 related impacts incurred by society is 

𝑊(𝑆, 𝐼, 𝑋) where 𝑋 is an indicator of the current status of mandated social distancing.  If 𝑋 = 1, 

mandated social distancing is not currently in effect (i.e., the economy is open and the expected 

transmission rate is 𝛽).  The impact of COVID-19 is the value of lives lost plus reduced 

consumption due to susceptible individuals voluntarily social distancing and infected individuals 

self-quarantining: 𝑊(𝑆, 𝐼, 1) = 𝜐𝑁
𝑑𝐷

𝑑𝑡
+ 𝑐𝐼𝑁𝐼(𝑡) + 𝑐𝑆𝑁𝑆(𝑡) where 𝑑𝐷

𝑑𝑡
=

𝛾𝑚

1−𝑚
𝐼(𝑡) is the 
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proportion of people killed by the disease over dt, 𝜐 is the value of mortality risk reductions, and 

𝑐𝐼 and 𝑐𝑆 are the reductions in consumption per infected and susceptible per day respectively.  

The value of mortality risk reduction is taken to be at an intermediate level of $7 million, which 

is lower than U.S. federal agency guidelines (Kniesner and Viscusi 2019) but higher than several 

recent papers that adjust the value of mortality risk reduction to account for the age profile of 

COVD-related deaths (e.g., Greenstone and Nigam 2020).  The parameters 𝑐𝑆 and 𝑐𝐼 are 

calibrated to yield a 7% reduction in consumption in the first year of the epidemic with no social 

distancing mandates.  This is comparable to other estimates in the literature (Eichenbaum, et al. 

2020).6           

Given the implications of the spreading virus, officials can mandate social distancing that 

effectively closes the economy when disease prevalence reaches a threshold level 𝐼𝑐. The 

program instantly lowers the expected transmission rate from 𝛽 to 𝛽𝑠𝑑 and the standard deviation 

of the transmission rate from 𝜎 to 𝜎𝑠𝑑.  Following Thunstrom, et al. (2020) social distancing 

measures are taken to lower the expected average contact rate among individuals by 38% which 

is comparable to effectiveness of social distancing during the Spanish flu outbreak in 1918 

(Caley, et al. 2008).7  Social distancing is also expected to lower the volatility of transmission 

(Kucharski, et al. 2020) and we assume the same 38% reduction in 𝜎.   

Mandated social distancing exacerbates consumption losses due to mobility restrictions 

and the effect of the shutdown on employment, income, and economic expectations (Andersen, 

et al. 2020;Aum, et al. 2020;Baker, et al. 2020;Coibion, et al. 2020b;Gupta, et al. 2020).  Some 

of the additional consumption losses represent consumption that is deferred until after the 

economy reopens.  For example, Coibion, et al. (2020b) find that consumers under lockdown are 

3.5 percentage points less likely to purchase larger ticket items such as automobiles or appliances 

in the next 12 months.  We define these deferred consumption losses as K.  A portion of the 

deferred consumption losses, 𝜇(𝑆)𝐾, is immediately recovered when the economy is reopened 

                                                             
6 The reduction in consumption from susceptible individuals voluntarily engaging in social distancing, 𝑐𝑆, is 28% of 
2019 U.S. GDP per capita per day ($50 per susceptible individual per day).  The reduction in consumption from 
infected individuals self-quarantining, 𝑐𝐼, is 31% of 2019 U.S. GDP per capita per day ($55 per infected individual 
per day) to account for the additional hospitalization costs and forced reductions in work hours due to COVID-19 
infection. 
7 This is representative of the average reductions in the continuously controlled deterministic literature, for example 
see Alvarez, et al. (2020), and Gonzalez-Eiras and Niepelt (2020). 
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with 𝜇(𝑆) ≤ 1 and 𝜕𝜇 𝜕𝑆⁄ > 0.  For example, after social distancing is suspended and the 

economy reopens, some (but not all) businesses will reopen, some previously laid off workers 

will be rehired, and some deferred purchases will be made.  However, the longer reopening is 

delayed, the smaller the susceptible population and the more permanent these deferred 

consumption losses become.  The remainder of the additional consumption losses cannot be 

deferred until after the economy reopens.  For example, lost spending at bars and restaurants due 

to forced closures or lower incomes due to job losses elsewhere in the economy cannot be 

recouped by reopening the economy.  Because this type of forgone consumption likely depends 

on the number of susceptible and recovered individuals, we define these non-deferable 

consumption losses as 𝑘𝑆𝑁𝑆 + 𝑘𝑅𝑁𝑅(𝑡). 

 If indicator variable 𝑋 = 2, mandated social distancing is currently in effect (the 

economy is closed and the expected transmission rate is 𝛽𝑠𝑑): 𝑊(𝑆, 𝐼, 2) = 𝜐𝑁
𝑑𝐷

𝑑𝑡
+ 𝑐𝐼𝑁𝐼(𝑡) +

𝑘𝑆𝑁𝑆 + 𝑘𝑅𝑁𝑅(𝑡).  The values selected for the three cost parameters (𝐾, 𝑘𝑆, 𝑘𝑅) imply 

consumption drops by 22% if social distancing mandates were left in place for an entire year 

which is consistent with the findings in Eichenbaum, et al. (2020) and implies the majority of 

consumption losses during the outbreak are attributable to social distancing mandates (Andersen, 

et al. 2020;Coibion, et al. 2020b).  We assume that deferable consumption losses represent 

roughly half of this drop in consumption.8  While consumer spending increased in May and June 

as the economy reopened, personal consumption expenditures remain below pre-COVID levels. 

Specifically, consumption expenditure data suggests 𝜇 < 1 since reopening the economy 

generated additional consumption that offset only 58% of the consumption losses experienced 

since the first of the year.  This finding is consistent with Barro and Jin (2020) and Nakamura, et 

al. (2013) which finds that approximately half of disaster-related declines in consumption since 

1900 were permanent.  However, it remains unclear how the duration of the shutdown influences 

𝜇.  In the absence of data needed to accurately specify 𝜇(𝑆), we make the simplifying 

assumption that 25 percent of the consumption losses deferred until the economy is reopened 

                                                             
8 In our benchmark specification, we assume K is equal to 10 percent of 2019 U.S. GDP ($2.14 trillion) and 𝑘𝑆 is 
20% of 2019 U.S. GDP per capita per day ($35 reduction in consumption per susceptible individual per day).  Our 
benchmark scenario assumes that those that recover go back to work, so that they are not subject to the lockdown 
(𝑘𝑅 = 0).    
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become permanent (𝜇 = 0.75).  Because these parameters are not well documented, we consider 

the sensitivity of our primary results to a range of parameter values.       

The objective of a social planner is to determine if and when to implement a social 

distancing rule (close the economy) and suspend the social distancing rule (reopen the economy) 

to minimize the expected present value of lives lost to COVID-19, the economic impacts of 

COVID-19, and the economic impacts of the social distancing rule.  The problem is one of 

optimally timing a switch, at time 𝑡𝑐, between a regime where mandated social distancing is not 

active (𝑋 = 1) and a regime where mandated social distancing is active (𝑋 = 2).9  The planner 

must then determine when to move back to an open economy, at time 𝑡𝑟.  Given the discount rate 

𝜌, the optimal time to close and reopen the economy satisfies 

𝑉(𝑆0, 𝐼0, 1) = 𝑚𝑖𝑛
𝑡𝑐

𝐸0 [∫ [𝜐
𝑑𝐷

𝑑𝑡
+ 𝑐𝐼𝐼 + 𝑐𝑆𝑆] 𝑁𝑒−𝜌𝑡𝑑𝑡

𝑡𝑐

0

+ [𝑉(𝑆(𝑡𝑐), 𝐼(𝑡𝑐), 2) + 𝐾]𝑒−𝜌𝑡𝑐] (5) 

and 

𝑉(𝑆0, 𝐼0, 2) = 𝑚𝑖𝑛
𝑡𝑟

𝐸0 [∫ [𝜐
𝑑𝐷

𝑑𝑡
+ 𝑐𝐼𝐼 + 𝑘𝑆𝑆] 𝑁𝑒−𝜌𝑡𝑑𝑡

𝑡𝑟

0

+ [𝑉(𝑆(𝑡𝑟), 𝐼(𝑡𝑟), 1) − 𝜇𝐾]𝑒−𝜌𝑡𝑟] (6) 

subject to the stochastic evolution of the outbreak in (1)-(3) and the initial condition taken to be 

cases estimated by the CDC on March 17, 2020: 𝐼(0) = 4,165 𝑁⁄ ,  and 𝑆(0) = 1 − 𝐼(0).  The 

evaluation at each instant in time minimizes the expected impacts of the disease from that point 

forward by making a choice to continue to delay social distancing (whose payoff is defined as 

𝑉(𝑆, 𝐼, 1)) or to take action and lower the spread of the disease through a costly social distancing 

mandate (whose payoff is defined as 𝑉(𝑆, 𝐼, 2)). When 𝜇 < 1, closing the economy has a 

permanent effect and there is a conditional value of information (an option value) that creates an 

incentive to delay closing the economy longer then suggested by traditional benefit-cost analysis 

of deterministic discounted cash flows.  The delay allows the decision maker to gain valuable 

information on how bad the outbreak will be.  The benefit of this additional information must be 

balanced by the additional deaths that result from delay.   

                                                             
9 Our methodology is generalizable to more than two regimes.  A third regime could be designed to accommodate a 
partial reopening where the transmission rate increases but is lower than before the social distancing rule was 
implemented.  For exposition, we assume the transmission rate returns to levels seen before social distancing.  
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According to Brekke and Øksendal (1994), the optimal switching problem can be 

rewritten as a set of variational inequalities with a straightforward economic interpretation.  The 

outbreak is treated as a public health obligation whose magnitude 𝑉(𝑆, 𝐼, 1) must be 

minimized.10  The minimized value of the obligation prior to implementing social distancing 

satisfies  

𝜌 ≤
[𝜐

𝛾𝑚
1 − 𝑚 𝐼(𝑡) + 𝑐𝐼𝐼(𝑡) + 𝑐𝑆𝑆(𝑡)] 𝑁

𝑉(𝑆, 𝐼, 1)
+ [𝛽𝐼(𝑡)𝑆(𝑡) −

𝛾

1 − 𝑚
𝐼(𝑡)]

𝜕𝑉(𝑆, 𝐼, 1) 𝜕𝐼⁄

𝑉(𝑆, 𝐼, 1)
 

−𝛽𝐼(𝑡)𝑆(𝑡)
𝜕𝑉(𝑆, 𝐼, 1) 𝜕𝑆⁄

𝑉(𝑆, 𝐼, 1)
+ Ω(𝑆, 𝐼, 1)                                                 (7) 

and value matching condition 

𝑉(𝑆, 𝐼, 1) ≤ 𝑉(𝑆, 𝐼, 2) + 𝐾                                                                  (8) 

with one of the conditions satisfied at each point in the state space of S(t) and I(t).  If the rate of 

return condition in (7) holds as an equality, it is optimal to delay social distancing and remain in 

the regime with the economy open.  The discount rate is the opportunity cost of cash flows 

associated with delaying social distancing, or the rate of loss a public health official would 

tolerate to delay social distancing. The right-hand side is the expected (own) rate of loss from 

delaying social distancing over the interval dt, with a deterministic component (first three terms) 

and a risk adjustment Ω(𝑆, 𝐼, 1) =
(𝜎𝑆𝐼)2

2

[
𝜕2𝑉(𝑆,𝐼,1)

𝜕𝐼2 −
𝜕2𝑉(𝑆,𝐼,1)

𝜕𝑆2 ]

𝑉(𝑆,𝐼,1)
. Current costs and impacts are given in 

the first term on the right hand side of (7), the second term is the expected rate of increase in the 

marginal cost of the outbreak due to additional infections that arise due to delay, and the third 

term is the expected rate of decrease in the marginal cost of the outbreak due to fewer susceptible 

individuals.  The risk adjustment captures how the inability to predict the evolution of the 

outbreak alters the expected rate of loss due to delaying social distancing.  When Ω(𝑆, 𝐼, 1) < 0, 

the risk adjustment lowers the expected rate of loss which requires an increase in the 

deterministic rate of loss (percentage increase in costs) tolerated by public health officials to 

delay social distancing and remain in the business as usual regime. The implication is that 

                                                             
10 In traditional financial or capital accumulation applications, a decision maker chooses when to invest in a 
financial asset to maximize a measure of return such as profit. The current application is identical except the asset is 
COVID-19 impacts and the decision maker wishes to minimize this asset. 
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transmission risk results in the decision maker being willing to absorb higher growth in losses 

which creates an incentive to delay social distancing – a risk premium.  Likewise, when 

Ω(𝑆, 𝐼, 1) > 0, the risk adjustment pushes the own rate of loss for delaying social distancing up – 

a risk reward.  Here, the uncertainty in the evolution of the outbreak requires a lower 

deterministic rate of increase in costs for the decision maker to be willing to delay social 

distancing, creating an incentive to hasten social distancing.  Equation (8) compares the total 

obligation when social distancing is inactive and active and acts as a boundary condition for the 

open economy regime.  If (8) holds as an equality, it is optimal to immediately implement social 

distancing and switch to the closed economy regime.   

With social distancing rules in place, 𝑘𝑅 taken to be zero, and the economy closed, the 

minimized value of the outbreak obligation satisfies 

𝜌 ≤
[𝜐

𝛾𝑚
1 − 𝑚

𝐼(𝑡) + 𝑐𝐼𝐼(𝑡) + 𝑘𝑆𝑆(𝑡)] 𝑁

𝑉(𝑆, 𝐼, 2)
+ [𝛽𝑠𝑑𝐼(𝑡)𝑆(𝑡) −

𝛾

1 − 𝑚
𝐼(𝑡)]

𝜕𝑉(𝑆, 𝐼, 2) 𝜕𝐼⁄

𝑉(𝑆, 𝐼, 2)
 

−𝛽𝑠𝑑𝐼(𝑡)𝑆(𝑡)
𝜕𝑉(𝑆, 𝐼, 2) 𝜕𝑆⁄

𝑉(𝑆, 𝐼, 2)
+ Ω(𝑆, 𝐼, 2)                                             (9) 

and  

𝑉(𝑆, 𝐼, 2) ≤ 𝑉(𝑆, 𝐼, 1) − 𝜇𝐾.                                                   (10) 

Equation (9) is a rate of return condition that compares the discount rate and the expected rate of 

loss from delaying suspension of the social distancing program and reopening the economy.  If 

(9) holds as an equality, it is optimal to keep the social distancing program active and remain in 

the regime with a closed economy.  Equation (9) reveals a similar risk adjustment associated 

with the decision to reopen the economy Ω(𝑆, 𝐼, 2) =
(𝜎𝑠𝑑𝑆𝐼)2

2

[
𝜕2𝑉(𝑆,𝐼,2)

𝜕𝐼2 −
𝜕2𝑉(𝑆,𝐼,2)

𝜕𝑆2 ]

𝑉(𝑆,𝐼,2)
.  When 

Ω(𝑆, 𝐼, 2) < 0, the risk adjustment pushes the expected rate of loss down requiring an increase in 

the deterministic rate of loss tolerated to delay reopening the economy – a risk premium.  This 

risk premium raises the acceptable increase in loss associated with staying closed, creating an 

incentive to delay reopening.  Likewise, when Ω2 > 0, the risk adjustment pushes the 

deterministic rate of return for delaying reopening down (a risk reward) which creates an 

incentive to hasten reopening.  Equation (10) acts a boundary condition for the closed regime.  If 
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(10) holds as an equality, it is optimal to suspend the social distancing program and reopen the 

economy. 

In general, the sign of 𝜕2𝑉(𝑆,𝐼,:)

𝜕𝐼2  and 𝜕
2𝑉(𝑆,𝐼,:)

𝜕𝑆2  are ambiguous.  Stochasticity in transmission 

impacts both the expected discounted costs of the outbreak and the magnitude of two option 

values associated with closing and reopening the economy.  Whether risk creates a premium or a 

reward depends on whether the effect of the option value outweighs the possibly countervailing 

effect of risk on the expected net present value of outbreak impacts.  Because the decision to 

close the economy creates potentially permanent economic impacts, 𝑉(𝑆, 𝐼, 1) includes an option 

value that delays implementing a social distancing mandate.  The decision to reopen the 

economy is also irreversible since a second round of social distancing mandates is necessary if 

the number of infections after reopening is worse than expected.  Because the decision to reopen 

the economy is irreversible, 𝑉(𝑆, 𝐼, 2) includes an additional option value that delays reopening 

the economy. However, uncertainty in transmission also influences the expected discounted 

impacts of the outbreak with and without social distancing.  If uncertainty in transmission 

decreases the expected discounted impacts of the outbreak, this effect reinforces the effect of the 

option value leading to a definitive risk premium.  However, if uncertainty in transmission 

increases the expected discounted impacts of the outbreak, the effect of the option value may be 

overwhelmed, leading to a risk reward.        

The solution to the variational inequalities in equations (7)-(10) can be characterized by a 

closed economy threshold curve, 𝐼𝑐(𝑆), that partitions the state space (combinations of I(t) and 

S(t)) where social distancing should occur from those where it should not occur, given the social 

distancing mandate is not currently in place.  Likewise, a reopened economy threshold curve 

𝐼𝑟(𝑆) divides the state space into regions where social distancing should and should not occur 

given the social distancing mandate is currently in place.  A hysteresis window emerges when 

the number of infected cases is in between these two curves: 𝐼𝑐(𝑆) > 𝐼(𝑡) > 𝐼𝑟(𝑆). The presence 

of a hysteresis window can be seen by comparing the boundary conditions in equations (8) and 

(10).  These two equations will not generally hold with equality at the same values of 𝑆(𝑡) and 

𝐼(𝑡), suggesting that the boundary of the closed economy and open economy regime will differ 

(𝐼𝑐(𝑆) and 𝐼𝑟(𝑆) will not overlap).  The hysteresis window disappears when the boundary 

conditions in equations (8) and (10) are equivalent: 𝐼𝑐(𝑆) = 𝐼𝑟(𝑆).  This equivalence occurs for 

two cases.  The first is when none of the consumption losses due to mandated social distancing 
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are deferrable (𝐾 = 0).  Here the boundary of the open economy regime and the closed economy 

regime are the same and satisfy 𝑉(𝑆, 𝐼, 1) = 𝑉(𝑆, 𝐼, 2).  The second is when mandated social 

distancing has no permanent effects on consumption (𝜇 = 1).  Here the boundary of the open 

economy regime and the closed economy regime are also the same and satisfy 𝑉(𝑆, 𝐼, 1) − 𝐾 =

𝑉(𝑆, 𝐼, 2).        

The two stochastic variables I(t) and S(t) and the dual program regimes require numerical 

methods to approximate the unknown value functions needed to solve for the policy thresholds 

and risk adjustments (Judd 1998;Miranda and Fackler 2004). We approximate 𝑉(𝑆, 𝐼, 1) and 

𝑉(𝑆, 𝐼, 2) over a subset of the state space using piecewise linear basis functions. The 

approximation procedure solves for the basis function coefficients which satisfy equations (7) – 

(10) at a set of n nodal points spread evenly over the two-dimensional state-space.  Instead of an 

explicit solution, the threshold curve to close, 𝐼𝑐(𝑆), and reopen, 𝐼𝑟(𝑆), the economy are sets of n 

points where conditions (7) – (10) are met.  Details of our computational approach are provided 

in the appendix.         

           

3 Results 

Figure 1 shows how a change in the susceptible population (movement along the x-axis) 

influences the critical levels of infected cases that trigger and cancel social distancing 

(movement along the y-axis).  The boundary of the gray region and the white region in the 

northeastern portion of the figure is the implementation curve to close the economy, 𝐼𝑐(𝑆), while 

the boundary of the gray region and the white region in the southwestern portion of the figure is 

the curve to reopen the economy, 𝐼𝑟(𝑆), for our benchmark specification.  Both curves are 

downward sloping in the susceptible population. A negative relationship indicates a greater 

propensity to intervene in the outbreak when the susceptible population and thus force of 

infection is high.  Social distancing is optimal for combinations of S(t) and I(t) in the 

northeastern white region.  Reopening the economy is optimal for combinations of S(t) and I(t) in 

the southwestern white region.  The gray region in Figure 1 is the hysteresis region.  When the 

outbreak is in this region, it is not optimal to implement a social distancing policy but it is also 

not yet optimal to suspend a social distancing program that is already in place.   
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Figure 1. Optimal timing of social distancing and the effect of hysteresis on reopening.  The 
critical threshold to implement social distancing and close the economy, 𝐼𝑐(𝑆), is the 
northeastern border of the hysteresis region (gray region).  The critical threshold to cancel social 
distancing and reopen the economy, 𝐼𝑟(𝑆), is the southwestern border of the hysteresis region.  
Dashed lines show the expected trajectory of the outbreak with red (green) lines indicating the 
economy is closed (open). 

 

The expected trajectory of the outbreak (dashed lines) indicate where we are expected to 

cross the policy thresholds.  Starting from early in the outbreak when the infected population is 

low and the susceptible population is large (the lower right corner of the figure), it is optimal to 

delay social distancing until the expected trajectory of the outbreak crosses into the white region 

(approximately 0.43 percent of the population infected).  With social distancing in place, the 

expected percentage of the population that is infected eventually reaches its peak at 6.5 percent; 

substantially lower than the peak with no social distancing.  It is optimal to terminate social 
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social 
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distancing 

Hysteresis 
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timed social distancing 

Hysteresis 
region 

Expected trajectory of outbreak 

when prematurely reopening 

when hysteresis window opens 

43
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 2
9-

61



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

distancing and reopen the economy when the percent infected falls to 2.9 percent or 49 percent 

of the population is recovered.  A decision maker may be tempted to reopen the economy when 

the hysteresis window opens just past the peak of the infection curve.  This leads to a second 

wave of infected cases where over 10 percent of the population is infected.  Waiting until the 

hysteresis window closes and the recovered population rises to 49 percent will result in a much 

smaller second wave of infection and will lower the probability that a second wave of social 

distancing will be needed.  

Table 2 summarizes the results under our benchmark scenario and Figure 2 highlights 

key dynamic processes.  Figure 2A shows the stochastic dynamics of COVID-19 transmission.  

Before and after social distancing when the economy is open (solid line), the effective 

reproduction number varies daily between 6 (highly transmissive) and less than 1 (not 

transmissive) with a mean of 2.4.  The spikes in transmission reflect temporary changes in 

contact rates that may arise due to sporting events, music festivals, or other mass gatherings.  For 

example, a Champions League football match on February 19th between Italy’s Atalanta and 

Spain’s Valencia has been cited as a major factor in the virus spread to Spain (Rudan 2020).  The 

optimally timed social distancing program lasts 86 days, achieves moderation in 13 days, and 

control in 84 days following the benchmarks proposed in Tellis, et al. (2020).  With social 

distancing in place (dashed line), the expected reproduction number drops to 1.49 and spikes in 

the reproduction number are much less severe.   

 

 

Table 2. Summary of results from benchmark specification 
Expected duration of social distancing 86 days 
Expected percent of population infected to close economy 0.43% 
Expected percent of population recovered to open economy 49% 
Hysteresis window 27 days 
Economic costs of social distancing $3.0 trillion 
Value of lives saved $15.8 trillion 
Risk premium when closing economy 0.28% 
Risk premium when reopening economy 0.77% 
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Figure 2. Dynamics of (A) COVID-19 transmission, (B) expected cases of COVID-19, and 

(C) economic cost of social distancing  

 

 

A 

B 

C 
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Figure 2B, shows the expected number of infected cases without social distancing, with 

the optimally timed social distancing program, and when the economy is prematurely reopened 

at the start of the hysteresis window.  The optimal “curve flattening” strategy available to 

decision makers due to the permanent economic impacts finds social distancing rules 

implemented before the expected sharp increase in infected cases that arises from leaving the 

outbreak unchecked.  This is in sharp contrast to the “curve shaving” policies that delay severe 

social distancing policies until disease prevalence is closer to the capacity of the medical system 

and then gradually relax those policies.  Suspending social distancing and reopening the 

economy at the optimal time results in a small secondary peak in infected cases.  In contrast, 

prematurely reopening the economy at the beginning of the hysteresis window can be expected 

to lead to a larger secondary peak in infected cases.  The optimally timed social distancing 

program lowers the number of infected cases and deaths.  The value of the lives saved from this 

optimally timed social distancing program is $15.8 trillion. 

The optimally timed social distancing program costs $3 trillion; approximately 1/5th the 

value of lives saved.  The time path of the expected total cost of social distancing (shown in 

Figure 2C) shows a sharp downward drop in GDP due to consumption deferred when social 

distancing mandates are implemented.  Economic impacts accumulate while social distancing is 

in effect due to the non-deferrable consumption losses.  The sharp increase in GDP marks the 

recovery of a portion of the deferred consumption losses triggered by reopening the economy.  

Hysteresis in the economy is present since GDP does not return to the trend line before the 

outbreak.  

The uncertainty-induced caution created by unpredictable transmission and the 

permanent economic impacts incurred to fight the outbreak creates an incentive to delay 

reopening the economy 27 days.  In other words, there will no longer be an economic 

justification for implementing the social distancing program 59 days after the economy is closed.  

However, finding that a social distancing program should not be implemented is not a viable 

justification for canceling a social distancing program that is already in place.  Reopening after 

59 days ignores the possibility that reopening the economy may lead to a bigger increase in 

infected cases than expected which would necessitate a second round of social distancing and 

incur another round of permanent economic impacts.     
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Consistent with our analysis of the variational inequalities in equation (7) - (10), the 

hysteresis window vanishes and benefit-cost analysis can provide reasonable guidance on the 

timing of reopening when mandated social distancing has no permanent effects on the economy.  

This occurs under two conditions.  The first is when none of the consumption losses attributable 

to social distancing are deferred until the economy reopens.  As shown in Figure 3 panel A, the 

hysteresis window shrinks when deferred consumption makes up a smaller portion of the 

consumption losses associated with social distancing.  The second is when all of the deferred 

consumption from social distancing is recouped when the economy is reopened (see Figure 3 

panel B).  In either case, there is no value in delaying reopening because there are no sunk costs 

associated with a second round of social distancing if the number of cases is higher than 

expected after reopening.  If social distancing is characterized by permanent economic impacts 

(i.e., all of the deferred consumption does not occur upon reopening the economy), the hysteresis 

window will likely push the optimal time to reopen the economy far past the point when the 

number of infected cases peaks. 

Also consistent with our analysis of the variational inequalities in equations (7)-(10), the 

uncertainty in transmission can create incentives to both delay and hasten closing and reopening 

the economy (see Appendix for details).  When focusing on optimal social distancing policies, 

transmission risk creates an incentive to delay both implementing social distancing and 

reopening the economy.  Due to the stochastic dynamics of the disease, the point at which the 

disease first crosses 𝐼𝑐(𝑆) is uncertain.  However, at nearly all points along 𝐼𝑐(𝑆), transmission 

risk creates an incentive to delay social distancing.  Furthermore, at the values of I(t) and S(t) 

where the expected trajectory of the outbreak crosses this boundary, uncertainty in transmission 

lowers the own rate of loss from delaying social distancing by 0.28% (a 9% decrease in the 

expected rate of loss tolerated to delay social distancing).  At the values of I(t) and S(t) where the 

expected trajectory of the outbreak crosses 𝐼𝑟(𝑆), uncertainty in transmission lowers the own rate 

of loss from delaying reopening by 0.77% (a 25% decrease in the expected loss tolerated to delay 

reopening).  Depending on the parameters in the model, transmission risk can shift the timing of 

closing and reopening the economy by 1 to 8 days.  However, due to the fact transmission risk 

creates an incentive to delay both closing and reopening the economy, the uncertainty in 
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transmission only increases the expected duration of social distancing by 2 days and shortens the 

expected duration of the hysteresis window by 1 day.11          

 

 

 

Figure 3. Relationship between economic irreversibility and the duration of hysteresis 

window.  Dots represent our benchmark specification. 

 

 

                                                             
11 We characterize the influence on our results of changes in all parameters in the Appendix. 
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Since mandated social distancing in the United States was shorter than the 12-week 

program of social distancing suggested in our benchmark model, we identify cases when more 

rapid reopening could be justified (Table 3).  Ineffective policies, significant deferred 

consumption, low value of mortality risk reduction, and higher expected transmission rates can 

lower the duration of social distancing to 7-10 weeks. Social distancing programs less than 7 

weeks are only consistent with preemptively reopening at the start of the hysteresis window 

(when it is optimal to not reopen), shown in the second column of Table 3.  

 

Table 3. The case for short duration social distancing 

 Optimally reopen at end 

of hysteresis window 

Pre-emptively reopen at 

beginning of hysteresis window 

Ineffective policy: social 
distancing only reduces 𝛽 by 
20 percent 

7 weeks 5 weeks 

Large deferred 

consumption: K accounts for 
over 68 percent of total costs 
of social distancing 

9 weeks 5 weeks 

Low value of mortality risk 

reduction: 𝜐 = $5.6 million 
10 weeks 6 weeks 

High expected 

transmission: 𝛽 = 0.40 
9.5 weeks 8 weeks 

 

         

4 Conclusion 

Considerable effort has been devoted to estimating the portion of COVID-related economic 

impacts that are attributable to policy responses (Andersen, et al. 2020;Aum, et al. 2020;Coibion, 

et al. 2020b;Goolsbee and Syverson 2020;Gupta, et al. 2020;Kahn, et al. 2020;Rojas, et al. 

2020).  These studies illuminate the costs of social distancing mandates and also indicate the 

extent to which reopening the economy versus lowering COVID-related deaths alleviates 

economic impacts.   

Our work highlights an additional policy-relevant metric –the degree to which these 

consumption losses are permanent.  The extended period of social distancing mandates 

undertaken in many parts of the world will likely have permanent economic impacts due to 
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confidence effects, lost corporate income in the service sectors, bankruptcies, and credit 

constraints (Bénassy-Quéré, et al. 2020).  While these permanent effects have not yet been 

measured, they are a defining characteristic of other economic disasters (Barro and Ursúa 2008) 

and have been documented for previous pandemics (Barro, et al. 2020).  There is also 

considerable uncertainty about the severity of a second wave of infection upon reopening the 

economy and how this uncertainty should influence decisions about reopening.    

This paper illustrates how this hysteresis in the economy and uncertainty about the 

evolution of the outbreak will cascade to cause hysteresis in the optimal policy response to 

COVID-19.  Our paper illustrates one mechanism through which consumption loses may become 

permanent – deferred consumption.  Specifically, we highlight two key parameters that influence 

the magnitude of the policy hysteresis: 1) the amount of consumption that is deferred until the 

economy is reopened and 2) the proportion of that deferred consumption that is permanently lost.  

While benefit-cost analyses have been used as a tool to analyze social distancing rules 

(Scherbina 2020;Thunstrom, et al. 2020), our results show how basic applications of benefit cost 

analysis, that omit this hysteresis window, will suggest reopening too soon. 

While our paper adds to the literature on the role of uncertainty and learning in public 

health responses to COVID-19 (Bandyopadhyay, et al. 2020;Davies and Grimes 2020;Gollier 

2020;Manski 2020), it only considers the uncertainty in the evolution of the outbreak.  

Determining how reopening policies should be adjusted to account for uncertainty about the 

fraction of the population that have had the virus (i.e., state variable uncertainty) and the true 

infection fatality rate (i.e., parametric uncertainty) remains a critical research need.  These 

sources of uncertainty cannot be characterized through a stochastic epidemiological model and 

will require approaches with a foundation in Bayesian updating.  Instead of the risk adjustments 

presented in our paper, these other important sources of uncertainty will necessitate a 

precautionary approach to reopening the economy.  Identifying policies that efficiently balance 

the benefits and costs of this precaution can help guide reopening.     
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Appendix 

Numerical methodology 

𝑉(𝑆, 𝐼, 1) and 𝑉(𝑆, 𝐼, 2) are the solutions to the ordinary differential equations in 

condition (7) and (9).  The multiple policy regimes require numerical methods to approximate 

these unknown value functions (Judd 1998;Miranda and Fackler 2004).  Further, 𝑉(𝑆, 𝐼, : ) can be 
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approximated over a subset of the state space using piecewise linear basis functions.  

Specifically, the unknown value functions are approximated with a linear spline constructed 

using upwind finite difference approximations.  The approximated state space extends from 0 to 

N in the 𝐼(𝑡) and 𝑆(𝑡) dimensions with 100 nodal points in the S dimension and 500 nodal points 

in the I dimension.  Increasing the number of nodal points or extending the state space in either 

the 𝐼(𝑡) or 𝑆(𝑡) directions does not alter our general results.  The resulting complementarity 

problem is solved in MATLAB using the smoothing-Newton root finding method (Qi and Liao 

1999). 

 

Sensitivity analysis 

The sensitivity of our results to assumptions about economic and epidemiological 

parameter values is presented in Tables A1 and A2.  In general, changes in parameter values that 

delay closing the economy also hasten reopening the economy.  The optimal expected duration 

of social distancing is reduced by increases in all costs associated with social distancing and 

increases in the expected benefits of social distancing (i.e., a higher value of mortality risk 

reduction and a more effective social distancing program).  This intuitive economic finding leads 

to the counterintuitive conclusion for public policy - the more effective social distancing is, the 

longer the program should remain in effect.  As shown in Figure A1, a more effective and thus 

more beneficial social distancing program hastens the expected implementation of the program 

and delays its expected suspension.  A more effective policy is implemented sooner than a less 

effective policy because the value of lives saved and the economic benefits of the policy are 

higher and thus outweigh the costs of the policy sooner in the outbreak.  A more effective policy 

remains in effect longer than a less effective policy because relaxing an effective social 

distancing policy implies a larger second wave of infections after the economy is reopened.  Any 

social distancing policy that fails to reduce the expected rate of transmission by less than 12 

percent should not be implemented due to the smaller expected benefits this program would 

provide.   

Several key epidemiological parameters alter the efficient timing of a social distancing 

program.  Higher and more uncertain transmission shortens the duration of a public social 

distancing program, as do lower values of the probability of mortality and a higher recovery rate.  

In fact, if the probability of mortality is comparable to the seasonal flu (𝑚 = 0.001), it is not 
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optimal to ever implement a social distancing program.  A higher health care stress threshold 

lowers the duration of social distancing.     

A primary contribution of this paper is that the efficient reopening of the economy may 

be delayed longer than suggested by benefit-cost analysis due to a hysteresis window.  In 

general, changes in parameter values that increase the optimal duration of social distancing also 

increase the duration of the hysteresis window.  The hysteresis window is most sensitive to the 

expected transmission rate.  The hysteresis window may be as long as 67 days when the expected 

transmission rate is lower than our benchmark level or as short as 11 days when the expected 

transmission rate is higher than our benchmark level.     

 

Risk adjustments 

Figure A2 shows how the risk adjustment influences the decision to close (Panel A) and 

reopen (Panel B) the economy.  The boundary of the white and green region in Panel A is the 

optimal policy threshold for closing the economy, 𝐼𝑐(𝑆).  The boundary of the white and red 

region in Panel B is the optimal policy threshold for reopening the economy, 𝐼𝑟(𝑆).  The black 

lines separate regions of the state space where the risk adjustment is negative (a risk premium) 

from those where it is positive (a risk reward).  Transmission risk creates incentives to delay 

closing and reopening the economy when the prevalence of the disease is low.  The delay is 

consistent with the option value that arises due to the partial irreversibility of the decisions to 

close and reopen the economy.  When the proportion infected approaches the medical system 

stress threshold, risk begins to create incentives to hasten social distancing.  The increasing 

probability of additional deaths due to limited medical resources causes the value function to 

become convex as I(t) approaches the stress threshold: 𝜕2𝑉(𝑆,𝐼,1)

𝜕𝐼2 > 0.  Through Jensen’s 

inequality, risk increases the expected impacts of the disease with no social distancing which 

creates an incentive to hasten the start of social distancing rules.  Risk also increases the 

expected impacts of the disease when social distancing is in place through a similar application 

of Jensen’s inequality which creates an incentive to hasten reopening. 

  With unlimited medical resources, the uncertainty in transmission always creates an 

incentive to delay implementing social distancing and reopening the economy.   When 𝑚𝑙 = 𝑚ℎ, 
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𝜕2𝑉(𝑆,𝐼,:)

𝜕𝐼2 < 0 for all 𝑆(𝑡) and 𝐼(𝑡) and there is always a risk premium associated with closing the 

economy and reopening the economy.   
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Table A1. Percent change in results when economic parameters change by 20 percent 

 Expected 
duration 
of social 

distancing 
(days) 

Threshold % 
of population 

infected to 
close 

economy 

Threshold % 
of population 
recovered to 

reopen 
economy 

Hysteresis 
window 
(days) 

Risk 
premium for 

closing 
economy 

(%) 

Risk 
premium for 

reopening 
economy 

(%) 
Benchmark specification 86 0.43 49 27 0.28 0.77 

Deferred consumption 
losses 

High: 𝐾 = $2.6T -20 91 -8 -11 -32 -65 
Low: 𝐾 = $1.7T 9 0 6 7 -18 43 

Non-deferrable 
consumption losses 

High: 𝑘𝑆 = $43 -5 26 0 -4 4 18 
Low: 𝑘𝑆 = $29 0 0 0 0 -4 -6 

Recovered do not 
return to work 𝑘𝑅 = $35 -5 0 -4 -11 0 -64 

Consumption impact 
per infected 

High: 𝑐𝐼 = $66 0 0 0 0 0 -4 
Low: 𝑐𝐼 = $44 0 0 0 0 0 -4 

Consumption impact 
per susceptible 

High: 𝑐𝑆 = $60 0 0 0 0 -7 25 
Low: 𝑐𝑆 = $40 -5 26 0 -4 4 -19 

Deferred consumption 
recouped   

More: 𝜇 = 0.9 -13 26 -8 -37 4 -55 
Less: 𝜇 = 0.6 9 0 6 33 -18 43 

Value of mortality risk 
reduction  

High: 𝜐 = $8.4M 7 0 4 7 -11 0 
Low: 𝜐 = $5.6M -21 91 -10 -7 -36 -60 

Effectiveness of social 
distancing 

More: �̃�𝑠𝑑 = 0.23*         
           𝜎𝑠𝑑 = 0.07 56 26 -16 96 -43 -40 

Less: �̃�𝑠𝑑 = 0.26**  
          𝜎𝑠𝑑 = 0.10 -29 0 2 -59 -7 -87 

* The equivalent reproduction number is 𝑅0
𝑠𝑑 =

.23(1−.005)

.154
≈ 1.49 in this scenario 

** The equivalent reproduction number is 𝑅0
𝑠𝑑 =

.26(1−.005)

.154
≈ 1.68  in this scenario 
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Table A2. Percent change in results when epidemiological parameters change by 20 percent 

 Expected 
duration of 

social 
distancing 

(days) 

Threshold % 
of population 

infected to 
close 

economy 

Threshold % 
of population 
recovered to 

reopen 
economy 

Hysteresis 
window 
(days) 

Risk premium 
for closing 

economy (%) 

Risk 
premium for 

reopening 
economy (%) 

Benchmark specification 86 0.43 49 27 0.28 0.77 

Healthcare 
stress threshold 

High: 𝐼 ̅ = 0.130 -3 26 0 11 4 -1 
Low: 𝐼 ̅ = 0.086 0 0 0 -11 -11 0 

Probability of 
mortality 

High: 𝑚𝑙 = 0.006 6 2 4 4 -11 -1 
Low: 𝑚𝑙 = 0.004 -21 91 -10 -7 -36 -66 

Probability of 
mortality 

High: 𝑚ℎ = 0.018 0 0 0 0 0 -1 
Low: 𝑚ℎ = 0.012 -3 26 0 0 4 0 

Recovery rate  High: 𝛾 = 0.18 -7 -12 6 0 182 -126 
Low: 𝛾 = 0.12 0 77 -10 4 -21 -77 

Expected 
transmission  

High: 𝛽 = 0.45* -21 -58 20 -59 193 -90 
Low: 𝛽 = 0.30** 5 288 -39 148 -29 43 

Transmission 
volatility  

High: 𝜎 = 0.18 -3 26 0 0 61 56 
Low: 𝜎 = 0.12 0 0 0 4 -43 -40 

* The basic reproduction number becomes 𝑅0 =
.45(1−.005)

.154
≈ 2.91 in this scenario 

** The basic reproduction number becomes 𝑅0 =
.30(1−.005)

.154
≈ 1.94 in this scenario 
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Figure A1. Effect of social distancing effectiveness on optimal duration of social distancing 

program. Dots represent our benchmark specification. 
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Figure A2. Risk adjustments for the decision to (A) close and (B) reopen the economy.   
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We document the transmission of social distancing practices from the 
United States to Mexico along migrant networks during the early 2020 
Covid-19 pandemic. Using data on pre-existing migrant connections 
between Mexican and U.S. locations and mobile-phone tracking data 
revealing social distancing behavior, we find larger declines in mobility 
in Mexican regions whose emigrants live in U.S. locations with stronger 
social distancing practices. We rule out confounding pre-trends and use 
a variety of controls and an instrumental variables strategy based on 
U.S. stay-at-home orders to rule out the potential influence of disease 
transmission and migrant sorting between similar locations. Given 
this evidence, we conclude that our findings represent the effect of 
information transmission between Mexican migrants living in the U.S. 
and residents of their home locations in Mexico. Our results demonstrate 
the importance of personal connections when policymakers seek to 
change fundamental social behaviors.

1 We thank Edith Soto Ramírez at the Instituto de los Mexicanos en el Exterior for providing the MCAS data, 
UNACAST for sharing mobility data in the U.S., and Facebook’s Data for Good initiative for sharing Facebook 
mobility data in the U.S. and in Mexico. Thanks to Brian Cadena, Michael Poyker, and participants in the 
2020 NBER Summer Institute Development Economics meeting for helpful comments and to Treb Allen, 
Cauê Dobbin, and Melanie Morten for helpful discussions regarding the MCAS data. All errors are our own.
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1 Introduction

Social networks are a critical source of new information. By interacting with family, friends, and
acquaintances, individuals learn new facts, observe the implications of others’ decisions, and en-
counter new social norms. This type of social learning can be valuable when facing uncertainty
about the nature of the choices one faces or the efficacy of one choice in comparison to others. Such
uncertainty is particularly acute when one faces a novel set of choices and when the stakes are high.
For example, in a time of pandemic when people must quickly learn about the nature of a disease
and the appropriate actions to take in response, social learning can play an especially important
role.

We document the transmission of social distancing practices from the United States to Mexico
along migrant networks during the early 2020 Covid-19 pandemic. Social distancing is considered
effective in reducing the spread of the novel coronavirus that causes Covid-19 and has been encour-
aged by public health organizations and most national and local governments.1 The outbreak of
Covid-19 in the United States emerged about two weeks earlier than in Mexico, and in the United
States there was substantial spatial variation in timing of and compliance with social distancing
policies. Using data on pre-existing migrant connections between Mexican and U.S. locations and
mobile-phone tracking data revealing social distancing behavior, we find larger declines in mobility
in Mexican regions whose emigrants live in U.S. locations with stronger social distancing practices.
After ruling out confounding pre-trends and the potential influence of disease transmission and mi-
grant sorting between similar locations (e.g. urban vs. rural areas), we conclude that our findings
represent the effect of information transmission between Mexican migrants living in the U.S. and
residents of their home locations in Mexico.

Key to our analysis is the ability to observe pre-existing migrant connections between Mexican
source regions (municipios) and U.S. counties. We do so using administrative data from the Ma-
trícula Consular de Alta Seguridad (MCAS) program, which provides identity cards to Mexicans
living in the U.S. Prior work has confirmed the quality and representativeness of these data, which
allow us to measure the extent to which each Mexican municipio was exposed to each U.S. county
through the migrant network.2 We combine these data with observed social distancing measures
derived from smartphone geolocation data collected by Facebook and Unacast for the U.S. and
Facebook for Mexico.3 The Facebook data report the reduction in the number of 0.6 km-square

1Examples include the World Health Organization (WHO 2020), the U.S. Centers for Disease Control and Preven-
tion (CDC 2020), and the Mexican Health Ministry (Secretaría de Salud 2020).

2Caballero et al. [2018] confirm the quality and representativeness of the MCAS data by comparing it against gold-
standard household survey data. Other papers using data derived from the same underlying source include Albert
and Monras [2019]; Allen et al. [2019]; and Caballero et al. [2020]. These papers and Caballero et al. [2018] each use
slightly different extracts from the same underlying data source. As in Caballero [2020], we use the most detailed
geographic information available (municipio by county) and use a version of the 2008 data that were cleaned and
matched to valid municipio and county names by the Instituto de los Mexicanos en el Exterior.

3Similar data have been used to study migration (Blumenstock et al. 2019), segregation (Athey et al. 2019),
commuting (Kreindler and Miyauchi 2019), friendship (Kreindler and Miyauchi 2019), and the spreading of disease
(Kuchler et al. 2020), and are used in many of the papers cited below that focus on social distancing in response to
Covid-19.
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tiles visited each day, while Unacast reports the reduction in daily distance traveled. These data
sources allow us to directly observe the behavior of interest (social distancing) and to do so with
high frequency and fine geographic granularity. For each municipio, we calculate the migration-
network-weighted average of social distancing across U.S. counties. Because social distancing varied
substantially across U.S. counties, and migrants from different municipios go to very different sets
of U.S. destinations, there is significant variation in exposure to U.S. social distancing across mu-
nicipios.

Our empirical analysis examines how observed reductions in movement among people living
in Mexico relate to this variation in migrants’ exposure to U.S. social distancing. We find that
municipios with a one-standard-deviation larger exposure to U.S. social distancing had a 0.47-
standard-deviation larger decline in mobility. This finding is not driven by pre-existing trends
and is robust to controlling flexibly for the number of local Covid-19 cases; the number of cases
in migrant-connected U.S. counties; and baseline local characteristics including population density,
urban status, age distribution, education, income, and the employment rate. The effect estimate also
remains nearly unchanged when using U.S. state government stay-at-home orders as an instrument
for U.S. social distancing behavior and when controlling for Mexican state government stay-at-home
orders. When investigating heterogeneity in this effect, we find it is stronger in municipios with
initially higher education levels, higher population density, and higher urbanization rate, but does
not differ significantly with the characteristics of migrant-connected U.S. counties.

How should one interpret these results? There are several mechanisms that might generate an
observed relationship between social distancing behavior in a Mexican municipio and in migrant-
connected U.S. counties. First, migrants in the U.S. may observe the importance of social distancing
during the U.S. outbreak, and may communicate that information back to people in their home re-
gion in Mexico, leading to more social distancing there as well. We refer to this as the “information”
channel. Second, return migrants or others may have moved between the U.S. and Mexico, trans-
mitting the disease and leading to correlated outbreaks in the two locations, which may in turn
lead to correlated social distancing. We refer to this as the “disease transmission” channel. Third,
migrants from locations with a higher likelihood of Covid-19 outbreak or with a higher likelihood of
compliance with public health orders may choose similar locations in the U.S. If this is the case, then
observed correlations between migrant-connected locations simply result from migrants’ selection of
destinations rather than reflecting a causal effect. We refer to this as the “migrant sorting” channel.4

Our empirical findings strongly reject the disease transmission and migrant sorting channels. The
4Another hypothetical channel would involve changes in remittances. If U.S. regions facing larger increases in

social distancing also experience larger declines in economic activities, migrants living in those regions may reduce
their remittance payments, leading to less economic activity and perhaps less mobility in their source regions in
Mexico. While plausible in theory, this mechanism is unlikely to be relevant in our context. First, there was no
substantial decline in remittances. In fact, according to remittance data collected by the Bank of Mexico, aggregate
remittances in March 2020 surged, exceeding those of March 2019 by 35%, while remittances in April and May 2020
were within ±3% of the values in the same months of 2019 (authors’ calculations). Also, Mexican social distancing
responds very quickly to declines in U.S. mobility, within one to two weeks. In contrast, the vast majority (68%) of
Mexicans who send home remittances from the U.S. do so at monthly or longer frequencies, while only 15.3% send
home remittances weekly (Serrano Herrera and Jiménez Uribe 2019).
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observed relationship between U.S. and Mexican social distancing is barely affected when controlling
flexibly for the number of cases in either location, implying that disease transmission is not driving
our results. We address the possibility of migrant sorting first by controlling for pre-pandemic
characteristics in the relevant municipio, including population density, urban status, age distribution,
education, income, and the employment rate. As discussed below, these features are relevant for
disease transmission and compliance with social distancing, but controlling flexibly for them has
minimal effect on our results. We also use government stay-at-home orders as an instrument for
U.S. social distancing behavior and again find nearly identical results. Together, these findings reject
the disease transmission and migrant sorting channels, leaving the information channel as the most
likely explanation for the observed relationship between U.S. and Mexican social distancing.

Our analysis relates to the large literature examining how social network connections reduce
information frictions and facilitate learning. Papers in this literature cover a wide range of topics
including technology adoption, labor markets, international trade, and many others.5 A minority of
these papers implements randomized controlled field trials, which include baseline network measures,
randomized information interventions, and follow-up surveys measuring information transmission.6

In contrast, the majority of this literature infers the presence of social learning based on equilibrium
outcomes in the absence of a well-defined information shock. We contribute a clear example of social
learning in an observational setting where we have a well-defined and credibly exogenous information
shock, a high-quality measure of spatial network connections, and observed changes in behavior that
are closely linked to the new information.

As in our setting, a number of papers in this broader literature focus on situations where im-
migrants transmit information across international borders. Examples include studies finding that
immigrants increase trade with their source countries (Gould 1994, Head and Ries 1998, Rauch and
Trinidade 2002), transfer knowledge through co-ethnic patent citations (Kerr 2008), influence source
country political preferences (Barsbai et al. 2017, Karadja and Prawitz 2019) or fertility norms
(Beine et al. 2013), and facilitate FDI and venture capital funding relationships with the source
country (Dimmock et al. 2019, Kugler and Rapoport 2005, Li 2020, Pandya and Leblang 2017).
We introduce a new example of cross-country information transmission through migrant networks,
documenting migrants’ role in spreading public-health information with potential life-and-death
consequences. Moreover, we show that these responses can arise very quickly, with migrant source
regions benefiting from destination-country information nearly in real time.

Our paper also contributes to the emerging literature examining the determinants of compliance
with public health recommendations in the midst of Covid-19 outbreaks. Contemporaneous work
shows that social distancing compliance varies with civic capital (Barrios et al. 2020), trust in

5BenYishay and Mobarak [2019] and Miller and Mobarak [2015] study information transmission in agricultural
technology adoption; Barwick et al. [2019], Beaman [2012], Dustmann et al. [2016], Edin et al. [2003], and Munshi
[2003] study the role of social networks and immigrant enclaves in job referrals and labor market outcomes; Büchel
et al. [2019] examine how networks affect spatial mobility; Burchardi and Hassan [2013] show how social ties affect
entrepreneurial activity and firm investment.

6Prominent examples include Beaman et al. [2018]; Banerjee et al. [2019]; BenYishay and Mobarak [2019]. See
Breza et al. [2019] for a survey of the literature on networks in economic development.
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science (Brzezinski et al. 2020), education and income (Brzezinski et al. 2020, Wright et al. 2020),
partisanship (Allcott et al. 2020, Fan et al. 2020), media consumption (Ananyev et al. 2020, Simonov
et al. 2020), political leaders’ speech (Ajzenman et al. 2020), and whether workers can telework
(Mongey et al. 2020). Additional work finds that many of these factors can impact the realized
number of Covid-19 cases and resulting deaths (Bursztyn et al. 2020, Desmet and Wacziarg 2020).
Our work shows how migrants’ experiences with U.S. Covid-19 outbreaks affect the social distancing
behavior of those remaining in Mexico. This cross-country context is (to our knowledge) novel in
this literature, and it helps avoid a number of potential pitfalls present in single-country designs.

For example, in a closely related paper Holtz et al. [2020] examine spillover effects of social
distancing policies across U.S. counties, based on pre-existing mobility patterns and social-network
friendship connections. Although we address similar questions, Holtz et al. [2020] face a much more
challenging causal identification problem, because they examine spillovers between U.S. counties. It
is quite likely that a U.S. county’s choice of social-distancing policy is affected by those of neighboring
counties, both for public health and political reasons, so reverse causality is a substantial concern.
In our context, it is far less likely that U.S. social distancing practices or policies were influenced by
Mexican practices or policies, mitigating concerns about reverse causality. The primary remaining
threat to causal inference is the possibility of migrant sorting. As discussed above, we are able
to allay these concerns using flexible controls for regional characteristics that may be relevant for
sorting and an instrumental variables strategy. Thus, our setting provides a relatively clean test
of the importance of social connections in driving compliance with public health recommendations
during the pandemic.

The rest of the paper is organized as follows. Section 2 presents the institutional background
on the Covid-19 epidemic and the U.S.-Mexico ties. Section 3 discusses the data on mobility and
migrant networks. Section 4 shows the main empirical results on the effect of exposure to U.S. social
distancing, and Section 5 investigates heterogeneous effects by origin and destination characteristics.
The last section concludes.

2 Institutional background

2.1 The Covid-19 epidemic and the situations in the United States and in Mex-

ico

Covid-19 is a respiratory disease caused by a novel coronavirus (SARS-CoV-2). After the first case
was reported in Wuhan, China on December 31, 2019, it spread across the world rapidly, despite
containment efforts by various governments and organizations.7 The World Health Organization
(WHO) characterized Covid-19 as a pandemic on March 11, 2020, and by June 12, 2020, there
were 7,533,182 cases, 423,349 confirmed deaths, and 216 countries, areas, or territories with cases
worldwide.8

7See the detailed WHO timeline at https://www.who.int/news-room/detail/27-04-2020-who-timeline---covid-19.
8The following declaration was accessed on June 13, 2020: https://www.who.int/emergencies/diseases/novel-

coronavirus-2019/events-as-they-happen.
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The epicenter of the outbreak has been shifting over time. After China’s initial outbreak and
lockdown measures in January and February, the epicenter shifted to Europe in mid March, followed
by the United States starting from late March, and by June, further shifted to Latin American
countries. In the United States, the first case was reported on January 22, 2020, and President
Trump declared a national emergency on March 13 (in the 11th week of 2020, shown in Figure 1
with a red vertical line).9 As of June 12, 2020, the total number of U.S. cases was 2,016,027 and the
number of deaths was 113,914.10 Figure 1 Panel (a) shows the number of cases (solid circles) and
number of deaths (hollow diamonds) from Week 4 of 2020 (Jan 20–26) to Week 21 (May 18–24).
The numbers of U.S. cases and deaths began increasing rapidly after Week 13. The outbreak in
Mexico emerged slightly later. The first case was confirmed on February 28, 2020, and the increase
in the number of cases and number of deaths accelerated after Week 15 (Figure 1 Panel b). By the
end of Week 22, there were 47.7 cases and 2.9 deaths per 10,000 U.S. population, and there were 8.2
cases and 0.9 deaths per 10,000 Mexican population.11

Figure 1: U.S. outbreak began earlier and was more severe than that of Mexico by Week 21.

(a) United States (b) Mexico

Note: The number of cases and deaths in the United States are from Johns Hopkins University: https://coronavirus.jhu.edu/.
The corresponding information in Mexico is from the Mexican Ministry of Health: https://coronavirus.gob.mx/. The horizontal
axis represents the week of the year in 2020. For example, Week 4 is the Week of Jan 20 to Jan 26, and Week 21 is the week
of May 18 to May 24. The vertical line at Week 11 denotes the week when a national emergency was declared in the United
States.

The Covid-19 outbreak was unexpected, and in many ways unprecedented, meaning that govern-
ments and public health organizations had much to learn regarding how to appropriately respond.12

9Declaration of a national emergency: https://www.whitehouse.gov/presidential-actions/proclamation-declaring-
national-emergency-concerning-novel-coronavirus-disease-covid-19-outbreak/.

10The following source was accessed on June 13, 2020: https://www.cdc.gov/coronavirus/2019-ncov/cases-
updates/cases-in-us.html.

11Note that observed cases and deaths are subject to testing capacity and reporting er-
rors. In the case of Mexico, for example, there are concerns about the hidden death toll:
https://www.nytimes.com/2020/05/08/world/americas/mexico-coronavirus-count.html.

12In WHO’s announcement of the pandemic, the WHO Director-General said that “we have never before seen a
pandemic sparked by a coronavirus. This is the first pandemic caused by a coronavirus. And we have never before
seen a pandemic that can be controlled, at the same time.” (https://www.who.int/dg/speeches/detail/who-director-
general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020)
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As an example, Italy declared a state of emergency on Jan 31, 2020 and subsequently halted air
traffic to and from China.13 However, the disease continued to spread, and a national lockdown
was imposed on March 9, 2020, when Italy became the epicenter of the pandemic. Strict travel re-
strictions were in place, only essential businesses were allowed to open, and people were required to
maintain at least one meter of distance from one another in public spaces.14 In the case of the U.S.,
although international travel restrictions with China were in place relatively early, the effectiveness
of this and other policies has been debated. After one week of the outbreak in the State of Washing-
ton, the White House issued social-distancing guidelines on March 16; recommendations regarding
the use of cloth face coverings were issued by the Centers for Disease Control and Prevention (CDC)
on April 3.15

Individuals also report learning from the experiences of others in their social networks. In Prato,
Italy, where a quarter of the population is ethnic Chinese, residents voluntarily quarantined and
practiced social distancing much earlier than those in the rest of the country, after learning about
the success of similar measures in China, leading to very low rates of infection and transmission.16

Similarly, restaurants owned by Chinese immigrants in the U.S. began scaling up takeout and delivery
operations prior to the U.S. outbreak, based on information from similar businesses in China.17 Holtz
et al. [2020] find that social distancing in U.S. regions significantly influenced policies and behaviors
in other parts of the country.

2.2 Mexico-U.S. migration

The U.S. and Mexico have long been closely linked in terms of trade and migration. The U.S. is
Mexico’s most important trading partner, accounting for 76% of Mexican exports in 2018, and 96%
of those who reported living abroad five years prior to the 2010 Mexican Census.18 Mexican migrants
in the U.S. maintain close ties with their friends and family in Mexico. According to data from the
Mexican Migration Project (MMP), an average Mexican migrant sends 27% of income earned in the
U.S. back to Mexico, a much higher share than saving (20%), food budget (19%), or rent (18%).19

During their first trip to the U.S., 61% of migrants received financial help from people in their home
community. Such close ties do not deteriorate much along repeated migration trips; even in their

13https://www.reuters.com/article/china-health-italy/italy-govt-agrees-state-of-emergency-after-confirmed-
coronavirus-cases-govt-source-idUSR1N282044

14See details of the timeline and measures at: https://en.wikipedia.org/wiki/COVID-
19_pandemic_lockdown_in_Italy.

15The details and timeline of the Washington outbreak: https://en.wikipedia.org/wiki/COVID-
19_pandemic_in_Washington_(state)#March_1%E2%80%935. Social distancing guidelines:
https://www.whitehouse.gov/articles/president-trump-actions-to-confront-pandemic/. Face covering recommen-
dations: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover.html.

16Source: https://www.reuters.com/article/us-health-coronavirus-italy-chinese/from-zero-to-hero-italys-chinese-
help-beat-coronavirus-idUSKBN21I3I8

17https://www.npr.org/2020/05/13/855791740/episode-999-the-restaurant-from-the-future
18Sources: trade data: https://wits.worldbank.org/countrysnapshot/en/MEX; 2010 Mexican Census: IPUMS In-

ternational (Minnesota Population Center 2020).
19The Mexican Migration Project is a collaborative research project based at Princeton University and the University

of Guadalajara. The data are publicly available at: https://mmp.opr.princeton.edu/. The figures here were calculated
using a sample of 8,823 individuals who had a previous trip to the U.S., using survey years from 1982 to 2018.
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last trip to the U.S., 51% received financial help. It is therefore entirely plausible that information
regarding pandemic response would be transmitted from U.S. migrants to contacts in their home
communities.

During a pandemic, the intensive flow of goods and people between the U.S. and Mexico can
transmit both disease and information.20 However, due to the travel restrictions imposed early in
the pandemic, the number of trips across the U.S.-Mexico border fell substantially, as shown in
Figure 2, which reports the number of trips between the two countries as recorded among Facebook
mobile app users. Initially there were more than 134,000 trips per day from Mexico to the U.S., and
more than 137,000 trips from the U.S. to Mexico, but the numbers declined sharply after Week 11
when the U.S. declared a national emergency and imposed more strict travel restrictions. By Week
15, the number of trips declined to 40,000 per day on both sides, with a slight increase afterwards.
Although cross-border flows have fallen by about two-thirds since early March, many people still
cross the border each day. Our empirical analysis will therefore address the possibility of physical
disease transmission along with potential information flows through migrant networks.

Figure 2: Number of trips between the U.S. and Mexico declined after Week 11

Note: The trip counts are calculated using Facebook mobile app users who opt into location services. The horizontal axis is the
week of the year, and the vertical axis is the average number of trips per day during the week. The vertical line at Week 11
denotes the week when the national emergency was declared in the United States.

20For example, Kuchler et al. [2020] use Facebook friendship data between U.S. counties to show that the outbreak
followed these connections.
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3 Data and measurement

3.1 Migrant network between Mexico and the U.S.

We use administrative information from the Matrícula Consular de Alta Seguridad (MCAS) program
to measure migration networks between the U.S. and Mexico at the sub-national level. The MCAS
card, which acts as an official form of identification for banking purposes and other transactions,
is issued by Mexican consulates to Mexican citizens living in the U.S.21 The MCAS administrative
dataset contains annual counts of newly issued MCAS cards by place of birth in Mexico and place
of residence in the U.S.

Caballero et al. [2018] validate the migration network measures obtained from the MCAS data
by showing that although they likely over-represent unauthorized Mexican-born migrants, who have
the strongest incentive to obtain a matrícula, they have strong agreement with the source and
destination distributions of Mexican-born migrants obtained from high quality household surveys
both from Mexico and the U.S. In this paper, we construct the migration network measure as the
share of matrículas issued in 2008 to Mexican-born migrants from each Mexican municipio living in
each U.S. county. Summary statistics appear in Table 1. There are 174,281 municipio-county pairs,
with 2,412 origin municipios and 2,468 destination U.S. counties in the 2008 MCAS dataset. The
average number of migrants per link is 5.5, but it varies substantially, ranging from 1 to 5,253.

Table 1: Summary of statistics for Mexico-U.S. migration networks using the 2008 MCAS data

Variable Value
Number of Mexican municipios 2,412
Number of U.S. counties 2,468
Number of county-municipio pairs (links) 174,281
Mean (s.d.) # of migrants per link 5.5 (28)
Min (max) # of migrants per link 1 (5,253)

Note: 2008 MCAS data. A link is a municipio-county pair, and the number of migrants per link is the number of Mexicans from
the origin municipio who reside in the corresponding destination county in the U.S.

Our empirical analysis relies on the fact that migrants from different municipios choose quite
different destinations in the U.S. and therefore are exposed to different social distancing practices
in different parts of the country. Figure 3 shows the destination distribution for two different
municipios in the state of Michoacán: Huandacareo and Puruándiro. Despite these two sources
being located very close to each other (less than an hour apart by car) and thus roughly equal
distances from particular U.S. labor markets, there are large differences in the U.S. destinations
selected by migrants from these two municipios. The vast majority of migrants from Huandacareo
live in Chicago (Cook County), while the most common destination for migrants from Puruándiro
is Tulare county in California’s Central valley. Because social distancing behavior differed across
these U.S. destinations (shown in Figure 4 below), migrants from Huandacareo and Puruándiro will
be exposed to different degrees of social distancing in the U.S. This example is representative in

21See Caballero et al. [2018] for more detail on the MCAS program and data.
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Figure 3: Differences in migrant destination distributions

Note: 2008 MCAS data. The left panel shows the distribution across U.S. counties for migrants from Huandacareeo, and the

right panel shows the same for migrants from Puruándiro.
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the sense that migrants from otherwise similar municipios often exhibit quite different destination
distributions in the U.S. (Caballero et al. 2018), leading to variation in exposure to U.S. social
distancing across municipios.

3.2 Unacast and Facebook data on local mobility

We use two data sources to measure changes in mobility. Due to the nature of Covid-19 transmission,
scientists have identified social distancing as one of the key measures to combat the pandemic (Hsiang
et al. 2020 and Anderson et al. 2020).22 One way to measure the extent of social distancing behaviors
is to use the reduction in geographic mobility. Our first mobility measure is from Unacast, a New
York based technology company (Unacast 2020). The dataset uses location information from 15-17
million smartphones to calculate the average distance travelled each day. We measure the county-
level mobility reduction as the percentage reduction in the average distance traveled compared to
the same day of the week during the four weeks before March 8, 2020 (prior to the outbreak). As
shown in Table 2, the measure covers 3,054 counties in the U.S., with an average decline in mobility
of 19% during the period of Week 9 to Week 21.23

Table 2: Mobility data summary statistics

Source Country Moment Value
Unacast U.S. # of counties 3,054

Mean (s.d.) of decline in mobility, Week 9–21 –0.19 (0.17)

Facebook U.S. # of counties 2,691
Mean (s.d.) of decline in mobility, Week 9–21 –0.13 (0.14)

Mexico # of municipios 1,084
with exposure to US measure 1,014
Mean (s.d.) of decline in mobility, Week 9–21 –0.21 (0.15)

Sources: Unacast and Facebook Data for Good. Unacast data covers 3,054 U.S. counties, while the coverage of the Facebook
data varies by week (see Appendix Table 10 for details).

Our second mobility measure is from Facebook’s Data for Good program.24 The dataset uses
the location information of users who enable location services on their mobile Facebook app. The
mobility metric is the proportional change in the average number of 0.6 km by 0.6 km tiles visited
during a 24 hour period compared to same day of the week in February 2020 (excluding President’s
day).25 The data cover 2,691 counties in the U.S. and 1,084 municipios in Mexico, since only regions

22See CDC recommendation at: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/social-
distancing.html

23There are two filters applied to the sample to ensure data reliability. Unacast define a “dwell” as a set of location
records observed within 80 meters of eachother within an 8-minute to 4-hour time period. Only devices with at least
two dwells per day or one dwell longer than three hours in duration are included in the analysis. The data also exclude
counties with population less than 1,000 or that did not have at least 100 devices on at least 70% of the days during
the pre-outbreak period.

24Source: https://dataforgood.fb.com/docs/covid19/.
25Details of the tile system are available at: https://docs.microsoft.com/en-us/bingmaps/articles/bing-maps-tile-

system.

72
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 6
2-

12
0



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

with more than 300 unique users are included. During the period of Week 9 to Week 21, the average
decline in mobility in the U.S. is 13%, and the decline in Mexico is 21%. (Table 2)

Places in the U.S. vary in the extent of social distancing. We measure social distancing based on
the observed mobility reduction, with more positive values corresponding to larger larger declines
in mobility. Figure 4 uses Cook County in Illinois (solid circles) and Tulare County in California
(hollow diamonds) as an example. The reduction in mobility is more pronounced and persistent in
Cook County than in Tulare County. In the Unacast data (Panel a) both counties started around
zero in Week 10, and by Week 12, the decline in mobility was 37% in Cook County and 23% in
Tulare County. In Week 21, Cook County’s mobility reduction declined to 30%, while in Tulare
County it fell just below zero, indicating no reduction in mobility compared to the pre-pandemic
period. Although the differences are less extreme in the Facebook data (Panel b), mobility in Cook
County clearly decreased far more than in Tulare County in each week. Appendix Figure 10 maps
the increase in social distancing from Week 9 to Week 21 for all U.S. counties in the Unacast and
Facebook datasets, documenting substantial variation in social distancing behavior across counties.

Figure 4: Larger and more persistent mobility reduction in Cook County than in Tulare County,
Week 9–21.

(a) Unacast data (b) Facebook data

Note: The solid vertical line is at Week 11, when a national emergency was announced in the U.S.

Our Facebook data also cover mobility in Mexican municipios. Figure 5 shows the trends in
social distancing (solid circles, left y-axis) in Huandacareo (Panel a) and Puruándiro (Panel b), the
two municipios in Michoacán considered in Figure 3. Social distancing in Mexico lagged that of
the U.S. by a few weeks, consistent with the somewhat later emergence of the pandemic in Mexico.
Both Huandacareo and Puruándiro exhibit substantial reductions in mobility by Weeks 13 and 14,
although Huandacareo exhibits more social distancing than Puruándiro. As we will discuss below,
this is consistent with the fact that migrants from Huandacareo, who tend to migrate to Chicago,
were exposed to more social distancing in the U.S. than migrants from Puruándiro, who tend to
migrate to California’s Central Valley.
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Figure 5: Trends in social distancing in Huandacareo and Puruándiro, Mexico and their exposure
to U.S. mobility declines

(a) Huandacareo (b) Puruándiro

Note: The solid vertical line is at Week 11, when a national emergency was announced in the U.S.

3.3 Mexican exposure to U.S. social distancing

Intuitively, if a municipio happened to have more migrants residing in a U.S. county where more
social distancing measures were taken, the migrants’ relatives and friends remaining in that municipio
may have received more information about the severity of Covid-19 and the importance of social
distancing, and may have further transmitted this information to other residents of the municipio.
Thus, we measure a Mexican municipio’s exposure to U.S. social distancing practices as follows:

exposuresit =
X

j

mijP
j0 mij0

socdistsjt, (1)

where mij is number of MCAS cards issued to migrants from municipio i living in county j

in 2008, socdistsjt is the social distancing measure in county j week t using data sources s 2
{Facebook,Unacast}. In our main analysis, we reduce noise by using the principal component of the
two social distancing measures, denoted as exposurepcit , but our results are robust to using either
data source individually.

Figure 6 maps the change in the exposure measure in (1) for each Mexican municipio from
Week 9 to Week 21, using the Unacast data. This exposure measure ranges from –0.02 to 0.47, and
the mean is 0.2, indicating that migrants lived in U.S. counties with a 20 percentage-point average
decline in mobility from Week 9 to Week 21. Variation in exposure derives from a combination of the
variation in social distancing across U.S. counties, shown in Figure 4 and Appendix Figure 10, and
the variation in the migrant destination distribution across municipios, shown in Figure 3. These
two sources of variation lead to significant differences in exposure to U.S. social distancing across
municipios, and our empirical analysis will examine how this exposure influenced social distancing
behavior in Mexico.
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Figure 6: Change in exposure to U.S. social distancing, Week 9 to Week 21

Note: The change in exposure to U.S. social distancing is calculated as exposureUnacast
21 � exposureUnacast

9 , using the Unacast
data. See Appendix Figure 9 for versions using Facebook or the principal component of the Unacast and Facebook measures
together.

Returning to Figure 5, we plot the exposure measure (hollow diamonds, right y-axis) for Huan-
dacareo (Panel a) and Puruándiro (Panel b). Because Huandacareo’s migrants concentrate in Cook
County (Chicago), which had a large increase in social distancing, and Puruándiro’s migrants con-
centrate in Tulare County (CA Central Valley), which had much less social distancing, Huandacareo
was exposed to a larger U.S. mobility decline throughout the pandemic period. A municipio’ s mix
of migrant destinations combines with variation in social distancing behavior across U.S. counties to
create variation in exposure to U.S. social distancing, as measured in (1). After being more exposed
to more U.S. social distancing through its migrant network, Huandacareo exhibited larger declines in
mobility than Puruándiro. As we will document below, this relationship between U.S. and Mexican
social distancing holds on average across municipios.

3.4 Other datasets

We use various data sources to measure characteristics of U.S. counties and Mexican municipios
that may have affected disease or information transmission. The number of weekly Covid-19 cases
and deaths by U.S. county come from John Hopkins University, and the corresponding information
for Mexico come from the Mexican Ministry of Health.26 Paralleling our measure of exposure to
U.S. social distancing, we also construct municipio i’s exposure to U.S. Covid-19 cases as follows.

26Sources: https://coronavirus.jhu.edu/ and https://coronavirus.gob.mx/, respectively.
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exposurecaseit =
X

j

mijP
j0 mij0

sinh�1(cumulative casesjt), (2)

where sinh�1(cumulative casesjt) is the inverse-hyperbolic-sine transformation of the cumulative
number of cases in county j and week t. We use the inverse hyperbolic sine transformation to
include the counties with zero cases, and in the remaining text, we use “log cumulative cases” or
“log new cases” as a shorthand, given the close correspondence between the natural log and inverse
hyperbolic sine, particularly for large numbers.

U.S. county characteristics are from the 2010 Census and 2005–2009 American Community Sur-
veys (ACS). Specifically, we use the 2010 Census to calculate the county-level Hispanic or Latino
share of the population, the Mexican population share, total population, and information on the land
area (used to calculate population density). We use the 2005–2009 ACS to calculate the county-level
(1) number of Hispanic and Latino individuals aged 25 and over by educational attainment, and
similar numbers for the overall population; (2) number of Hispanic and Latino families by income
group; (3) mean and median household income in the entire population; (4) number of employed
persons by industry (NAICS); and (5) mode of transportation to work.

Mexican municipio characteristics are from the 2015 Intercensal Count (Coneto), including the
share of working age population (aged 16 to 65), schooling attainment, share employed, and in-
come earned in the working age population.27 We obtain population density and percent of urban
population from Mexican Statistical Office (INEGI) tabulations.

The timing of issuing and lifting stay-at-home orders by U.S. states are obtained from Raifman
et al. [2020], and similar data for Mexican states were collected from Mexican states’ official decrees
(see Appendix B).

4 Social learning across borders: main empirical results

4.1 Empirical specification

Our empirical analysis examines the impact of exposure to U.S. social distancing practices on social
distancing in Mexican municipios, and seeks to isolate the portion of that impact driven by social
learning. Our baseline estimation equation is as follows:

socdistit = ↵+ �exposurepcit + �zit + Ii + It + ✏it (3)

where socdistit is the mobility reduction in municipio i week t using the Facebook data, and
exposureit measures exposure to U.S. social distancing in the same week. We include a variety
of municipio-week-specific controls zit to take into account time-varying region-specific factors that
could affect people’s social distancing behavior, such as the severity of the local disease outbreak.
Municipio fixed effects Ii are included to control for municpio-specific factors such as population

27Source: IPUMS International [Minnesota Population Center, 2020].

76
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 6
2-

12
0



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

density, income level, education level, and means of transportation to work. Week fixed effects It

are used to account for national policies that affect social distancing behaviors across all regions in
a week. We present robust standard errors, but clustering at the municipio level gives very similar
results.

The parameter � captures the relationship between U.S. social distancing behaviors and network-
connected Mexican municipios’ social distancing practices. A positive value of � indicates that
muncipios connected to U.S. counties practicing more social distancing experienced on average
larger reductions in mobility. In order to interpret � as the causal effect of U.S. social distancing
on Mexican social distancing, the key identification assumption is that changes in social distancing
behaviors across Mexican municipios with similar observable characteristics would not have differed
systematically in the absence of differential exposure to U.S. social distancing practices.

This identification assumption may be violated if, for example, Mexican regions with higher
population density tend to send more migrants to U.S. counties with higher population density.
Since the probability of infection is higher in denser areas, people in both regions may practice more
social distancing even in the absence of information transmission. A similar issue may arise if migrant
origins and destinations are selected along other dimensions that affect the severity of the local Covid-
19 outbreak. We refer to this as the “migrant sorting” channel and rule out its effects on our estimates
by including extensive controls flexibly capturing the effects of relevant regional characteristics over
time. Another threat to causal interpretation would arise if more exposed municipios had different
trends in mobility even before the outbreak. However, as seen in Figures 4 and 5, both U.S. and
Mexican mobility reductions were very close to zero in Week 9 compared to the pre-Covid period.
This is not particular to the regions examined in those figures; the mean mobility reduction across
municipios was 0.01 in Week 9 (standard deviation 0.05). Thus, pre-Covid social distancing trends
were nearly identical and approximately equal to zero across municipios.

A final concern is that a positive estimate of � may reflect the effects of disease transmission
rather than information transfer along migrant networks. If disease transmission operates along
the migration network, then migrant-connected locations in the U.S. and Mexico will have similar
severity and timing of outbreaks and may have similar degrees of social distancing as a result.
Although a result driven by this “disease transmission” channel could potentially be interpreted as a
causal effect of exposure to the U.S. outbreak, it would not reflect the information channel of interest.
In order to rule out this disease transmission channel, we include flexible controls for the severity
of the local outbreak in the municipio and in network-connected U.S. counties (following (2)). In
addition, we address a variety of these causal inference concerns using government stay-at-home
order as an instrument for U.S. social distancing behavior.28

28See footnote 4 for a discussion ruling out the role of remittances in driving correlated social distancing between
migrant-connected regions in Mexico and the U.S.
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4.2 Main results

Before reviewing the main estimation results from Equation (3), we present visual evidence on the
relationship between Mexican social distancing and declines in mobility in migrant-connected U.S.
counties. For each municipio i, we calculate the long-difference change in local social distanc-
ing (socdisti21 � socdisti11) and the change in the municipio’s exposure to U.S. social distancing
(exposurepci21 � exposurepci11) from Week 11 to Week 21. Figure 7 shows a scatter plot relating these
two measures, where each point represents a municipio. The fitted line has a slope of 0.1 (significant
at the 1% level), indicating that a one-standard-deviation larger exposure to U.S. social distancing
is associated with a 0.2-standard-deviation larger decrease in Mexican’ mobility.

Figure 7: Positive correlation between changes in social distancing in Mexico and the U.S. (Week
11 to Week 21)

Note: This figure includes all Mexican municipios with at least one Covid-19 case in Week 21, and each point represents a
municipio. The horizontal axis is the exposure to U.S. social distancing in Week 21 minus that in Week 11 (exposurepci21 �
exposurepci11), and the vertical axis is the change in social distancing in a Mexican municipio between Week 21 and Week 11
(socdisti21 � socdisti11). The mean (s.d.) of the x-axis is 0.8 (0.2), and the mean (s.d.) of the y-axis is 0.3 (0.1).

We now turn to the main specification in equation (3) to investigate cross-border learning about
social distancing. Table 3 shows the estimation results. Columns (1)–(4) only include municip-
ios with at least one case by Week 21 and Columns (5)–(8) include all municipios.29 In Column
(1), we regress social distancing in Mexican municipios on the exposure to U.S. social distancing
(exposurepcit ), controlling for municipio fixed effects and week fixed effects. The coefficient is 0.05

29For details on the sample restrictions, see Appendix 11.
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(statistically significant at the 1% level), indicating that a one-standard-deviation larger exposure
to U.S. social distancing (1.4) led to a 0.47-standard deviation larger increase in social distancing in
Mexico. Column (5) uses the same specification for all municipios. The coefficient is 0.03, smaller
than the Column (1) estimate, suggesting that the learning effect might be weaker in areas with no
active Covid-19 cases.30

Table 3: Larger exposure to U.S. social distancing led to more social distancing in Mexico, Week 9
to Week 21
Outcome: (1) (2) (3) (4) (5) (6) (7) (8)
Mexico social dist. Municipios with cases>0 All municipios

Exposure to U.S. social dist. 0.05*** 0.05*** 0.04*** 0.05*** 0.03*** 0.03*** 0.03*** 0.03***
(0.005) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004)

Exposure to log U.S. cum. cases -0.01*** -0.01*** -0.01*** -0.01***
(0.003) (0.003) (0.002) (0.002)

Log cum. cases in Mexico muni. 0.02*** 0.02*** 0.01*** 0.02***
(0.001) (0.001) (0.001) (0.001)

Constant 0.22*** 0.28*** 0.19*** 0.28*** 0.21*** 0.26*** 0.19*** 0.26***
(0.000) (0.015) (0.001) (0.015) (0.000) (0.013) (0.001) (0.013)

Observations 10,051 10,051 10,051 10,051 13,036 13,036 13,036 13,036
R-squared 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects
are controlled in all columns. Columns (1)–(4) include the municipios with at least one Covid-19 case at the end of Week 21,
and Columns (5)–(8) include all municipios. The mean (s.d.) of Mexican social distancing in the first four columns is 0.21
(0.15), and the mean (s.d.) of the exposure to U.S. social distancing is -0.02 (1.4). The mean (s.d.) of the log cumulative cases
in Mexico is 1.4 (1.8), and the mean (s.d.) of the exposure to U.S. cases is 5.1 (2.7). The corresponding numbers for the last
four columns are: 0.21 (0.15), -0.1 (1.4), 1.1 (1.7), and 5.1 (2.7).

In Columns (2)–(5) and (6)–(8), we introduce controls for the cumulative numbers of cases in
the relevant muncipio or in the U.S. destinations to which it is connected via the migrant network,
using the measure in equation (2). As expected, when the local outbreak is more severe, people in
Mexico practice more social distancing.31 In contrast, the U.S. case-exposure variable consistently
has a negative coefficient, suggesting that observing more cases in U.S. destination regions actually
decreased people’s incentive to practice social distancing in Mexico. One potential explanation is
that, conditional on the realized level of U.S. social distancing, an increase in the number of U.S.
cases sends the signal that social distancing is not very effective in stopping the spread of the
disease.32 That said, the most important conclusion for this portion of the analysis is that the

30These numbers are smaller than the slope coefficient in Figure 7, since the previous estimate only uses data from
Week 11 and Week 21. It is evident from Figure 4 that the U.S. social distancing was the strongest around Week 15
and declined afterwards due to reopening. In the meantime, Mexican social distancing had not declined by the end
of the study period (Week 21). Thus, when we use the full panel of Week 9 to Week 21 instead of restricting to the
starting and the ending weeks alone, the changes in U.S. social distancing are larger, and as a result, the coefficient
estimate on exposure is smaller.

31Similarly, Brzezinski et al. [2020] find that in the United States, people engage in social distancing even in the
absence of lockdown policies, once the virus occurs in their area.

32Briscese et al. [2020] present a related finding, showing that Italian residents were less likely to follow self-isolation
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estimated effect of exposure to U.S. social distancing is essentially unchanged when including these
controls for the number of cases. This finding rules out the disease transmission channel discussed
in the prior subsection. If the observed correlation between U.S. and Mexican social distancing
were the result of disease transmission along the migrant network, the inclusion of these controls
would absorb the variation driving the observed correlation, and our results would disappear. In
Appendix Table 17, we further reinforce this conclusion by controlling for flexible functional forms
of the number of cases, with nearly identical results.

Although disease transmission is not an important mechanism driving the relationship between
U.S. and Mexican social distancing behavior, it remains possible that correlated social distancing
behavior results from underlying similarities in migrants’ source and destination regions – what we
have called the “migrant sorting” channel. For example, concurrent research finds that individuals
and regions with higher education levels and higher incomes are more likely to practice social dis-
tancing (Brzezinski et al. 2020, Wright et al. 2020, Mongey et al. 2020, and Fan et al. 2020, among
others). If migrants from higher income areas of Mexico are more likely to choose higher income des-
tinations in the U.S., then one might observe correlated social distancing even without information
transmission. Although our inclusion of municipio fixed effects addresses level differences in social
distancing, it does not capture the likelihood that higher income locations (for example) increasingly
practicing social distancing as the pandemic evolves.

We address this migrant sorting concern in Table 4. First, we measure municipio features
that the literature has shown are correlated with baseline social distancing behavior, including
population density, urban share, working-age share, average years of education, mean log income,
and the employment to population rate. Then, we control for each feature interacted with separate
indicators for each week of our sample, allowing for the effect of the relevant feature to vary arbitrarily
over time. As an example, Column (1) interacts the initial population density with week indicators,
controlling for the possibility that migrants from more densely populated municipios choose to live in
more densely populated counties. Across the columns of Table 4, it is apparent that the six regional
features generally drive larger gaps in Mexican social distancing between Week 9 and Week 12, after
which the effects are largely stable. Most importantly for our purposes, the effect of exposure to U.S.
social distancing is very stable when comparing the estimates in Table 4 to those in Columns (1)–(4)
of Table 3.33 This rules out the effects of migrant sorting based on the characteristics investigated
in Table 4.

Another potentially important regional characteristic is the share of jobs that facilitate working
from home. In Appendix Section C.6, we use the industry-level measure of the ability to work from
home constructed by Dingel and Neiman [2020], and the industry mix of local employment in the
2015 Intercensal Count to construct the share of jobs in each Mexican municipio that facilitate
working from home. We repeat the analysis in Table 4 by using the interaction of this share with

policies when the policies are kept in place longer than expected. In our context, Mexican residents may also be
discouraged by the observation that U.S. cases kept increasing despite the social distancing policies, and were less
likely to follow suit.

33Table 4 uses only municipios with a positive case count, but we find similar agreement when using all municipios
- see Appendix Table 22.
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week fixed effects, finding that the effect of exposure to U.S. social distancing remain unchanged.
Thus, as with the characteristics examined in 4, this regional characteristic is not likely to drive the
relationship between U.S. and Mexican social distancing through migrant sorting.

Table 4: The main results are robust to controlling for differential effects of socio-economic conditions
across weeks
Variable for (1) (2) (3) (4) (5) (6)
interaction pop. density % urban % age 16–65 years edu. log income % employed

Exposure to U.S. social 0.04*** 0.04*** 0.04*** 0.04*** 0.05*** 0.04***
distancing (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Week 10 Interaction 0.002 0.01 0.13 0.002 0.01 0.05
(0.001) (0.01) (0.10) (0.003) (0.01) (0.05)

Week 11 Interaction 0.003** 0.02** 0.22** 0.006** 0.03*** 0.10**
(0.001) (0.01) (0.09) (0.003) (0.01) (0.05)

Week 12 Interaction 0.01*** 0.06*** 0.53*** 0.01*** 0.06*** 0.22***
(0.001) (0.01) (0.09) (0.002) (0.01) (0.04)

Week 13 Interaction 0.01*** 0.04*** 0.64*** 0.01*** 0.05*** 0.21***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 14 Interaction 0.01*** 0.04*** 0.65*** 0.01*** 0.04*** 0.23***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 15 Interaction 0.01*** 0.05*** 0.69*** 0.02*** 0.06*** 0.24***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 16 Interaction 0.01*** 0.05*** 0.70*** 0.02*** 0.05*** 0.24***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 17 Interaction 0.01*** 0.05*** 0.73*** 0.02*** 0.05*** 0.23***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 18 Interaction 0.01*** 0.04*** 0.73*** 0.02*** 0.05*** 0.22***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 19 Interaction 0.01*** 0.04*** 0.89*** 0.02*** 0.05*** 0.26***
(0.001) (0.01) (0.09) (0.002) (0.01) (0.04)

Week 20 Interaction 0.01*** 0.05*** 0.90*** 0.02*** 0.05*** 0.25***
(0.001) (0.01) (0.08) (0.002) (0.01) (0.04)

Week 21 Interaction 0.01*** 0.04*** 0.89*** 0.02*** 0.04*** 0.23***
(0.001) (0.01) (0.09) (0.002) (0.01) (0.04)

Observations 10,051 9,882 10,051 10,025 10,025 10,051
R-squared 0.92 0.91 0.92 0.92 0.91 0.92

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Municipio fixed effects are controlled in all
columns. Each column replicates the regression in Table 3 and adds the interaction of a city characteristic with week fixed
effects. Week 9 is the baseline week. The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case by the
end of Week 21.

In the Appendix, we present a wide variety of robustness tests, including analyses using the
Unacast and Facebook measures of U.S. social distancing separately, introducing flexible controls
for realized cases in the U.S. and Mexico, introducing leads and lags of exposure to U.S. cases,
and controlling for Mexican state-level stay-at-home orders. In all cases, the results presented here
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are confirmed, and all specification checks yield favorable results.34 Using estimates with Facebook
exposures directly (Table 14), a 14-percentage-point larger decline in average mobility faced by
migrants to the U.S. leads to a 4-percentage-point larger decline in mobility in the municipio.

To further reinforce our interpretation that U.S. social distancing causes changes in Mexican so-
cial distancing, we implement an instrumental variables analysis using U.S. stay-at-home orders as
an instrument for observed U.S. social distancing. State-level stay-at-home orders were first imposed
in the third week of March and started to be phased out in the last week of April (see Appendix
Figure 14). In order for stay-at-home orders to serve as a valid instrument for U.S. social distancing,
the orders must drive substantial increases in social distancing in the relevant counties (confirmed
shortly in the first-stage analysis), must not be subject to confounding from reverse causality or
omitted variables, and must affect Mexican social distancing only through U.S. social distancing.
The latter two conditions are likely satisfied in our context, since U.S. policies are unlikely to be
influenced by Mexican social distancing behavior and are likely to affect Mexican behavior only
through information transmission. Migrant sorting could still pose a concern if migrants from mu-
nicipios that are more likely to comply with social distancing recommendations are more likely to
choose destinations that impose stay-at-home orders. While possible, we do not find this concern
compelling, as migrants’ destinations are primarily driven by enclave locations and economic con-
siderations, and few would have anticipated the emergence of the pandemic or how different states
would respond to it.

We begin by constructing each municipio’s exposure to U.S. stay-at-home orders as the share of
its migrant network in U.S. states with a stay-at-home order in week t.

stayhome_IVit =
X

j

mijP
j0 mij0

1(stayhomejt) (4)

Appendix Figure 15 shows that there is substantial variation in exposure to U.S. stay-at-home
orders across municipios, even in mid April, when a majority of states had active stay-at-home
orders in place. Table 5 shows the first-stage regression relating exposure to U.S. social distancing
(Equation 1) to the stay-at-home exposure instrument (Equation 4) and controls for cumulative
U.S. and Mexican case counts. In all cases, the coefficient on the instrument is positive and highly
statistically significant, yielding first-stage F-statistics of at least 596 and ruling our weak-instrument
concerns. The magnitude of the coefficient on the stay-at-home instrument is 0.271, implying that
even after controlling for the actual numbers of cases, a one-standard-deviation larger increase in
exposure to U.S. stay-at-home order led to a 0.07-standard-deviation larger increase in exposure to
U.S. social distancing.35

34In the main analysis, since some counties are not covered in the Facebook data, the migrant shares do not sum
to 1 in Equation 1 when using the Facebook mobility measure in the U.S. In Appendix Section C.4, we show that the
results are very similar when we rescale the shares to sum to 1. Out of the 959,089 migrants in the MCAS data, only
1,536 are not in counties covered by the Facebook data (less than 0.2%).

35Appendix Figure 16 shows a first-stage residual plot corresponding to Column (1) of Table 5, and Appendix Table
25 performs a similar analysis at the U.S. county level showing the determinants of social distancing behavior in the
U.S.
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Table 5: First stage: municipios with larger exposure to U.S. stay-at-home policies were also more
exposed to U.S. social distancing

Outcome: Exposure to U.S. social distancing (1) (2) (3) (4)

Exposure to U.S. stay-at-home orders 0.271*** 0.271*** 0.271*** 0.271***
(0.017) (0.016) (0.017) (0.016)

Exposure to log U.S. cumulative cases 0.045*** 0.045***
(0.014) (0.014)

Log cum. cases Mexican muni. 0.005*** 0.005***
(0.002) (0.002)

Constant -0.163*** -0.425*** -0.170*** -0.427***
(0.009) (0.078) (0.009) (0.078)

Observations 10,051 10,051 10,051 10,051
R-squared 0.993 0.993 0.993 0.993
First-stage F-statistic 597 602 596 600

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. All columns include controls for week fixed
effects and municipio fixed effects. The mean (s.d.) of exposure to U.S. social distancing is -0.02 (1.4), and the mean (s.d.) of
the exposure to U.S. stay-at-home orders is 0.54 (0.36). The sample is the Week-9-to-21 panel of municipios with at least one
Covid-19 case by the end of Week 21.

The instrumental variable results appear in Table 6. We restrict attention to municipios with
a positive number of cases by Week 21, corresponding to the OLS regressions in Columns (1)–(4)
of Table 3.36 The estimates are quite similar to those in Table 3, confirming our main findings and
further ruling out concerns regarding potential migrant sorting in driving the observed relationship
between U.S. and Mexican social distancing behaviors.

Table 6: IV results confirm main findings in Table 3.

Outcome: Mexican social distancing (1) (2) (3) (4)

Exposure to U.S. social distancing 0.046** 0.046** 0.042** 0.042**
(0.019) (0.019) (0.019) (0.019)

Exposure to log U.S. cum. cases -0.012*** -0.014***
(0.003) (0.003)

Log cum. cases Mexican muni. 0.015*** 0.016***
(0.001) (0.001)

Observations 10,051 10,051 10,051 10,051
Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects
are included in all columns. The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case by the end of
Week 21. The exposure to U.S. social distancing is instrumented with the exposure to U.S. stay-at-home orders in all columns.

Together, the various results and robustness tests in this section document a strong and robust
relationship between social distancing behavior in the U.S. and reductions in mobility in migrant-

36See Appendix Table 26 for the corresponding reduced-form regressions.
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connected regions in Mexico. This appears to be a causal relationship that was not driven by
disease transmission or migrant sorting between similar regions in the U.S. and Mexico. Instead, the
results support the conclusion that receiving information about social distancing from acquaintances,
friends, and family living in the U.S. led to increased social distancing in Mexico.

5 Heterogeneous effects by origin and destination characteristics

Information transmission and social learning depend not only on the information content itself, but
also crucially on how the information is spread and who communicates with whom. For example,
BenYishay and Mobarak [2019] show that the social standing of the communicators matters in the
process of promoting agricultural technology adoption, and that people who share the same group
identity and face comparable agricultural conditions are especially influential. Büchel et al. [2019]
show that in migrant networks, local contacts who migrated recently or are more central in the
social network have larger impacts on reducing information frictions. In the context of the Covid-
19 pandemic, Fan et al. [2020] find that there are substantial gaps in behaviors and beliefs across
gender, income, and partisanship lines. These gaps may also influence the effects of information
transmission. In this section, we therefore investigate heterogeneity in the effect of exposure to U.S.
social distancing based on the characteristics of Mexican municipios and of connected U.S. counties
in the following sections.

5.1 Origin characteristics

We first focus on origin characteristics. As an example, even when facing the same exposure to
U.S. social distancing, people living in a municipio with higher average educational attainment may
react differently than those in a less educated area. For example, people with more education may
have more trust in science, which facilitates the adoption of social distancing (Brzezinski et al.
2020). We test for heterogeneity along this and other dimensions by interacting various municipio
characteristics with the exposure measure in equation (1). The regression is as follows.

socdistit = ↵+ � exposurepcit + � exposurepcit ⇥ Ci + Ii + It + ✏it, (5)

where Ci is a time-invariant baseline characteristic of municipio i, including population density,
urban share of population, share of working age population, average years of education, log earnings
per person, and share employed. Note that the municipio fixed effects, Ii, capture the level effect of
the characteristic Ci. To interpret the size of the heterogeneous effects, we first evaluate the impact
of the exposure to U.S. social distancing (exposurepcit ) at the mean value of Ci and call it �̂1. Then we
evaluate the effect at the mean plus one-standard deviation of Ci and call it �̂2. Finally, we compare
the two by calculating �̂ = �̂2/�̂1� 1. A more positive value of �̂ indicates that more positive values
of Ci drive more positive effects of U.S. social distancing on Mexican social distancing.37

37The expressions for �̂1 and �̂2 are as follows: �̂1 = �̂ + �̂C̄, and �̂2 = �̂ + �̂(C̄ + sd(C)), where C̄ is the mean of
Ci, and sd(C) is the standard deviation of Ci.
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Generally, we find that municipios with more favorable socio-economic conditions responded
more strongly to U.S social distancing. Table 7 Column (1) evaluates the heterogeneous effect by
the population density. Compared to the effect on a municipio with average population density, the
effect is 8% larger when the population density is one-standard deviation larger. We find similar
heterogeneity when considering the urban population share (7%), working age population share
(12%), average years of schooling (10%), log average earnings (7%), and employment share (9%). In
Appendix C.6, we also show the heterogeneous effect for the ability to work from home. The results
are similar to those in Table 7, and this is consistent with Dingel and Neiman [2020]’s finding that
regions with higher incomes also have higher shares of jobs in which working home is feasible.

Table 7: Municipios with more favorable socio-economic conditions responded more strongly to U.S.
social distancing

Outcome: Mexico social dist. (1) (2) (3) (4) (5) (6)

Exposure to US social dist. 0.04*** 0.03*** -0.04*** 0.02*** -0.04*** 0.02***
(0.005) (0.005) (0.008) (0.006) (0.013) (0.006)

Interact: population density 0.002***
(0.000)

Interact: share urban 0.01***
(0.002)

Interact: aged 16-65 share 0.15***
(0.012)

Interact: yrs of schooling 0.003***
(0.000)

Interact: log income 0.01***
(0.001)

Interact: % employed 0.05***
(0.006)

Constant 0.22*** 0.21*** 0.22*** 0.22*** 0.22*** 0.22***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean (s.d.) of the interaction 0.56 (1.8) 0.59 (0.27) 0.62 (0.04) 8.6 (1.4) 8.4 (0.34) 0.51 (0.08)
�̂ 8% 7% 12% 10% 7% 9%
Observations 10,051 9,882 10,051 10,025 10,025 10,051
R-squared 0.92 0.91 0.92 0.92 0.91 0.92

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects
are included in all columns. Each column replicates the regressions in Column (1) of Table 3 and adds the interaction of a
municipio characteristic with the exposure to U.S. social distancing. The sample is the Week-9-to-21 panel of municipios with
at least one Covid-19 case by the end of Week 21.

5.2 Destination characteristics

Migrant destination characteristics may also influence the information transmission process. In addi-
tion to the examples mentioned above, Kerr [2008] shows that ethnic ties to home countries among
scientific and entrepreneurial communities in the U.S. facilitate international knowledge transfer.
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Mexican migrants in the United States may be more likely to learn from people with a similar back-
ground. For example, if a destination region has a larger Hispanic community or has a higher share of
residents of Mexican descent, the connected municipios may learn from them more easily. Learning
about social distancing may also be more effective if the destination regions’ Hispanic population
has higher socio-economic status. If Mexican migrants learn from the general population, then the
average education and income level of U.S. counties may also be important.

Table 8: The effect of exposure to U.S. social distancing is not significantly different across municipios
that are connected to different types of U.S. counties

Outcome: Mexico soc dist. (1) (2) (3) (4) (5) (6)

Exposure to U.S. soc dist. 0.05*** 0.05*** -0.03 -0.01 -0.004 0.005
(0.005) (0.005) (0.026) (0.019) (0.077) (0.056)

Interact: % Hispanic -0.001
(0.005)

Interact: % Mexican 0.007
(0.004)

Interact: Hispanic education 0.006***
(0.002)

Interact: education 0.004***
(0.001)

Interact: log Hispanic income 0.005
(0.007)

Interact: log income 0.004
(0.005)

Constant 0.22*** 0.22*** 0.22*** 0.22*** 0.22*** 0.22***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean (s.d.) of the interaction 0.29 (0.08) 0.22 (0.08) 10.3 (0.21) 13.1 (0.28) 10.9 (0.06) 11.2 (0.08)
�̂ 3.5% 3%
Observations 10,051 10,051 10,051 10,051 10,051 10,051
R-squared 0.91 0.91 0.91 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects
are included in all columns. Each column replicates the regression in Table 3 and adds the interaction of the average U.S.
destination characteristic faced by migrants from each municipio characteristic with the municipio’s exposure to U.S. social
distancing. The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case by the end of Week 21.

In Table 8, we evaluate how the effect of exposure to U.S. social distancing differs by the average
characteristics of migrant-connected destination regions. For a destination county characteristic xj ,
we calculate the average value faced by migrants from municipio i as follows.

xi =
X

j

mijP
j0 mij0

xj

We then estimate specifications paralleling equation (5), using xi as the interaction variable. We
find that the effect of exposure is not significantly influenced by the share of Hispanics, the share
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of population of Mexican descent, the log Hispanic household income, or the log average income
(Columns (1), (2), (5), and (6)). In contrast, we do find significant heterogeneity based on the
overall education level in the destination regions and by the education level of Hispanic individuals
in the destinations (Columns (3) and (4)). However, the extent of heterogeneity is quite small; using
the same �̂ measure described in the previous subsection, compared to the effect of exposure of a
municipio with average education level at the destination, the effect is only 3-4% larger when the
destination’s education level is one-standard deviation larger.

In sum, we primarily find heterogeneity in learning based on origin characteristics. More affluent
Mexican municipios responded more strongly to exposure to U.S. social distancing, while the effects
do not differ much by observable destination characteristics. One potential explanation is that
Mexican residents may not distinguish much between different types of U.S. counties, which is
consistent with the fact that U.S. counties are much more homogeneous than Mexican municipios.38

6 Conclusion

People are social entities who learn about information and form beliefs through their social connec-
tions. Among various sources of information, friends and family can be especially important when
forming beliefs, particularly when there is considerable uncertainty and the stakes are high. In the
context of the early-2020 Covid-19 pandemic, we study the effects of migrants’ exposure to U.S.
social distancing practices on social distancing behavior in Mexico.

Using detailed municipio-to-county migrant network data and observed social distancing behav-
ior in U.S. counties based on smartphone tracking data, we construct the exposure to U.S. social
distancing for the residents of each Mexican municipio. We find that this exposure had a positive
impact on the Mexican residents’ social distancing behavior, and that this effect was likely driven
by learning, rather than assortative matching between origin places and destination places, or the
possibility of disease transmission along the network. Mexican regions with more favorable socio-
economic conditions responded more strongly to U.S. social distancing exposure, but the effect did
not differ significantly based on the characteristics of migrants’ locations in the U.S.

Together, these findings highlight the importance of social networks in influencing individuals’
compliance with or rejection of public health recommendations in the context of an emerging pan-
demic. We chose to examine this kind of social learning in the international context because it
resolves difficult identification issues that arise in other contexts, since events in Mexico were un-
likely to have a significant influence on U.S. social distancing behaviors or policies. However, our
conclusions are nonetheless informative regarding the broader importance of personal connections
when policy makers seek to change fundamental social behaviors, such as social distancing or wearing
masks during a disease outbreak.

38For example, as shown in Table 7 and Table 8, the standard deviation of years of schooling across Mexican
municipios is 1.4, and the standard deviation of years of schooling across connected U.S. counties is 0.28. The
standard deviation of years of schooling across 3,195 U.S. counties is 0.73.
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Appendix

A Data

This section presents additional summary statistics on the geographic variation in exposure to social
distancing behavior across U.S. counties for each Mexican source region (municipio).

A.1 Weeks of the year in 2020

Table 9 shows the dates for each week of the year covered in both Facebook and Unacast datasets
used to measure local mobility, as explained in section 3.

Table 9: Week of the year table, 2020

Week Number From Date To date
Week 9 February 24 March 1
Week 10 March 2 March 8
Week 11 March 9 March 15
Week 12 March 16 March 22
Week 13 March 23 March 29
Week 14 March 30 April 5
Week 15 April 6 April 12
Week 16 April 13 April 19
Week 17 April 20 April 26
Week 18 April 27 May 3
Week 19 May 4 May 10
Week 20 May 11 May 17
Week 21 May 18 May 24
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A.2 Additional mobility data summary statistics

Table 10 shows the Facebook data coverage by week in Mexico and in the United States. The
coverage varies by week since the number of unique active users may change from week to week.

Table 10: Geographic coverage of Facebook mobility data in the U.S. and in Mexico

Week Num. US counties Num. MX municipios

9 2,656 1,050
10 2,662 1,060
11 2,662 1,066
12 2,655 1,068
13 2,656 1,074
14 2,658 1,078
15 2,658 1,083
16 2,653 1,081
17 2,650 1,078
18 2,644 1,081
19 2,641 1,081
20 2,637 1,079
21 2,645 1,076

Any week 2,691 1,084

Note: This table presents the number of U.S. counties and Mexican municipios covered by the Facebook mobility data. The
number of regions covered vary by week due to the constraint that only regions with more than 300 unique users are included.
In the Unacast data, 3,054 US counties are covered for all weeks (9–21).

As discussed in section 3, Figure 8 maps the change in the social distancing measure from the
Facebook dataset across Mexican municipios, used as our main dependent variable in equation
3. There was substantial geographic variation in the increase in social distancing across Mexican
municipios from Week 9 to Week 21, with Mexican regions in dark blue representing places with
larger declines in mobility.
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Figure 8: Distribution of changes in social distancing in Mexico, Week 9 to Week 21

Note: The changes in social distancing in Mexico are calculated as socdist21 � socdist9, using the Facebook data. There are
989 municipios with non-missing values of social distancing in Week 9, and 1,010 municipios in Week 21.

Panel (a) of Figure 9 maps the change in exposure faced by each Mexican municipio to U.S.
social distancing from the Facebook dataset, while Panel (b) maps the principal component of
the Unacast and Facebook social distancing measures as defined in 1. These measures combined
geographic variation in U.S. social distancing behavior with geographic variation in the destination
distribution of Mexican source regions. This creates the geographic differences in exposure for each
Mexican region to different social distancing practices in the U.S. observed in Figure 9.
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Figure 9: Distribution of changes in exposure to social distancing in the United States, Week 9 to
Week 21

(a) Facebook measure

(b) Principal component of Unacast and Facebook measures

Note: The changes in exposure to social distancing in the United States are calculated as exposures21 � exposures9, where s =
Facebook in Panel (a) and s = pc in Panel (b). There are 46 municipios with no data, and 2,415 municipios with data.
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Panel (a) of Figure 10 maps the change in the social distancing measure from the Facebook
dataset across U.S. counties, while panel (b) of Figure 10 shows the same measure using data from
Unacast. There was a great deal of geographic variation in the increase in social distancing across
U.S. counties from Week 9 to Week 21, with counties in dark blue representing places with larger
mobility declines. These maps show part of the geographic variation in social distancing behavior
that we use to construct our exposure measure as defined in equation 1.

Figure 10: Distribution of changes in social distancing in the United States, Week 9 to Week 21

(a) Facebook measure

(b) Unacast measure

Note: The changes in social distancing in the United States are calculated as socdist21 � socdist9. Panel (a) uses the Facebook
data and includes 2,531 counties, and Panel (b) uses the Unacast data and includes 3,033 counties. Hawaii and Alaska are not
included.
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A.3 Sample restrictions

Table 11 shows the sample size restrictions yielding the 13,036 observations in Table 3 Columns
(5)–(8). There are 2,411 municipios from the MCAS dataset, after excluding Yaxkukul in the State
of Yucatan with only one migrant in one U.S. county. There are 1,083 municipios with Facebook
mobility measures. There are 1,013 municipios and 13,037 municipio-week observations satisfying
both conditions. One municipio, San Miguel De Horcasitas in the State of Sonora, only has the
mobility measure in Week 21 and is excluded in the panel regression as a singleton.

Table 11: How we arrive at the final sample size

Week Num. MX municipios

(1) (2) (3)
9 2,411 1,049 984
10 2,411 1,059 991
11 2,411 1,065 997
12 2,411 1,067 998
13 2,411 1,073 1,002
14 2,411 1,077 1,007
15 2,411 1,082 1,012
16 2,411 1,080 1,009
17 2,411 1,077 1,006
18 2,411 1,080 1,009
19 2,411 1,080 1,009
20 2,411 1,078 1,008
21 2,411 1,075 1,005

Any week 2,411 1,083 1,013
With mobility exposure measure Yes Yes
With mobility measure Yes Yes
Total number of obs. 31,343 13,942 13,037

Note: This table presents sample size for Mexican municipios covered in the analysis. Yaxkukul in the State of Yucatan is
dropped since the population size is very small (2,868 in 2010) and it is only has one destination county with one migrant
count in the MCAS dataset, Horry in South Carolina. MCAS data includes 2412 municipios. Thus, 2,411 municipios have the
measure of exposure to U.S. social distancing after dropping Yaxkukul (Column 1). In Column (2), there are 1,083 municipios
with Facebook mobility measure. When we restrict to the municipio-weeks with both the Facebook mobility measure and the
exposure to U.S. social distancing, we have 1,013 municipios. The panel regression in the main analysis with all municipios
includes 13,036 observations instead of 13,037 in Column (3) since San Miguel De Horcasitas in the State of Sonora only has
mobility measure in Week 21 and is excluded in the panel regression as a singleton.
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B Mexican state-level stay-at-home orders

Figure 11 and Table 12 describe state-level stay-at-home orders across Mexican states, based on
Mexican States’ official decrees. Table 12 provides details on the specific measures imposed by each
state, along with the date of the relevant decree, and Figure 11 depicts the decrees graphically, with
blue bars showing weeks in which relevant decrees were in place. States without specific stay-at-
home orders are omitted from Figure 11 and Table 12 (see the note to Table 12 for a list). These
states declared states of emergency and closure of nonessential businesses in the first week of April
following the federal government order.

Figure 11: Mexico State-level Stay-at-home Orders, by week

Note: This figure shows the Mexican states imposing mandatory staty-at-home orders or mobility restrictions in the weeks under
study (see Table 12 for details) based on Mexican States’ Official decrees. The blue bars represent the week in which a state
had an active staty-at-home order.
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Table 12: Mexico State-level Stay-at-home Orders

State Measures Date

Baja California Sur
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles.
Friday, April 24, 2020

Chihuahua Installed check points in main highways and roads. Sunday, April 19, 2020

Coahuila
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles.
Wednesday, April 22, 2020

Colima
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles.
Thursday, April 9, 2020

Distrito Federal
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles.
Wednesday, April 22, 2020

Durango
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles.
Sunday, April 26, 2020

Jalisco Mandatory stay-at-home measures were imposed.
Penalties included fines. Monday, April 20, 2020

México
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles.
Wednesday, April 22, 2020

Michoacán Mandatory stay-at-home measures were imposed.
Penalties included fines and jail time. Monday, April 20, 2020

Nayarit
Imposed measures to restrict mobility within the state.
Lowered public transportation capacity and limit the

number of persons who could travel in personal vehicles
Saturday, April 18, 2020

Sinaloa

Following the federal government announcement, the
state of emergency was extended and the closure of

nonessential businesses continued. In addition, measures
to restrict mobility within the state were imposed.

Lowered public transportation capacity. and limit the
number of persons who could travel in personal vehicles.

Wednesday, April 22, 2020

Sonora

State of emergency was declared and nonessential
businesses were ordered to close, before the

announcement from the federal government was made.
Wednesday, March 25, 2020

Mandatory stay-at-home measures were imposed.
Penalties included fines and jail time. Monday, April 13, 2020

Tabasco

Following the federal government announcement, the
state of emergency was extended and the closure of

nonessential businesses continued. In addition, measures
to restrict mobility within the state were imposed.

Lowered public transportation capacity and limit the
number of persons who could travel in personal vehicles.

Tuesday, April 21, 2020

Tamaulipas

Following the federal government announcement, the
state of emergency was extended and the closure of

nonessential businesses continued. In addition, measures
to restrict mobility within the state were imposed.

Lowered public transportation capacity and limit the
number of persons who could travel in personal vehicles.

Thursday, April 23, 2020

Yucatán

Following the federal government announcement, the
state of emergency was extended and the closure of

nonessential businesses continued. In addition, measures
to restrict mobility within the state were imposed.

Lowered public transportation capacity and limit the
number of persons who could travel in personal vehicles.

Thursday, April 23, 2020

Zacatecas

Following the federal government announcement, the
state of emergency was extended and the closure of

nonessential businesses continued. In addition, measures
to restrict mobility within the state were imposed.

Lowered public transportation capacity and limit the
number of persons who could travel in personal vehicles.

Wednesday, April 8, 2020

Note: This table presents a description of the mandatory stay-at-home orders or mobility restrictions imposed by each Mexican
state government as well as the dates for each mandate, based on Mexican States’ Official decrees. The following states declared
states of emergency and closure of nonessential businesses on the first week of April along with the federal government order:
Aguascalientes, Baja California, Hidalgo, Morelos, Nuevo León, Oaxaca, and Tlaxcala. Between the third and fourth week
of April the following states extended the state of emergency and maintained closure of nonessential businesses: Campeche,
Chiapas, Guanajuato, Guerrero, Puebla, Querétaro, Quintana Roo, San Luis Potosí, and Veracruz.
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C Additional empirical results

This section outlines several robustness checks to support the validity of our main results presented
in section 4. Our main results are robust to 1) including controls for Mexican state-level stay-at-
home orders, 2) dropping outlier regions in Mexico, 3) introducing lagged exposure measures, 4)
using the exposure measure constructed from Facebook and Unacast data separately instead the
principal component exposure measure, 5) flexibly controlling for the local cases and the exposure
to U.S. cases, and 6) including Mexican municipios with no cases.

C.1 Robustness of of the main results after controlling for Mexican state-level

stay-at-home orders

Table 13 replicates Table 3 in our main analysis with an additional control for stay-at-home orders
imposed in Mexican states that differ from those imposed by the federal government (as described
in Appendix B). The results are nearly identical to those of Table 3.

Table 13: Larger exposure to U.S. social distancing led to more social distancing in Mexico, Week
9 to Week 21

Outcome: (1) (2) (3) (4) (5) (6) (7) (8)

Mexico social dist. Municipios with cases>0 All municipios

Exposure to U.S. social dist. 0.05*** 0.05*** 0.04*** 0.05*** 0.03*** 0.03*** 0.03*** 0.03***

(0.005) (0.005) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004)

Exposure to log U.S. cum. cases -0.01*** -0.01*** -0.01*** -0.01***

(0.003) (0.003) (0.002) (0.002)

Log cum. cases in Mexico muni. 0.02*** 0.02*** 0.01*** 0.02***

(0.001) (0.001) (0.001) (0.001)

Mexico state-level stay-at-home orders 0.003 0.004** -0.000 0.001 -0.006*** -0.005*** -0.009*** -0.008***

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Constant 0.21*** 0.29*** 0.19*** 0.28*** 0.21*** 0.26*** 0.20*** 0.26***

(0.0001) (0.015) (0.001) (0.015) (0.001) (0.013) (0.001) (0.013)

Observations 10,051 10,051 10,051 10,051 13,036 13,036 13,036 13,036

R-squared 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 4 by including
controls for Mexican state-level stay-at-home orders. Week fixed effects and municipio fixed effects are included in all columns.
Columns (1)–(4) include the municipios with at least one Covid-19 case at the end of Week 21, and Columns (5)–(8) include
all municipios. The mean (s.d.) of Mexican social distancing in the first four columns is 0.21 (0.15), and the mean (s.d.) of
the exposure to U.S. social distancing is -0.02 (1.4). The mean (s.d.) of the log cumulative cases in Mexico is 1.4 (1.8), and the
mean (s.d.) of the exposure to U.S. cases is 5.1 (2.7). The corresponding numbers for the last four columns are: 0.21 (0.15),
-0.1 (1.4), 1.1 (1.7), and 5.1 (2.7).

C.2 Robustness of the correlations

Figure 12 Panel (a) replicates Figure 7 by dropping an outlier municipio, San José Miahuatlán in
Puebla State. This figure relates the long-difference change in local social distancing to the change
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in the municipio’s exposure to U.S. social distancing. It shows that the strong positive correlation
between changes in social distancing in Mexico and the U.S. remains after dropping out the outlier
municipio, suggesting that the results are not driven by outliers.

Panel (b) shows the corresponding relationship between changes in the log cumulative cases in
Mexican municipios and changes in the exposure to cumulative U.S. cases. The horizontal axis is
the change in exposure to U.S. cumulative cases (exposurecasesi21 � exposurecasesi11 ), and the vertical
axis is the change in the log cumulative cases in Mexico (ln(cum cases)i21 � ln(cum cases)i11). The
fitted line has slope of 0.18, statistically insignificant.

Figure 12: A strong positive correlation between changes in social distancing in Mexico and the
U.S., replicating Figure 7 by dropping an outlier, San José Miahuatlán in Puebla State.

(a) Mobility (b) Cumulative cases

Note: This figure includes 769 Mexican municipios with at least one Covid-19 case in Week 21, and each dot is a municipio.
It replicates Figure 7 by dropping an outlier, San José Miahuatlán in Puebla State. Panel (a) shows the mobility result, where
the horizontal axis is the exposure to U.S. social distancing in Week 21 minus that in Week 11 (exposurepci21 � exposurepci11),
and the vertical axis is the change in social distancing in a Mexican municipio between Week 21 and Week 11 (socdisti21 �
socdisti11). The mean (s.d.) of the x-axis is 0.8 (0.2), and the mean (s.d.) of the y-axis is 0.3 (0.1). Panel (b) shows the
cumulative case result, where the horizontal axis is the change in exposure to log U.S. cumulative cases from Week 11 to Week
21 (exposurecasesi21 � exposurecasesi11 ), and the vertical axis is the change in the log of cumulative cases in a Mexican municipio
between Week 21 and Week 11 (ln(cum cases)i21 � ln(cum cases)i11). The mean (s.d.) of the x-axis is 6.1 (0.5), and the mean
(s.d.) of the y-axis is 2.9 (1.4).
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Figure 13 replicates Figure 7 Panel (b), but using one-week and two-week lagged values of the
change in exposure to U.S. social distancing to allow for potential delays in information transmission.
These figures show that the relationship between the number of cases in Mexican municipios and
the exposure to U.S. cases remains unchanged.

Figure 13: The relationship between the number of cases in Mexican municipios and the exposure
to U.S. cases does not change if we use lagged exposure.

Exposure to U.S. cases, one week lagged Exposure to U.S. cases, two weeks lagged

Note: This figure includes 770 Mexican municipios with at least one Covid-19 case in Week 21, and each dot is a municipio.
It replicates Figure 7 Panel (b) by using the one-week and two-week lagged exposure to U.S. cases as the horizontal axis. The
horizontal axis in Panel (a) is the change in exposure to log U.S. cumulative cases from Week 10 to Week 20 (exposurecasesi20 �
exposurecasesi10 ), and the vertical axis is the change in the log of cumulative cases in a Mexican municipio between Week 21 and
Week 11 (ln(cum cases)i21� ln(cum cases)i11). The horizontal axis in Panel (b) is the change in exposure to log U.S. cumulative
cases from Week 9 to Week 19 (exposurecasesi19 � exposurecasesi9 ).
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C.3 Robustness of the main results using the Facebook and Unacast measures

separately

Tables 14 and 15 replicate Table 3 in our main analysis, but separately use the exposure to U.S.
social distancing constructed with the Facebook and Unacast data, respectively. The tables show
that the results are robust to constructing the exposure to social distancing practices in the U.S.
separately for each dataset as opposed to constructing it as the principal component of the two social
distancing measures together.

Table 14: Larger exposure to U.S. social distancing led to more social distancing in Mexico, Week
9 to Week 21, Facebook measure as the outcome

Outcome: (1) (2) (3) (4) (5) (6) (7) (8)
Mexico social dist. Municipios with cases>0 All municipios

Exposure to U.S. social dist. 0.27*** 0.29*** 0.25*** 0.26*** 0.12*** 0.12*** 0.10*** 0.11***
(Facebook measure) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Exposure to log U.S. cum. cases -0.01*** -0.01*** -0.01*** -0.01***

(0.00) (0.00) (0.00) (0.00)
Log cum. cases in Mexico muni. 0.02*** 0.02*** 0.01*** 0.01***

(0.00) (0.00) (0.00) (0.00)
Constant 0.15*** 0.21*** 0.13*** 0.21*** 0.18*** 0.22*** 0.17*** 0.23***

(0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02)

Observations 10,051 10,051 10,051 10,051 13,036 13,036 13,036 13,036
R-squared 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 4 by using the
exposure to U.S. social distancing that is measured using the Facebook data. Week fixed effects and Municipio fixed effects are
controlled in all columns. Columns (1)–(4) include the municipios with at least one Covid-19 case at the end of Week 21, and
Columns (5)–(8) include all municipios. The mean (s.d.) of Mexican social distancing in the first four columns is 0.21 (0.15),
and the mean (s.d.) of the exposure to U.S. social distancing is 0.24 (0.14). The mean (s.d.) of the log cumulative cases in
Mexico is 1.4 (1.8), and the mean (s.d.) of the exposure to U.S. cases is 5.1 (2.7). The corresponding numbers for the last four
columns are: 0.21 (0.15), 0.24 (0.14), 1.1 (1.7), and 5.1 (2.7).
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Table 15: Larger exposure to U.S. social distancing led to more social distancing in Mexico, Week
9 to Week 21, Unacast measure as the outcome

Outcome: (1) (2) (3) (4) (5) (6) (7) (8)
Mexico social dist. Municipios with cases>0 All municipios

Exposure to U.S. social dist. 0.41*** 0.43*** 0.38*** 0.40*** 0.32*** 0.34*** 0.29*** 0.31***
(Unacast measure) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03)
Exposure to log U.S. cum. cases -0.01*** -0.02*** -0.01*** -0.01***

(0.00) (0.00) (0.00) (0.00)
Log cum. cases in Mexico muni. 0.02*** 0.02*** 0.01*** 0.01***

(0.00) (0.00) (0.00) (0.00)
Constant 0.09*** 0.16*** 0.08*** 0.16*** 0.11*** 0.17*** 0.11*** 0.17***

(0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02)

Observations 10,051 10,051 10,051 10,051 13,036 13,036 13,036 13,036
R-squared 0.91 0.91 0.92 0.92 0.91 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 3 by using the
exposure to U.S. social distancing that is measured using the Unacast data. Week fixed effects and Municipio fixed effects are
controlled in all columns. Columns (1)–(4) include the municipios with at least one Covid-19 case at the end of Week 21, and
Columns (5)–(8) include all municipios. The mean (s.d.) of Mexican social distancing in the first four columns is 0.21 (0.15),
and the mean (s.d.) of the exposure to U.S. social distancing is 0.29 (0.16). The mean (s.d.) of the log cumulative cases in
Mexico is 1.4 (1.8), and the mean (s.d.) of the exposure to U.S. cases is 5.1 (2.7). The corresponding numbers for the last four
columns are: 0.21 (0.15), 0.29 (0.16), 1.1 (1.7), and 5.1 (2.7).
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C.4 Robustness of the main results using rescaled Facebook exposure measure

Since the Facebook data for the United States do not cover all U.S. counties, it is possible that
counties covered in the MCAS data are not included in the Facebook data. When this is the case,
the shares in equation (1) do not sum to 1.

Out of the 959,089 migrants in the MCAS data, 1,536 are in counties not covered by the Facebook
data (less than 0.2%). We construct the share of migrants in MCAS data covered in Facebook
counties for each municipio, and rescale the exposure to U.S. social distancing using Facebook data
to make the shares to sum to 1. Then we construct the exposure to U.S. social distancing using the
principal component of the rescaled Facebook exposure and the Unacast measure.

Table 16 presents the results using the rescaled measures, where Columns (1)–(4) replicate Table
3 Columns (1)–(4) with the principal component exposure measure, and Columns (5)–(8) replicate
Table 14 Columns (1)–(4) with the Facebook exposure measure. The results are very similar. This
is not surprising since in the sample used in Table 16, the mean (s.d.) of the share of migrants in
counties covered by the Facebook data is 0.998 (0.007), with a minimum of 0.86 and the maximum
of 1.

Table 16: Results robust to using rescaled Facebook exposure measures

(1) (2) (3) (4) (5) (6) (7) (8)

Outcome: Mexico social dist. Principal component measure Facebook measure

Exposure to U.S. social dist. 0.046*** 0.048*** 0.042*** 0.045*** 0.272*** 0.281*** 0.243*** 0.253***

(0.005) (0.005) (0.005) (0.005) (0.045) (0.045) (0.044) (0.044)

Log cum. cases in Mexico muni. -0.012*** -0.014*** -0.010*** -0.013***

(0.003) (0.003) (0.003) (0.003)

Exposure to log U.S. cum. cases 0.015*** 0.016*** 0.015*** 0.016***

(0.001) (0.001) (0.001) (0.001)

Constant 0.215*** 0.283*** 0.194*** 0.276*** 0.149*** 0.207*** 0.135*** 0.207***

(0.000) (0.015) (0.001) (0.015) (0.011) (0.019) (0.011) (0.019)

Observations 10,051 10,051 10,051 10,051 10,051 10,051 10,051 10,051

R-squared 0.913 0.913 0.919 0.919 0.912 0.913 0.918 0.918

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 4 Columns (1)–(4) and
Table 14 (1)–(4) by using the exposure to U.S. social distancing using rescale Facebook exposure measure. Since the Facebook
data in the U.S. does not cover all counties, the migrant shares in the migration network data does not sum up to 1. In the
sample used in this table, the mean (s.d.) of the share of migrants in counties covered by the Facebook data is 0.998 (0.007),
with a minimum of 0.86 and the maximum of 1. Here we rescale the exposure to Facebook U.S. social distancing such that the
migrant shares sum up to 1. Columns (1)–(4) use the principal component of the rescaled Facebook measure and the Unacast
measure, and Columns (5)–(8) use the rescale Facebook measure. Week fixed effects and municipio fixed effects are controlled
in all columns. The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case by the end of Week 21.
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C.5 Robustness of the main results when flexibly controlling for local and U.S.

cases

Table 17 replicates Table 3 Columns (4) and (8) in our main analysis, but controls for flexible
functional forms of the number of cases. The results are nearly identical after including these
flexible controls, ruling out concerns about the disease transmission along the migrant network as
the underlying channel of our main results.

Table 17: Larger exposure to U.S. social distancing led to more social distancing in Mexico, Week
9 to Week 21, Unacast measure as the outcome

Outcome: (1) (2) (3) (4) (5) (6)
Mexico social dist. Municipios with cases>0 All municipios

Exposure to U.S. social dist. 0.045*** 0.048*** 0.048*** 0.029*** 0.032*** 0.031***
(0.005) (0.005) (0.005) (0.004) (0.004) (0.004)

Exposure to log U.S. cum. cases -0.015*** -0.012*** -0.013*** -0.012*** -0.009*** -0.010***
(0.003) (0.003) (0.003) (0.002) (0.002) (0.002)

Log cum. cases in Mexico muni. 0.005*** 0.005***
(0.001) (0.001)

Log cum. cases in Mexico muni. squared 0.002*** 0.002***
(0.000) (0.000)

I (number of cum. cases > 0) -0.001 0.009***
(0.002) (0.001)

I (number of cases in (0, 100] ) 0.007*** 0.013***
(0.002) (0.001)

I (number of cases in (100, 1000] ) 0.055*** 0.066***
(0.004) (0.004)

I (number of cases > 1000) 0.108*** 0.124***
(0.007) (0.007)

Constant 0.286*** 0.285*** 0.286*** 0.264*** 0.256*** 0.259***
(0.015) (0.015) (0.015) (0.013) (0.013) (0.013)

Observations 10,051 10,051 10,051 13,036 13,036 13,036
R-squared 0.92 0.91 0.92 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 3 Columns (4) and
(8) by using the different types of measures of severity of the local outbreak. Week fixed effects and municipio fixed effects are
controlled in all columns. Columns (1)–(3) include the municipios with at least one Covid-19 case at the end of Week 21, and
Columns (4)–(6) include all municipios. The mean (s.d.) of Mexican social distancing in the first four columns is 0.21 (0.15),
and the mean (s.d.) of the exposure to U.S. social distancing is -0.02 (1.4). The mean (s.d.) of the log cumulative cases in
Mexico is 1.4 (1.8), and the mean (s.d.) of the exposure to U.S. cases is 5.1 (2.7). The corresponding numbers for the last
four columns are: 0.21 (0.15), -0.01 (1.4), 1.1 (1.7), and 5.1 (2.7). Columns (1) and (4) include the log cumulative cases in
Mexico and the squared term. Columns (2) and (5) include a dummy variable indicating in this municipio and week, if there is
a positive number of cumulative cases. Columns (3) and (6) include a dummy if the number of cumulative cases is in between
of 0 and 100, 100 to 1000, and larger than 1000.

105
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 6
2-

12
0



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 18 replicates Table 3 in our main analysis, but includes leads and lags of the exposure to
U.S. social distancing to rule out reverse causality. In this case, we see that the coefficients leading
up to the beginning of our period of study are not statistically different from zero, suggesting that
that U.S. social distancing are in fact transmitted to Mexico through the migrant network and not
the other way around.

Table 18: Results in Table 3 are robust to controlling for leads and lags of exposure to U.S. cases.

(1) (2) (3) (4)
Outcome: social distancing in Mexico Muni with cases > 0 All muni.

Exposure to U.S. social dist. 0.05*** 0.04*** 0.03*** 0.03***
(0.005) (0.005) (0.004) (0.004)

Log cum. cases in Mexico muni. 0.02*** 0.02*** 0.02*** 0.02***
(0.001) (0.001) (0.001) (0.001)

Exposure to log U.S. cum. cases -0.03*** -0.02*** -0.02** -0.01***
(0.009) (0.005) (0.008) (0.004)

Exposure to log U.S. cum. cases, lagged one period 0.007 -0.001
(0.005) (0.004)

Exposure to log U.S. cum. cases, lead one period 0.006 0.008
(0.007) (0.006)

Exposure to log U.S. cum. cases, lagged one week 0.008*** -0.001
(0.003) (0.002)

Exposure to log U.S. cum. cases, lead two weeks 0.004 0.006
(0.005) (0.005)

Constant 0.266*** 0.239*** 0.240*** 0.214***
(0.020) (0.027) (0.018) (0.024)

Observations 10,051 9,276 13,036 12,032
R-squared 0.919 0.923 0.913 0.918

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 3 by controlling
for leads and lags of the exposure to U.S. cases. Week fixed effects and municipio fixed effects are controlled in all columns.
Columns (1)–(4) include the municipios with at least one Covid-19 case at the end of Week 21, and Columns (5)–(8) include
all municipios. The mean (s.d.) of Mexican social distancing in the first four columns is 0.21 (0.15), and the mean (s.d.) of
the exposure to U.S. social distancing is -0.02 (1.4). The mean (s.d.) of the log cumulative cases in Mexico is 1.4 (1.8), and the
mean (s.d.) of the exposure to U.S. cases is 5.1 (2.7). The corresponding numbers for the last four columns are: 0.21 (0.15),
-0.01 (1.4), 1.1 (1.7), and 5.1 (2.7).
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C.6 Robustness of the main results by taking into account the share of jobs

facilitating work from home

As shown in Dingel and Neiman [2020], different industries and occupations have different shares of
jobs that can be performed at home. In Table 19, we present the crosswalk of industries in Mexico
and in the United States. The share of jobs facilitating work from home at the 2-digit NAICS
sector level is from Table 3 in Dingel and Neiman [2020], and out of the 20 industries, 14 industries
have direct matches with the IPUMS general industry code used in the 2015 Intercensal Count
(Panel A), and 6 industries do not have exact matches (Panel B). In later analysis, we construct the
municipio-level shares allowing work from home using the individual level industry code in the 2015
Intercensal Count and the Mexican industry level workable-at-home job shares. Given the imperfect
matching, we use two matching methods. In the first one, “Other services” and “Private household
services” in Mexico are assigned the value of 0.31 and 0.43 (unweighted and weighted by wage) to
match “Other services (except for public administration)” in the U.S. The second method match
these two Mexican industries to the average of unmatched U.S. industries, including “Professional,
scientific, and technical services”, “Management of companies and enterprises”, “Information”, “Other
services (except public administration)”, “Administrative and support and waste management and
remediation services”, and “Arts, entertainment, and recreation”.
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Table 19: Share of jobs facilitating work at home, by industry in Mexico

Panel A. Matched Share of jobs doable at home

Mexican industry (IPUMS general industry) US industry (2-digit NAICS sector) Unweighted Weighted by wage

Agriculture, fishing, and forestry Agriculture, forestry, fishing and hunting 0.08 0.13

Mining and extraction Mining, quarrying, and oil and gas extraction 0.25 0.37

Manufacturing Manufacturing 0.22 0.36

Electricity, gas, water and waste management Utilities 0.37 0.41

Construction Construction 0.19 0.22

Wholesale and retail trade Wholesale trade 0.52 0.67

Retail trade 0.14 0.22

Hotels and restaurants Accommodation and food services 0.04 0.07

Transportation, storage, and communication Transportation and warehousing 0.19 0.25

Financial services and insurance Finance and insurance 0.76 0.85

Public administration and defense Federal, state, and local government 0.41 0.47

Business services and real estate Real estate and rental and leasing 0.42 0.54

Education Educational services 0.83 0.71

Health and social work Health care and social assistance 0.25 0.24

Panel B. Unmatched

Other services Professional, scientific, and technical services 0.80 0.86

Private household services Management of companies and enterprises 0.79 0.86

Information 0.72 0.80

Other services (except public administration) 0.31 0.43

Administrative and support and waste 0.31 0.43

management and remediation services

Arts, entertainment, and recreation 0.30 0.36

Notes: This table reports the crosswalk between Mexican industries and U.S. industries, where U.S. industries have the share of
jobs doable at home from Dingel and Neiman [2020]. The U.S. industries are at the 2-digit NAICS sector level, and the Mexican
industries are from the IPUMS International general industry code, where the grouping “roughly conform to the International
Standard Industrial Classification (ISIC)” (IPUMS International). Panel A shows the list of matched industries, and Panel B
shows the list of unmatched industries.
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Table 20 controls flexibly for the share of jobs facilitating work from home by using the interac-
tion of the share with week fixed effects. The coefficient estimates for the exposure to U.S. social
distancing are very similar to those in Table 3, indicating that migrants are either not sorting into
U.S. regions with similar ability to work from home, or that sorting is not influencing the effects of
U.S. social distancing on Mexican social distancing.
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Table 20: Results robust to flexibly controlling for the share of people whose job is workable at home

Outcome: Mexico social distancing (1) (2) (3) (4)
Variable for interaction: Matching method 1 Matching method 2
Workable at home share Unweighted Weighted Unweighted Weighted

Exposure to U.S. social distancing 0.043*** 0.043*** 0.043*** 0.043***
(0.005) (0.005) (0.005) (0.005)

Week 10 Interaction 0.003 0.006 -0.002 0.002
(0.086) (0.079) (0.079) (0.074)

Week 11 Interaction 0.159* 0.169** 0.137* 0.150**
(0.084) (0.076) (0.076) (0.071)

Week 12 Interaction 0.299*** 0.295*** 0.273*** 0.273***
(0.077) (0.070) (0.070) (0.065)

Week 13 Interaction 0.307*** 0.279*** 0.287*** 0.265***
(0.071) (0.065) (0.065) (0.061)

Week 14 Interaction 0.305*** 0.276*** 0.286*** 0.263***
(0.071) (0.065) (0.065) (0.060)

Week 15 Interaction 0.358*** 0.325*** 0.328*** 0.304***
(0.071) (0.065) (0.065) (0.060)

Week 16 Interaction 0.348*** 0.302*** 0.318*** 0.283***
(0.070) (0.064) (0.064) (0.060)

Week 17 Interaction 0.420*** 0.349*** 0.381*** 0.326***
(0.072) (0.065) (0.065) (0.061)

Week 18 Interaction 0.438*** 0.362*** 0.400*** 0.340***
(0.072) (0.065) (0.065) (0.061)

Week 19 Interaction 0.493*** 0.404*** 0.460*** 0.387***
(0.076) (0.069) (0.069) (0.064)

Week 20 Interaction 0.494*** 0.414*** 0.460*** 0.395***
(0.075) (0.069) (0.069) (0.064)

Week 21 Interaction 0.479*** 0.391*** 0.442*** 0.371***
(0.077) (0.070) (0.070) (0.065)

Observations 10,025 10,025 10,025 10,025
R-squared 0.915 0.915 0.915 0.915

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Municipio fixed effects are controlled in all
Columns. The workable-at-home measure is the mean of workable at home job shares using the industry code of working
age population (aged 16–65) in a municipio and the industry-level workable at home job shares. The workable-at-home share
for “Wholesale and retail trade” in Mexico is calculated as the mean of the workable-at-home shares for “Wholesale trade”
and “Retail trade” in the U.S. (Table 19). In Columns (1)–(2), “Other services” and “Private household services” in Mexico
are matched to “Other services (except public administration)” in the U.S., while in Columns (3)–(4), “Other services” and
“Private household services” in Mexico are matched to “Other services (except public administration)”, “Professional, scientific,
and technical services”, “Management of companies and enterprises“, “Information”, “Administrative and support and waste
management and remediation services”, “Arts, entertainment, and recreation” in the U.S. (all unmatched service items in Table
19). Columns (1) and (3) use the unweighted shares, and Columns (2) and (4) use the weighted by wage shares.
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Table 21 shows the heterogeneous effect of the exposure to U.S. social distancing with respect
to the workable-at-home shares. We find that Mexican regions with higher workable-at-home job
shares responding more strongly to U.S. social distancing. This is consistent with the heterogeneous
effects found in Table 23, since as shown in Dingel and Neiman [2020], higher income is associated
with higher shares of workable-at-home jobs (at the country level).

Table 21: Municipios with higher workable-at-home shares respond more strongly to U.S. social
distancing

(1) (2) (3) (4)
Outcome: Mexico social dist. Matching method 1 Matching method 2

Unweighted Weighted Unweighted Weighted

Exposure to U.S. social distancing 0.025*** 0.023*** 0.025*** 0.022***
(0.006) (0.006) (0.006) (0.006)

Interaction with workable at home shares 0.080*** 0.070*** 0.074*** 0.066***
(0.010) (0.009) (0.009) (0.009)

Constant 0.215*** 0.215*** 0.215*** 0.215***
(0.000) (0.000) (0.000) (0.000)

Mean (s.d.) of workable at home shares 0.25 (0.04) 0.33 (0.05) 0.28 (0.05) 0.34 (0.05)
�̂ 7% 8% 8% 7%
Observations 10,025 10,025 10,025 10,025
R-squared 0.914 0.914 0.914 0.914

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects
are included in all columns. Each column replicates the regressions in Column (1) of Table 3 and adds the interaction of a
municipio’s workable-at-home job share. Similar as in Table 20, Columns (1) and (2) match “Other services” and “Private
household services” in Mexico to “Other services (except public administration)” in the U.S., while Columns (3) and (4) match
these two Mexican industries to the average of the unmatched service industries in Table 19 Panel B. Columns (1) and (3) use
the unweighted shares, and Columns (2) and (4) use the weighted by wage shares.
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C.7 Robustness of the main results when including all municipios

Table 22 replicates Table 4, but includes municipios with no cases. The results are similar in
magnitude and significance to those in our main analysis, indicating that dropping municipios with
no cases does not substantially affect the results.

Table 22: The results in Table 4 hold when all municipios are included

Variable for (1) (2) (3) (4) (5) (6)
interaction pop. density % urban % age 16–65 years edu. log income % employed

Exposure to U.S. social 0.026*** 0.025*** 0.031*** 0.028*** 0.034*** 0.028***
distancing (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Week 10 Interaction 0.002 0.010 0.119 0.002 0.007 0.034
(0.002) (0.011) (0.083) (0.002) (0.008) (0.038)

Week 11 Interaction 0.004*** 0.031*** 0.266*** 0.006*** 0.024*** 0.088**
(0.001) (0.011) (0.083) (0.002) (0.008) (0.037)

Week 12 Interaction 0.007*** 0.059*** 0.517*** 0.013*** 0.048*** 0.205***
(0.001) (0.010) (0.079) (0.002) (0.008) (0.035)

Week 13 Interaction 0.010*** 0.041*** 0.547*** 0.012*** 0.033*** 0.179***
(0.001) (0.009) (0.071) (0.002) (0.007) (0.032)

Week 14 Interaction 0.011*** 0.041*** 0.551*** 0.011*** 0.025*** 0.185***
(0.001) (0.009) (0.070) (0.002) (0.007) (0.032)

Week 15 Interaction 0.012*** 0.052*** 0.617*** 0.014*** 0.041*** 0.207***
(0.001) (0.009) (0.070) (0.002) (0.007) (0.031)

Week 16 Interaction 0.011*** 0.045*** 0.570*** 0.013*** 0.029*** 0.182***
(0.001) (0.009) (0.070) (0.002) (0.007) (0.032)

Week 17 Interaction 0.013*** 0.045*** 0.630*** 0.014*** 0.033*** 0.190***
(0.001) (0.009) (0.070) (0.002) (0.007) (0.031)

Week 18 Interaction 0.014*** 0.039*** 0.632*** 0.014*** 0.034*** 0.181***
(0.001) (0.009) (0.071) (0.002) (0.007) (0.032)

Week 19 Interaction 0.016*** 0.041*** 0.822*** 0.017*** 0.036*** 0.231***
(0.001) (0.010) (0.075) (0.002) (0.007) (0.033)

Week 20 Interaction 0.016*** 0.046*** 0.812*** 0.017*** 0.033*** 0.226***
(0.001) (0.010) (0.074) (0.002) (0.007) (0.033)

Week 21 Interaction 0.016*** 0.045*** 0.815*** 0.016*** 0.032*** 0.211***
(0.001) (0.010) (0.077) (0.002) (0.008) (0.034)

Observations 13,036 12,841 13,036 13,010 13,010 13,036
R-squared 0.910 0.907 0.911 0.910 0.908 0.909

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Municipio fixed effects are controlled in all
columns. Each column replicates the regression in Table 3 and adds the interaction of a city characteristic with week fixed
effects. Week 9 is the baseline week. The sample is the Week-9-to-21 panel of all municipios.
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Table 23 replicates Table 7, evaluating heterogeneity in the effects of exposure to U.S. social
distancing based on the characteristics of Mexican municipios, but includes municipios with no
cases. The results are similar in magnitude and significance to those in our main analysis, indicating
that dropping municipios with no cases does not substantially affect the results.

Table 23: The results in Table 7 hold when all municipios are included

Outcome: Mexico social dist. (1) (2) (3) (4) (5) (6)

Exposure to US social dist. 0.028*** 0.021*** -0.043*** 0.007 -0.028*** 0.009*
(0.004) (0.004) (0.007) (0.005) (0.009) (0.005)

Interact: population density 0.002***
(0.000)

Interact: share urban 0.010***
(0.001)

Interact: aged 16-65 share 0.124***
(0.010)

Interact: yrs of schooling 0.003***
(0.000)

Interact: log income 0.007***
(0.001)

Interact: % employed 0.044***
(0.004)

Constant 0.209*** 0.207*** 0.209*** 0.209*** 0.209*** 0.209***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean (s.d.) of the interaction 0.45 (1.6) 0.56 (0.27) 0.61 (0.04) 8.3 (1.4) 8.4 (0.40) 0.50 (0.09)
�̂ 11% 10% 15% 13% 9% 13%
Observations 13,036 12,841 13,036 13,010 13,010 13,036
R-squared 0.908 0.907 0.909 0.908 0.908 0.908

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects are
included in all columns. Each column replicates the regression in Table 3 and adds the interaction of a municipio characteristic
with the exposure to U.S. social distancing. The sample is the Week-9-to-21 panel of all municipios.
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Table 24 replicates Table 8, evaluating heterogeneity in the effects of exposure to U.S. social
distancing based on the characteristics of U.S. counties, but includes municipios with no cases.
The results are similar in magnitude and significance to those in our main analysis, indicating that
dropping municipios with no cases does not substantially affect the results.

Table 24: Results in Table 8 hold when all municipios are included

Outcome: Mexico soc dist. (1) (2) (3) (4) (5) (6)

Exposure to U.S. soc dist. 0.032*** 0.030*** -0.049** -0.027* 0.022 0.034
(0.005) (0.004) (0.022) (0.016) (0.067) (0.050)

Interact: % Hispanic -0.002
(0.004)

Interact: % Mexican 0.007*
(0.004)

Interact: Hispanic education 0.007***
(0.002)

Interact: education 0.004***
(0.001)

Interact: log Hispanic income 0.001
(0.006)

Interact: log income -0.000
(0.004)

Constant 0.209*** 0.209*** 0.209*** 0.209*** 0.209*** 0.209***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Mean (s.d.) of the interaction 0.29 (0.08) 0.22 (0.08) 10.3 (0.21) 13.1 (0.29) 10.9 (0.06) 11.2 (0.08)
�̂ 2% 6% 5%
Observations 13,036 13,036 13,036 13,036 13,036 13,036
R-squared 0.91 0.91 0.91 0.91 0.91 0.91

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects are
included in all columns. Each column replicates the regression in Table 3 and adds the interaction of a municipio characteristic
with the exposure to U.S. social distancing. The municipio characteristics are characterized by the type of U.S. counties they
are connected to. The sample is the Week-9-to-21 panel of all municipios.
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D Additional results for instrumental-variables analysis using stay-

at-home orders

This section presents additional supporting evidence on the validity of the instrumental variables
results from Section 4. It shows the first-stage residual plot and the reduced form results of the
instrumental variables analysis using U.S. stay-at-home orders as an instrument for observed U.S.
social distancing.

Figure 14 shows the proportion of U.S. states imposing stay-at-home orders since the beginning
of the pandemic. We use indicators for U.S. state-level stay-at-home orders as an instrument for
U.S. social distancing, as defined in equation 4.

Figure 14: The dynamic of stay-at-home orders in the U.S.

Note: This figure shows the share of U.S. states that have stay-at-home orders on a particular date. All 50 states and the District
of Columbia are included. Stay-at-home or shelter-in-place orders only include directives and orders, but not guidance, and
the order must apply to the entire states. According to this definition, 11 states never enacted the order, including: Arkansas,
Connecticut, Iowa, Kentucky, Nebraska, North Dakota, Oklahoma, South Dakota, Texas, Utah, and Wyoming. Similarly, the
end of the order must also apply to the entire state. See details of the definition at Raifman et al. [2020].
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Figure 15 shows the distribution of the exposure to U.S. stay-at-home orders faced by Mexican
municipios in Week 12, 15, 18, and 21. There is a great deal of variation in exposure to U.S.
stay-at-home orders across municipios and over time.

Figure 15: Variation in exposure to U.S. stay-at-home orders

Note: This figure shows the distribution of Mexican municipios’ exposure to stay-at-home orders in the United States, in Week
12, 15, 18, and 21. The sample is restricted to municipios that have at least one covid case by the end of Week 21 and have
non-missing measures of social distancing in the corresponding week.
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Table 25 performs a similar analysis to the one presented in Table 5, but at the U.S. county
level rather than the municipio level, demonstrating the determinants of social distancing behavior
in the U.S.

Table 25: Predicting the social distancing in the U.S., Week 9 to Week 21, around 2,570 counties

(1) (2) (3) (4) (5) (6)
Outcome: U.S. soc distancing Facebook measure Unacast measure

Shelter-in-place order in the state, U.S. 0.14*** 0.13*** 0.13*** 0.17*** 0.16*** 0.16***
(0.001) (0.001) (0.001) (0.01) (0.001) (0.001)

Employment share controls No Yes Yes No Yes Yes
Commuting share controls No No Yes No No Yes
Observations 33,411 33,411 33,411 33,411 33,411 33,411
R-squared 0.27 0.33 0.33 0.26 0.32 0.33

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The thirteen industries include: agriculture,
construction, manufacturing, wholesale, retail, transportation, information, finance, professional, education, arts, public admin-
istration, and other services. The means of transportation include: (1) car, truck, or van; (2) public (excluding taxicab); (3)
taxicab; (4) motorcycle; (5) bicycle; (6) walked; and (7) worked at home.
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Figure 16 shows the first-stage residual plot corresponding to Column (1) of Table 5, showing
a strong positive relationship between exposure to U.S. social distancing (1) and the stay-at-home
exposure instrument (4).

Figure 16: First-stage residual plot of Table 5 Column (1)

Note: This figure is the residual plot of Table 5 Column (1).
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Table 26 presents reduced-form regressions using the stay-at-home exposure instrument (4),
showing a positive relationship between exposure to U.S. stay-at-home orders and Mexican social
distancing.

Table 26: Reduced form evidence: exposure to U.S. stay-at-home orders positively affected Mexican
social distancing

Outcome: Mexican social distancing (1) (2) (3) (4)

Exposure to U.S. stay-at-home orders 0.013** 0.013** 0.011** 0.011**
(0.005) (0.005) (0.005) (0.005)

Exposure to log U.S. cum. cases -0.010*** -0.012***
(0.003) (0.003)

Log cum. cases Mexican muni. 0.016*** 0.016***
(0.001) (0.001)

Observations 10,051 10,051 10,051 10,051
R squared 0.91 0.91 0.92 0.92

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Week fixed effects and municipio fixed effects
are controlled in all columns. The mean (s.d.) of the exposure to U.S. stay-at-home orders is 0.54 (0.36), and the mean (s.d.)
of Mexican social distancing is 0.21 (0.15). The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case
by the end of Week 21.

Table 27 replicates Table 5 in our instrumental variables analysis including controls for stay-at-
home orders imposed in Mexican states that differ from those imposed by the federal government.
The tables show that the first stage results are robust to the inclusion of these controls.
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Table 27: First stage: municipios with larger exposure to U.S. stay-at-home policies were also more
exposed to U.S. social distancing

Outcome: Exposure to U.S. social distancing (1) (2) (3) (4)

Exposure to U.S. stay-at-home orders 0.274*** 0.274*** 0.274*** 0.274***
(0.017) (0.016) (0.017) (0.016)

Exposure to log U.S. cumulative cases 0.051*** 0.050***
(0.014) (0.014)

Log cum. cases Mexican muni. 0.006*** 0.006***
(0.002) (0.002)

Mexico state-level stay-at-home orders -0.039*** -0.044*** -0.040*** (0.004)
(0.004) (0.004) (0.004) 0.006***

Constant -0.157*** -0.449*** -0.165*** -0.452***
(0.009) (0.078) (0.009) (0.078)

Observations 10,051 10,051 10,051 10,051
R-squared 0.993 0.993 0.993 0.993
First-stage F-statistic 614 622 613 621

Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 5 by including
controls for Mexican state-level stay-at-home orders. Week fixed effects and municipio fixed effects are included in all columns.
The mean (s.d.) of exposure to U.S. social distancing is -0.02 (1.4), and the mean (s.d.) of the exposure to U.S. stay-at-home
orders is 0.54 (0.36). The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case by the end of Week
21.

Table 28 replicates Table 6 including controls for stay-at-home orders imposed in Mexican states
that differ from those imposed by the federal government (See Appendix B). The results are nearly
identical to those in Table 6.

Table 28: IV results confirm main findings in Table 3.

Outcome: Mexican social distancing (1) (2) (3) (4)

Exposure to U.S. social distancing 0.046** 0.045** 0.042** 0.0421**
(0.019) (0.019) (0.019) (0.019)

Exposure to log U.S. cum. cases -0.012*** -0.014***
(0.003) (0.003)

Log cum. cases Mexican muni. 0.015*** 0.016***
(0.001) (0.001)

Mexico state-level stay-at-home orders 0.003 0.004** -0.001 0.001
(0.002) (0.002) (0.002) (0.002)

Observations 10,051 10,051 10,051 10,051
Note: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table replicates Table 6 by including
controls for Mexican state-level stay-at-home orders. Week fixed effects and municipio fixed effects are included in all columns.
The sample is the Week-9-to-21 panel of municipios with at least one Covid-19 case by the end of Week 21. The exposure to
U.S. social distancing is instrumented with the exposure to U.S. stay-at-home orders in all columns.
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We document large-scale urban flight in the United States in the wake 
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younger, whiter, and wealthier.  Regions that saw migrant influx 
experience greater subsequent COVID-19 case growth, suggesting that 
urban flight was a vector of disease spread. Urban residents fled to 
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I INTRODUCTION

“Rumors that cholera was moving west and not south from Canada could not stem

the growing panic; mass exodus from the city had already begun. A hyperbolic and

sarcastic observer remarked later that Sunday had seen ‘fifty thousand stout hearted’

New Yorkers scampering ‘away in steamboats, stages, carts, and wheelbarrows.’ ”

— The Cholera Years: The United States in 1832, 1849, and 1866 by Charles E.

Rosenberg

The density and international connections of cities foster human interaction and eco-

nomic activity. These same associations, however, have historically made urban areas

uniquely vulnerable to contagious disease. The role of urban proximity in pandemics

has seen renewed attention in the context of novel coronavirus disease 2019 (COVID-19).

However, the channels through which communities employ resources to mitigate their

own risk, and the spillovers of these actions on broader community transmission, remain

unclear.

This paper quantifies the extent of urban flight in response to COVID-19 in its initial

phase in the United States, and documents how this migratory behavior seeded the pan-

demic in the rest of the country. We take advantage of mobile phone geolocation data,

which allows for much higher frequency analysis than has been possible in prior stud-

ies of migratory behavior. We find that as much as 15–20% of the population of some

high-income urban regions, such as Manhattan, fled in response to COVID-19. Regions

that saw greater flight were generally richer, whiter. and younger than other areas, point-

ing to important disparities in the availability of migration as a risk-mitigating technique

during the pandemic. We use Facebook friendship data to establish that migration was

especially high between socially connected regions, consistent with the idea that urban

flight led to sheltering with friends and family, or in second homes.
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We then document the impact of this urban flight on increases in COVID-19 cases

in the destination counties. Our instrumental variable strategy leverages the social con-

nections between countries to causally identify the relationship between migratory flows

and increased cases. We find that a one standard deviation increase in SCI-instrumented

inflow is associated with a 0.5 standard deviation increase in case growth. Alternatively,

an increase in inflows by an additional 100 residents raises local cases by about 20. The

median county sees an average instrumented inflow of 120 residents, and over 10% of all

counties see instrumented inflows of over 200 residents during our sample period. Our

estimates are substantial and point to urban migration as an important vector of COVID-

19 spread across the United States.

Our results are also relevant to both questions of local government public finance

shocks, as well as the long-term future of cities. Because the population which left was

disproportionately rich, their flight deprives cities of valuable tax revenue in the short-

run. To the extent that urban migration remains persistent, cities may also face long-term

challenges around budget shortfalls, real estate prices, and population size. While our

results end in July 2020, and so we are limited in addressing these long-term questions,

we quantify important urban disruptions in the wake of COVID-19.

Our results additionally have implications on the possible value of travel restrictions.

Virtually every country has placed severe restrictions on international travel, against the

initial advice of the World Health Organization. Many countries have additionally placed

restrictions on regional travel within countries. These include complete bans on interstate

travel, as between Victoria and New South Wales in Australia1, as well as requested iso-

lation orders for out-of-state visitors, as prevailed in some U.S. states in our period, such

as Rhode Island.2 However, the potential value of these travel restrictions remains very

unclear. Our results suggest that intra-US travel was a main vector spread, and therefore

1See https://www.npr.org/2020/07/06/887659557/australia-closes-interstate-border-

because-of-coronavirus-outbreak.
2See Rhode Island Government official press release from April 7: https://www.ri.gov/press/view/

38091.
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the existing level of travel restrictions and self-suggested quarantine orders were insuf-

ficient to prevent out-of-state migration from impacting local spread. As a consequence,

our work points to the value of potential policies related to travel restrictions in curbing

spread.3

Our work is closely linked to a rapidly growing literature using mobile phone ge-

olocation data to assess the spread of COVID-19. Most closely related is work by Chiou

and Tucker (2020), which finds shelter-in-place effects vary by income. This paper differs

by considering the role of leaving the city, connecting mobility with actual COVID ex-

posure, and incorporating analysis of other demographic groups. Glaeser, Gorback, and

Redding (2020) examines the change in mobility within regions, while we examine the

flight response across areas. Other work (Allcott, Boxell, Conway, Gentzkow, Thaler, and

Yang, 2020; Barrios and Hochberg, 2020; Engle, Stromme, and Zhou, 2020; Painter and

Qiu, 2020; Andersen, 2020) has looked at political partisanship and COVID-19 responses.

Prior work, such as Athey, Ferguson, Gentzkow, and Schmidt (2019), Chen, Haggag,

Pope, and Rohla (2019), and Chen and Rohla (2018), has used mobile phone geolocation

data to examine segregation, racial disparities in voting waiting times, and partisanship.

Another use of individual ping-level geolocation data includes Chen, Chevalier, and Long

(2020), who examine nursing home networks in the wake of COVID-19. Holtz, Zhao, Ben-

zell, Cao, Rahimian, Yang, Allen, Collis, Moehring, Sowrirajan, Ghosh, Zhang, Dhillon,

Nicolaides, Eckles, and Aral (2020) also uses Facebook data to shows similarity in so-

cial distancing responses among regions connected through friendship links. Our work

highlights a direct migration linkage between socially connected regions.

Our work also relates to a literature that uses geonotyping of strains to establish both

international chains of transmission in Europe (Pybus, Rambaut, COG-UK-Consortium,

3Chandrasekhar, Goldsmith-Pinkham, Jackson, and Thau (2020) also highlights the importance of re-
gional spillovers and network interactions. We contribute to this work by quantifying the role of the mi-
gration channel in contributing to case growth at an early stage of the COVID-19 pandemic. Lee, Mahmud,
Morduch, Ravindran, and Shonchoy (2020) also finds an association of migration and cases in the context
of COVID-19 in South Asia.
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et al., 2020) as well as domestic transmission in the United States (Fauver, Petrone, Hod-

croft, Shioda, Ehrlich, Watts, Vogels, Brito, Alpert, Muyombwe, et al., 2020). While this

work establishes the strain similarities across regions in the United States points to a role

for domestic transmission, we provide additional evidence on the physical migration be-

hind this regional transmission.

II DATA AND SPECIFICATION

II.A Data

Mobile location data was sourced from VenPath—a holistic global provider of compliant

smartphone data. We obtain unique data on smart phone GPS signals. Our data provider

aggregates information from approximately 120 million smart phone users across the

United States. GPS data were combined across applications for a given user to produce

pings corresponding to time stamp-location pairs. Ping data include both background

pings (location data provided while the application is running in the background) and

foreground pings (activated while users are actively using the application). Our sample

period covers the period February 1 to July 13, 2020.

We supplement our mobility data with county-level coronavirus case counts from the

COVID-19 Data Repository by the Center for Systems Science and Engineering at Johns

Hopkins University.4 We join this with a county-to-county Social Connectivity Index

(SCI) measures from Facebook as discussed in Bailey, Cao, Kuchler, Stroebel, and Wong

(2018) and applied in reference to COVID-19 in Kuchler, Russel, and Stroebel (2020). We

also include demographic data from the Census ACS, and urban-rural county classifica-

tions from the National Center for Health Statistics.
4Drawn from https://coronavirus.jhu.edu/. We also incorporate nursing home data from the Cen-

ters for Medicare and Medicaid Services and https://www.cms.gov/.

125
C

ov
id

 E
co

no
m

ic
s 5

4,
 2

9 
O

ct
ob

er
 2

02
0:

 1
21

-1
57

https://coronavirus.jhu.edu/
https://www.cms.gov/


COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table I summarizes some key statistics—in particular, we note that the distribution

of caseloads across counties is highly skewed, with several key counties exhibiting ex-

tremely high growth in new cases while approximately half of the counties in our sam-

ple had fewer than 1 new case per day. Secondly, the difference between the SCI and

its inflow-weighted counterpart shows that net inflows between counties are occurring

most frequently between highly connected counties, giving some preliminary evidence

in support of the SCI as a relevant instrument for county-county flows.

TABLE I: Summary Statistics

1st Quartile Median Mean 3rd Quartile
Daily New Cases 0.00 0.00 8.19 2.00
Daily New Cases Per 1000 People 0.00 0.00 0.04 0.04
Net Inflow 31.00 67.00 152.73 153.00
SCI-Instrumented Inflow 107.18 123.70 152.67 153.05
Social Connectedness Index 31.68 63.07 111.19 121.10
Social Connectedness Index (inflow-weighted) 62.64 171.03 757.78 515.25
Distance 311.35 453.03 520.15 635.14
Distance (inflow-weighted) 182.20 250.02 301.96 349.29
Number of Nursing Homes 2.00 5.00 7.67 8.00

Notes: Summary statistics across all counties in our sample, with caseload and inflow data between 3/1/2020 and 7/13/2020. SCI and
distance are calculated as the raw arithmetic average between the destination county and other counties from which there is a positive
inflow. The inflow-weighted counterpart of these measures are calculated by using inflows from a particular county over total inflows
as the weight in the weighted average.

We isolate the migration behavior of users in the US by identifying each user’s modal

census tract each night (6pm - 8am) if they ping in it three or more times. We do this for

each night in a month. If a user has the same tract as their modal night tract on at least five

nights in that tract, we define it as their “home tract:” the Census tract that they spend

the most time in during night hours. We repeat this process each month from February

to June to analyze mobility from March to July. We use only one month of data at a time

to identify residents’ home tracts. We then analyze their data in the month immediately

following the month that was used to identify their home locations. The resulting sample

includes a population of 9–11 million unique users per month for our base analysis across

the United States. In New York City, we observe a 0.89 correlation between the population
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of each ZIP Code and our observed mobile phone population in that area.

To calculate county to county flow or ZIP Code to ZIP Code flow, we observe the

count of users spending the night in a given census tract and aggregate up to the county

or ZIP level each date. We aggregate tracts to counties, and link tracts to ZIP codes using

a crosswalk provided by the Department of Housing and Urban Development.5 In cases

where tracts map to multiple ZIP Codes, we select the ZIP Code with the highest number

of residents. We aggregate resident counts to the home geography, current geography,

and date level to see where people from a given geography are spending the night on each

date. The resulting measures estimate flows from home geographies to new geographies

on each date.

II.B Empirical Specification

Our core empirical specifications examine the determinants and consequences of urban

flight in the context of the COVID-19 pandemic in the United States. After aggregating

mobile phone migration data into county-day information, we sum, for a given day t, all

net inflows into county i. Our core OLS specification measures case growth in a destina-

tion county as a function of gross inflow into that county:

New Casesi,t = β0 · Inflowi,t + β1 · 1(High Cases in Originating Counties)i,t+

+ β2 · 1(Far)i + β3 · Inflowi,t × 1(Far)i + γ1 · Xi + δs,m,p + εi,t. (1)

We are primarily interested in the β0 coefficient, which measures the effect of inflows

on cases. We measure cases both in levels as well as per capita. In addition, we test

whether inflow from counties which experience high case counts and inflow from more

distant counties have a differential impact on case growth. The indicator for high cases

5See: https://www.huduser.gov/portal/datasets/usps_crosswalk.html for the crosswalk.
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in originating counties equal to 1 for counties where the inflow-weighted cases from in-

coming counties fall within the top quartile in the current month. We construct 1(Far)

by assigning 1 to counties where the inflow-weighted distance is at least 500km (roughly

equal to the distance between NYC and Pittsburgh).

We further include a number of county-level control variables in our regression speci-

fication to account for sources of coronavirus case growth orthogonal to inflows from out-

side counties. Controls include the distance between the home and destination counties,

mean household income, population density, the NHS urban-rural classification, share of

the population above 60 years of age, the share of essential workers, and the number of

nursing homes. Finally, we sort counties into deciles by population and include state by

month by population decile fixed effects to isolate the effect of migration from unobserv-

able heterogeneities across city size.

While our specification includes a number of plausible control variables, an important

potential identification concern with equation 1 is the endogenous nature of migration. If

counties that receive higher domestic migration are also more likely to be susceptible to

case growth for other reasons, a positive β0 may simply reflect spurious correlation, rather

than measuring the causal effect of migration on COVID-19 case growth. We develop

an identification strategy to address endogenous migration decisions based on Facebook

connectivity. We draw on prior research, as mentioned in Bailey, Cao, Kuchler, Stroebel,

and Wong (2018), that suggests social connectivity is a driver of migration decisions when

measured at annual frequencies. Our analysis establishes that social connections explain

the high-frequency pandemic-driven migration observed during COVID-19. To exam-

ine the relationship between migration and social connectivity, we first run a first stage

regression of migration against social connectivity between regions:

Inflowi,t = γ0SCIi,t +
10

∑
d=2

γd ·Distance Decilei,t + γ1 · Xi + δs,m + νi,t. (2)
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The SCI between two counties or ZIP Codes i and j measures the strength of social

connections between them, and is defined (as in Kuchler, Russel, and Stroebel (2020))

based on the number of users in two regions i and j as well as the friendship links between

them:

SCIij =
FB Connectionsij

FB Usersi × FB Usersj
. (3)

Our primary specification examines social connectivity at the county level, which

measures the total degree of connectivity across the country. We also examine connec-

tivity between ZIP pairs. The coefficient γ0 measures the strength of our first stage—the

predictiveness of social connectivity in a gravity regression on migration, controlling for

the decile of physical distance and other factors.

In order to isolate the effect of county inflows due urban flight, we instrument county-

county flows with the county SCI measure. The identifying assumption is that Facebook

connections between county i and other counties does not correlate with the trajectory

of case growth, except through the inflow of people into the county. Our instrumental

variables specification first instruments for inflow using equation 2, and uses predicted

inflow instead of realized inflow as a covariate in equation 2. We conduct our main analy-

sis at the County level, where we have case data nation-wide, but are also able to establish

the relationship between migration flows and SCI at the ZIP Code level.

III RESULTS

III.A Temporal and Spatial Patterns of Urban Flight

We begin by highlighting the demographic characteristics of individuals who leave urban

areas in the wake of the COVID-19 pandemic. Our initial focus is New York City, which
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was the epicenter of the pandemic in the initial stage, and we emphasize the scale of the

migration response. However, subsequent results analyze urban flight across the country.

In Panel A of Figure I, we show responses of individuals in leaving New York City by

borough. We observe stark patterns in the response of individuals along this extensive

margin: residents of Manhattan are substantially more likely to leave the city after the

crisis, as are other wealthy parts of the city in Brooklyn. We find that as many as 10–15%

of the population of Manhattan, formerly resident in the city in February, leaves the city

by April 15. By contrast, residents in Queens—the epicenter of the COVID-19 pandemic

in New York City—Brooklyn, and the Bronx are overwhelmingly more likely to stay in

the city. This urban exodus continues through the end of our sample. By July 10, we

observe about 17% of the population of Manhattan remains absent in the city.

These shifts in leaving the city, however, are concentrated in the higher-income Census

tracts, suggesting that richer New York City residents were disproportionately able to

take advantage of the option to flee the city and escape physical COVID-19 exposure in

the city.

We confirm the role of income as a factor in explaining moves away from the city in

Panel B of Figure I, which shows a heatmap of responses by tract and date among tracts

with median household incomes in excess of $100k. We find a large breakpoint in our

sample in March 14, as reflected in the sharp changes in colors beginning on that date in

a number of tracts, corresponding to a sharp rise in the increase of former New York City

inhabitants leaving the city. This break comes just before Mayor Bill Di Blasio ordered

schools, restaurants, bars, cafes, entertainment venues, and gyms in the city closed on

March 16.6 We observe very high flight behavior in the highest-income Census tracts

after that date.

The fact that we observe migration response prior to the introduction of nonpharma-

ceutical interventions such as lockdowns is also consistent with Goolsbee and Syverson

6See https://www1.nyc.gov/assets/home/downloads/pdf/executive-orders/2020/eeo-100.pdf.
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FIGURE I: Propensity to Leave NYC by Tract

Panel A: Propensity to Leave NYC by Borough
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(2020), and points to important behavioral responses separate from policy responses. Un-

like other mobility changes, such as sheltering at home—migration entails possible exter-

nalities on the exposure of others which we explore.

We examine the spatial distribution of flight patterns in Figure II, which shows the

fraction of residents who leave across six cities (New York, San Francisco, Los Angeles,

Washington DC, and Boston). We measure the pre-existing urban population in each Zip

Code, and plot the fraction that has left by March 29, 2020. New York City experiences

extremely high flight concentrated in Manhattan, with several Zip Codes seeing over 50%

of the resident population leaving. Flight is concentrated in the Downtown and Midtown

regions, though we also observe extensive urban flight in the Upper West Side, Upper

East Side, and the wealthier regions of Brooklyn. We also observe distinctive patterns of

urban flight in San Francisco (concentrated in downtown regions) as well as Boston (high

in Cambridge and downtown Boston). These maps suggest that large-scale urban flight

in response to the COVID-19 pandemic, with responses concentrated in the richer parts

of several major metropolitan areas.

III.B Demographic Associations of Urban Flight

We examine the demographic associations of urban flight in Figure III, which focuses

on the propensity to remain in our six city sample. We plot background demographic

associations at the ZIP Code level against the fraction of ZIP Code population that stays.

Background dots show all data points, while binscatter dots plot the average population

within 25 quantiles. We find that the fraction of residents who remain in cities is strongly

decreasing in tract income, decreasing in the fraction of the tract that is White, and the

fraction of residents aged 18–45. These results are large in magnitude and statistically

significant—moving from a tract at the bottom quartile of income to the top quartile raises

the fraction of New York City residents who leave, for instance, by about 3 percent, or

about the same as the unconditional average of the number of New York City residents
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FIGURE II: Propensity to Leave Cities
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FIGURE III: Fraction Change in Out of Town Visits by Demographics

Panel A: Change in Out of Town Visits by ZIP Income
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Panel B: Change in Out of Town Visits by Fraction White
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Panel C: Change in Out of Town Visits by Fraction Aged 18-45
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Notes: Panel A shows average household income against the change in the fraction of out of town visits. Panel B repeats the exercise
for the fraction who are white, and Panel C for the fraction between the ages of 18-45. Data is tract-level and shown only for New York
City, San Francisco, Los Angeles, Washington DC, Seattle, and Boston. Charts on the left represent the entire sample; charts on the
right winsorize the fraction of out of town visits at the 5% level. All demographic variables are left un-winsorized, with the exception
of the fraction between 18-45 in Panel C. Light gray points show all the data points; for each demographic variable, the data is divided
into 25 quantiles and each dark blue dot represents the average fraction of the population sleeping at home and average demographic
variable within each quantile. Income data is drawn from the IRS SOI Tax Statistics at https://www.irs.gov/statistics/soi-tax-
stats-individual-income-tax-statistics-zip-code-data-soi, and demographic data are drawn from the ACS.
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who leave. The income and demographic associations are even stronger in the panels on

the right of this Figure, which winsorize the fraction of out of town visits at a 5% level.

III.C Associations of National Migration

We first begin by descriptively analyzing the nation-wide nature of migration in the con-

text of COVID-19. Figure IV documents the net flow and outflow of residents across

counties in the United States as of the end of each month.7 Map colors indicate the frac-

tion of residents who left or entered the county, while the size of the circles indicate the

size of the flow.

By the end of March, we document substantial flight out of New York City as well

as several other metropolitan areas (including Boston, Los Angeles, San Francisco, and

Phoenix). This inflow went to a mix of interior locations including rural areas across

the country as well as Southern urban areas. Several cities in the Sunbelt, in particular

Atlanta, Houston, Charlotte, and Austin saw substantial net in-migration during this pe-

riod. Some other cities in North, such as Des Moines, Chicago, Detroit, Kansas City, and

St. Louis, also saw substantial inflow. We also observe substantial inflow to numerous

smaller counties in the vicinity of New York City, in the Hamptons and Hudson Valley.

Broadly, the pattern of migration reflects flight away from the initial waves of the pan-

demic which hit the coasts more strongly, towards the national interior.

We observe continued urban flight from New York City, as well ad additional flight

away from Phoenix, Florida, and some Californian and Texan cities in April. By May,

we observe substantial inflow into coastal regions for vacation purposes. Because our

analysis ends in mid-July, we are limited in our ability to observe further migratory events

associated with subsequent case increases across the Sunbelt regions of the United States

over the period beginning in June. Our focus largely remains the substantial migratory

7Appendix Figure A1 examines inflow.
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FIGURE IV: Nationwide Migration

Panel A: March Net Flow Panel B: March Outflow

Panel C: April Net Flow Panel D: April Outflow

Panel E: May Net Flow Panel F: May Outflow
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response in the wake of the first migration event around the beginning of the pandemic

in March, 2020.

To further understand this unprecedented pattern of domestic migration, we begin by

examining role of social connections in determining where individuals flee to in Figure

V. In Panel A of this figure, we plot pre-existing social connections measured using the

Facebook SCI variable and migration between March 1 and July 13 at the ZIP Code level

across the entire United States. Background light points show a 1/100th random sample,

while dark points show a binscatter of the 25th quintiles. We find a very strong positive

association between higher social connectivity between ZIP Codes and migration over

this period. We winsorize both SCI and inflows at a 1% level in the left plots, and at a 5%

level in plots on the right and find similar results across both specifications. The strong

relationship between inflow and SCI suggests that individuals with the ability to leave

disproportionately went to areas where they had pre-existing social networks, and could

take refuge with friends and family.

We then examine the relationship between migratory inflow and subsequent case

growth in Panel B of V. In these plots, we move to the county-level in which we have

COVID-19 case information. We plot the daily growth in cases against daily inflow for

all counties over our entire sample period (March 1 to July 13). Binscatter dots show the

25 quantiles of the distribution, and suggest a strong relationship between migratory in-

flows and case growth. Our graphical evidence suggests that urban migration, directed

towards socially connected regions, had spillover effects on destination regions in increas-

ing COVID-19 case counts for destination counties.

III.D Impact of Urban Flight on Nationwide Case Growth

Having established the nature of urban flight over the course of the COVID-19 pandemic,

we turn next to our main analysis on the implications of this flight on destination regions.
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FIGURE V: SCI-Related Mobility and Case Growth

Panel A: ZIP Inflows against SCI

Panel B: Inflows against Case Growth

0

50

100

150

200

D
a

ily
 N

e
w

 C
a

s
e

s

0 500 1000 1500
Daily Inflow

0

10

20

30

40

50

D
a

ily
 N

e
w

 C
a

s
e

s

0 200 400 600
Daily Inflow

Notes: Panel A show inflows per 1000 people between pairs of zip codes against SCI between the two zip codes. Light gray points
show 1/100th of the entire sample. Panel B shows daily inflows against new cases at the county level. Light gray points show one-
tenth of the entire sample. In the left column, SCI and daily inflow are winsorized at the 1% and 99% levels; in the right column, SCI
and daily inflow are winsorized at the 5% and 95% levels. Dark blue dots are obtained by dividing the data into 25 quantiles and
calculating the mean x-axis and y-axis value in each quantile.
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Because coronavirus is a predominantly respiratory disease spread in close contact, di-

rect exposure with individuals formerly living in high-risk areas is a plausible vector for

the spread of the disease. While urban areas with international connections (particularly

Seattle and New York City) appear to have been the initial hotspots for spread; the disease

appears to have quickly spread from there to outlying regions through the travel patterns

of affected individuals. We explore the idea that this pattern of extraordinary urban flight,

by individuals perhaps avoiding the risk of contagion in urban areas, may have seeded

the pandemic through the rest of the country.

To illustrate our key mechanism and hypothesis in graphical form, we begin by il-

lustrating the relationship in Figure VI. This figure highlights the impact of increased

migration on increased cases in the destination counties and focuses in flight form New

York City. The city is central to our analysis both due to the size of its urban flight, as

well the early presence of COVID-19 in the urban area. We first begin by separating our

analysis into different urban categories based on attributes of the destination regions. Re-

gions differ in their exposure to infectious disease spread based on urban form, so we

analyze separately the impact of inflows of New York City residents contrasting the large

and medium sized metros (NCHS category 1, 2 & 3 Panel A), compared with microp-

olitan and non-core areas (NCHS categories 4, 5 & 6, Panel B). Within each category, we

compare case growth among counties that received the highest quartile of inflow of New

Yorkers, compared with counties that saw the lowest quartile of inflow. Left panels show

per capita cases in logs, while right panels show total cases.

We find sizable impacts of urban inflow from New York on COVID-19 cases across

regions. In the largest urban areas, we find that case growth starts to increase for counties

that receive high inflow from New York City beginning in March. We plot the raw seven

day average in case growth for the counties receiving highest and lowest quartile of New

York City inbound residents, and plot the difference between these regions in grey bars

the background. Regions that saw high inbound migration see the greatest relative differ-

ence in cases in the beginning of April, a difference that declines over time. The timing of
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FIGURE VI: March Inflows From NYC vs. Case Growth

Panel A: Large Central, Fringe, and Medium Metropolitan Areas
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Panel B: Micropolitan and Non-Core Areas
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Notes: Counties are split into quartiles based on total inflows from New York City during the month of March. The two charts on the
left show log(total cases per capita) over time for counties in the fourth quartile and the first quartile of inflows. The two charts on
the right show log(total cases). Urban classification based on the NCHS urban-rural classification scheme: large central metros, large
fringe and medium metropolitan areas (categories 1, 2, & 3) and micropolitan and non-core areas (categories 4, 5 & 6).
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case growth matches the period of influx of New York City residents with a lag, consistent

with a channel of direct infection.

The difference between areas with high inflow of New York City residents and areas

that see low inflow starts to decline in July. We show similar plots that plot case growth

in Figure VII, which confirm that areas that initially saw higher New York City influx

see negative relative case growth into the summer. This result suggests that New York

City inflow brought forward some cases which may have counterfactually been experi-

enced later in the course of the pandemic. Urban flight would still be a quite important,

even it only accelerates case growth, because of steady improvements in treatment and

expanded supply of personal protective equipment such as masks over the pandemic,

which lowered mortality rates among those infected later in the course of the pandemic.8

We observe that the impacts of New York City influx are increasing in city size. Urban

areas which saw higher influx of New York City residents saw the greatest increase in new

cases (a representative example would be Atlanta, which saw large case growth in the first

wave of the pandemic). Large fringe and medium metropolitan areas also see substantial

increase in early cases as a result of New York City inflow, but to a lesser degree than the

largest urban areas. However, micropolitan and non-core areas see substantially weaker

effects, which also turn negative around mid-May. Urban influx could be most related

to subsequent case growth in the largest urban areas due to greater realized population

density and possibility for individuals to interact in the crowded, indoor environments

which are most conducive to COVID-19 spread.

Overall, we find evidence across the cross-section and time-series consistent with ur-

ban migration being a substantial vector of spread for COVID-19 across the country. Ar-

eas with greater influx of New York City residents see greater case growth exactly in the

8See Horwitz, Jones, Cerfolio, Francois, Greco, Rudy, and Petrilli (2020) and Ciceri, Ruggeri, Lembo,
Puglisi, Landoni, Zangrillo, and on behalf of the COVID-BioB Study Group (2020) on improved mortality
and Gandhi and Rutherford (2020) who connects the improved mortality to increased mask adherence.
Other explanations for greater mortality at the early stage of the pandemic including crowding at hospitals,
learning-by-doing in medical care, and improved treatments over time.
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FIGURE VII: March Inflows From NYC vs. Log Case Growth

Panel A: Large Central, Fringe, and Medium Metropolitan Areas
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Panel B: Micropolitan and Non-Core Areas
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Notes: Counties are split into quartiles based on total inflows from New York City during the month of March. The two charts on the
left show median log(total cases per capita growth) over time for counties in the fourth quartile and the first quartile of inflows. The
two charts on the right show log(total case growth). Urban classification based on the NCHS urban-rural classification scheme: large
central metros, large fringe and medium metropolitan areas (categories 1, 2, & 3) and micropolitan and non-core areas (categories 4, 5
& 6). This figure differs from VI by considering case growth, rather than totals.
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time period when it would be most expected. Our effects are largest for urban areas that

receive New York City residents, and partially reverse over the course of the pandemic—

suggesting that this migration brought forward additional cases. We next move on to

regression analysis, which allows us expand our focus to migration across the entire Un-

tied States, control for additional factors, and account for endogeneity in the migration

decision by using the social connectivity of regions as an instrumental variable.

Our core regression specification in Table II follows our primary specification in equa-

tion 2 and covers inflows and case growth from March 1 to July 13. We first show that

inflows lead to large increases in county caseloads, in our OLS specifications (columns

1–6). We find that for every additional 100 people who enter a county, case growth is

increased by 0.8.9 We also see that counties which experience inflows originating from

counties which fall within the top quartile of case growth in a given month also see higher

case growth on average. This large and statistically significant relationship parallels our

graphical results in highlighting a role for case influx on cases. We also find evidence

that migration from areas with higher case loads, and influx from areas further away

lead to higher infection rates. These results are consistent with long-distance and inter-

state migration, especially from New York City, contributing to greater spread around the

country.

9Coefficients in this table other than 4–6 are scaled by 1 ×103, and so correspond to the case increase
resulting from an additional influx of 1000 people. Columns 4–6 are scaled by 1 ×106.
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TABLE II: Impact of Migration on COVID-19 Cases

Panel A: COVID-19 Case Growth Against Inflow

OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inflow 92.585∗∗∗ 12.022∗∗∗ 8.288∗∗∗ 267.821∗∗∗ 197.785∗∗∗ 194.605∗∗∗

(2.745) (2.556) (2.644) (9.468) (12.621) (12.551)
Per Capita Inflow -771.807∗∗∗ -151.848∗ -199.698∗∗ -2969.855∗∗∗ 261.882∗∗∗ 197.772∗∗∗

(82.935) (90.625) (94.784) (931.814) (31.698) (20.711)
High Incoming Cases 4779.249∗∗∗ 4563.025∗∗∗ 4595.383∗∗∗ 5444.178∗∗∗ 6661.104∗∗∗ 7040.705∗∗∗

(113.903) (134.450) (134.190) (187.469) (235.459) (264.511)
High Incoming Cases Per Capita 48.924∗∗∗ 49.372∗∗∗ 49.372∗∗∗ -0.090∗ 0.063∗∗∗ 0.060∗∗∗

(0.438) (0.443) (0.443) (0.050) (0.002) (0.002)
Far Indicator 3622.632∗∗∗ 2333.182∗∗∗ -1362.127 0.427 -0.119 -1.102 3214.693∗∗∗ 1842.587∗∗ -18806.066∗∗∗ 0.317∗∗∗ 0.008 -0.074∗∗∗

(471.740) (691.956) (948.833) (0.541) (1.114) (1.279) (491.789) (792.740) (2961.841) (0.111) (0.006) (0.012)
Far Indicator × Inflow 20.448∗∗∗ 113.999∗∗∗

(4.690) (16.657)
Far Indicator × Per Capita Inflow 369.540 30.254∗∗∗

(247.614) (4.678)
Controls N Y Y N Y Y N Y Y N Y Y
State x Month x Population Decile FE Y Y Y Y Y Y Y Y Y Y Y Y
N 414,847 399,083 399,083 414,847 399,083 399,083 414,847 399,083 399,083 414,847 399,083 399,083

Panel B: First Stage Estimates of Inflow on SCI

Weighted SCI 42947.436∗∗∗ 29688.738∗∗∗ 32749.326∗∗∗ -0.002∗∗∗ 0.006∗∗∗ 0.003∗∗∗

(443.427) (456.984) (526.249) (0.001) (0.001) (0.001)

F 9,381 2,651 1,346 10 106 115

Columns 1-3 shows our main regression specification 1. Columns 4-6 repeat the exercise using inflow per capita as the outcome variable. Column 7-12 repeats the exercise for columns 1-6, where inflow
is instrumented with the weighted SCI, as in 2. The sample period is March 1 through July 13. Standard errors are in parentheses, and * denotes 10% significance, ** denotes 5% significance, *** denotes
1% significance. Note that all coefficients and standard errors in Panel A are scaled up by 1× 103, with the exception of columns 4-6, where coefficients and standard errors are scaled up by 1× 106. All
coefficients and standard errors in Panel B are scaled up by 1× 106.
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We then instrument for migration patterns with Facebook friendship linkages (columns

6–10) to confirm a causal relationship between migration and subsequent case growth.

Our IV estimates suggest statistically significant and economically substantial estimates.

A one standard deviation increase in inflows instrumented for by social connections

(roughly 116 people) causes a 0.5 standard deviation in daily case growth (roughly 23

cases). To put this into context, an increase in instrumented inflows by one standard de-

viation is akin to the difference in inflows experienced by Essex County in upstate New

York (home to Lake Placid) as compared to Mercer County, NJ (home to the state cap-

ital). In this particular example, we also see that our back of the envelope calculations

for mobility-linked case-growth is significant, as Mercer County’s average case growth

was 58 per day over our sample period, as compared to Essex County’s daily case growth

of 0.39. Our IV results suggest that migration accounts for slightly less than half of the

difference in case growth across these two counties.

Our IV estimates are larger than our OLS estimates since raw inflow tends to over-

weight areas which exhibit lower case growth relative to the SCI-instrumented inflow.

This appears likely because a substantial component of urban flight was motivated by

fleeing to geographically remote areas where case growth is more likely to be low. These

remote regions tend to be places where travellers do not have many existing social con-

nections (e.g. renting a temporary property in upstate New York, or visiting a second

home in a region where individuals do not know many others). Our IV, by contrast,

identifies a LATE based on migration towards socially connected regions. Migration to-

wards these areas, which is instead highlighting the flow based on the migration towards

friends and families, appears to be more conducive to COVID-19 case transmission. Our

IV, additionally, cleans up potential measurement error in our measurement of migration.

To provide a descriptive sense for the differing changes in sample and provide further

support for why we see larger IV estimates, we provide some evidence in Figures VIII

and IX. We show that instrumented inflow tends to be higher in regions with lower case
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growth—these regions tend to have lower population density and a higher proportion of

seasonal homes. In short, our OLS estimate underestimates the impact of inflow on case

growth, because inflow is positively correlated with a variable which drives lower case

growth (a characteristic which naturally makes these regions more desirable destinations

for those fleeing urban areas). Additionally, we contrast the raw inflows against the in-

strumented inflows from the SCI measure. Our focus on the SCI measure effectively picks

a different set of regions across the United States based on predicted inflows due to social

connections, rather than realized migration activity. Raw inflows tend to pick up coastal

and rural areas, in particular, relative to more connected urban areas in the SCI measure.

Finally, we find a strong and statistically significant first stage, and report the coeffi-

cient and F-statistic from the first stage regression 2 in Panel B for the IV regressions.

We perform several key robustness tests on our primary sample. In Appendix Table

III, we include additional lags to account for past inflows. These additional lagged con-

trols account for the incubation period between contracting the virus, exhibiting symp-

toms, and receiving a positive test result. These results do not suggest meaningfully dif-

ferent impacts from lagged inflows as compared to concurrent inflows.

We also examine specifications that restrict on flight from New York City specifically.

The large exodus from New York City, and the substantial case load in the city overall,

make it a key focus of our analysis. In Table IV, we regress local cases against an indicator

for counties in the top quartile of counties receiving inflows from NYC in March, which is

most comparable with our graphical evidence. In Table V, we repeat our full analysis but

subset to just inflows from New York City specifically. Both specifications find large and

statistically significant effects. These results suggest that urban flight, and specifically

the large urban exodus from New York City, was a central feature of the spread of the

COVID-19 pandemic across the United States. An additional robustness table, Table VI,

clusters standard errors at the Commuting Zone-level. While we lose significance in our

per capita results, our core inflow measure remains statistically significant.
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FIGURE VIII: Raw vs. SCI-Fitted Inflows

Panel A: Total Inflow

218 − 1,525
111 − 218
68 − 111
42 − 68
24 − 42
2 − 24
No data

176 − 2,750
139 − 176
123 − 139
112 − 123
101 − 112
53 − 101
No data

Panel B: Inflow Per Capita

4.0 − 13.5
3.0 − 4.0
2.4 − 3.0
1.9 − 2.4
1.5 − 1.9
0.3 − 1.5
No data

3.1 − 3.8
2.9 − 3.1
2.7 − 2.9
2.6 − 2.7
2.5 − 2.6
1.9 − 2.5
No data

Panel C: Difference Between Raw and SCI-Instrumented Inflows

53 − 1,081
-18 − 53
-48 − -18
-65 − -48
-83 − -65
-1,247 − -83
No data

0 − 18
-0 − 0
-2 − -0
-4 − -2
-9 − -4
-230 − -9
No data

Notes: Panels A & B show raw inflows and raw per capita inflows (left column) and SCI-fitted inflows and inflows per capita (right
column). Darker red represent higher values; each map is colored by splitting the data into sextiles, resulting in different cut-off
values for different colors vary across maps. Panel C shows the difference between raw and SCI-instrumented inflows (inflow −
SCI-instrumented inflows); red counties represents regions where raw inflow is higher than instrumented inflow, and blue counties
represent regions where raw inflow is lower than instrumented inflow.
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TABLE III: Impact of Migration on COVID-19 Cases: Lagged Inflows

Panel A: COVID-19 Case Growth Against Lagged Inflows

OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)
Inflow (1 Week Lag) 23.299∗∗∗ 193.162∗∗∗

(2.721) (12.468)
Inflow (1 Month Lag) 27.190∗∗∗ 197.702∗∗∗

(3.357) (13.490)
Per Capita Inflow (1 Week lag) 722.257∗∗∗ 175.463∗∗∗

(101.890) (16.038)
Per Capita Inflow (1 Month Lag) 521.679∗∗∗ 201.144∗∗∗

(122.954) (20.681)
High Incoming Cases (1 Week Lag) 3747.654∗∗∗ 4436.659∗∗∗

(139.241) (196.018)
High Incoming Cases (1 Month Lag) 2224.591∗∗∗ 4113.848∗∗∗

(175.153) (301.818)
High Incoming Cases Per Capita (1 Week Lag) 32.141∗∗∗ 0.026∗∗∗

(0.483) (0.001)
High Incoming Cases Per Capita (1 Month Lag) 21.342∗∗∗ 0.028∗∗∗

(0.517) (0.002)
Far Indicator (1 Week Lag) -2808.387∗∗∗ -2.731∗∗∗ -1.41e+04∗∗∗ -0.045∗∗∗

(589.952) (0.918) (2397.465) (0.009)
Far Indicator (1 Month Lag) -1089.620 0.089 -1.48e+04∗∗∗ -0.060∗∗∗

(662.542) (1.016) (2785.041) (0.011)
Far Indicator × Inflow (1 Week Lag) 27.131∗∗∗ 101.291∗∗∗

(5.066) (16.842)
Far Indicator × Inflow (1 Month Lag) 23.243∗∗∗ 110.110∗∗∗

(5.981) (19.830)
Far Indicator × Per Capita Inflow (1 Month Lag) 83.988 25.628∗∗∗

(264.241) (3.840)
Far Indicator × Per Capita Inflow (1 Month Lag) 12.958 33.710∗∗∗

(313.248) (5.178)
Controls Y Y Y Y Y Y Y Y
State ×Month × Population Decile FE Y Y Y Y Y Y Y Y
N 377,556 335,587 377,556 335,587 377,556 335,587 377,556 335,587

Panel B: First Stage Estimates of Lagged Inflows on SCI

Weighted SCI 33012.669∗∗∗ 32419.067∗∗∗ 0.006∗∗∗ 0.004∗∗∗

(516.184) (534.261) (0.001) (0.001)
F 1,442 1,297 133 117

This table replicates table II, using 1-week and 1-month lagged explanatory variables. Columns 1-2 shows the results for total inflow and case growth; columns
3-4 shows results for per capita inflow and case growth. Columns 5-9 is the IV analogue of columns 1-4, where inflow and inflows per capita are instrumented
with weighted SCI values, as in 2. The sample period is March 1 through July 13. Standard errors are in parentheses, and * denotes 10% significance, ** denotes
5% significance, *** denotes 1% significance. Note that all coefficients and standard errors in Panel A are scaled up by 1× 103, with the exception of columns 4-6,
where coefficients and standard errors are scaled up by 1× 106. All coefficients and standard errors in Panel B are scaled up by 1× 106.
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FIGURE IX: Differences in IV and OLS Estimates Due to Differences in Instrumented and Raw Inflow

Notes: The left binscatter shows case growth tends to be lower in regions with a greater proportion of seasonal homes. The right
binscatter shows the unexplained portion of raw inflows (after partialling out the impact of the control variables we use in our baseline
specification) tends to be higher than the unexplained portion of instrumented inflows, precisely in regions with more seasonal homes,
and hence, regions with lower case growth. We point to seasonal homes as an imperfect measure of a possible omitted variable, which
is positively correlated with the raw (not instrumented) inflow and negatively correlated with case growth.

TABLE IV: March Inflows from NYC vs. Case Growth

Panel A: Log(New Cases) Against Inflow from NYC

OLS IV

(1) (2) (3) (4)
High NYC Inflow 0.800∗∗∗ 0.299∗∗∗ 5.901∗∗∗ 5.262∗∗∗

(0.016) (0.011) (0.213) (0.315)
Controls Y Y Y Y
State ×Month × Population Decile FE Y Y Y Y
N 64,287 63,228 64,287 63,228

Panel B: First Stage Estimates

Weighted SCI 0.014 0.142
(0.0004) (0.0077)

F 1,364 334

This table shows our baseline regression, where the outcome is the log(New Cases) and the in-
flow variable is replaced with an indicator equal to 1 if a county was in the top quartile of all
counties which received inflows from NYC in March. The sample period is March 1 through July
13. Standard errors are in parentheses, and * denotes 10% significance, ** denotes 5% significance,
*** denotes 1% significance.
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TABLE V: Total Inflows from NYC vs. Case Growth

Panel A: COVID-19 Case Growth Against Inflow from New York City

OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inflow from NYC 201.893∗∗∗ 145.378∗∗∗ 146.173∗∗∗ 1701.690∗∗∗ 576.055∗∗∗ 525.346∗∗∗

(29.120) (22.988) (23.024) (90.574) (40.851) (38.314)
Per Capita Inflow From NYC 222385.775∗∗∗ 221671.430∗∗∗ 267572.009∗∗∗ 7750.832∗∗∗ 3010.973∗∗∗ 2728.955∗∗∗

(12297.432) (12610.849) (13777.545) (306.637) (195.477) (190.074)
High Incoming Cases 4119.744∗∗∗ 4283.269∗∗∗ 4271.320∗∗∗ 1830.249∗∗∗ 3547.601∗∗∗ 3445.972∗∗∗

(129.971) (137.438) (138.531) (369.907) (187.022) (197.225)
High Incoming Cases Per Capita 48.556∗∗∗ 49.001∗∗∗ 48.990∗∗∗ 0.035∗∗∗ 0.044∗∗∗ 0.043∗∗∗

(0.438) (0.443) (0.443) (0.001) (0.001) (0.001)
Far Indicator 4240.410∗∗∗ 2509.743∗∗∗ 2012.740∗∗∗ -0.101 0.009 1.325 7228.572∗∗∗ 2624.269∗∗∗ -6226.212∗∗∗ -0.015∗∗∗ -0.000 -0.026∗∗∗

(491.841) (684.991) (708.570) (0.541) (1.114) (1.121) (610.141) (680.683) (1437.595) (0.001) (0.001) (0.005)
Far Indicator × Inflow from NYC 498.949∗ 8867.827∗∗∗

(288.965) (1296.926)
Far Indicator × Per Capita Inflow From NYC -305462.360∗∗∗ 5932.824∗∗∗

(30595.187) (1112.899)
Controls N Y Y N Y Y N Y Y N Y Y
State ×Month × Population Decile FE Y Y Y Y Y Y Y Y Y Y Y Y
N 414,847 399,083 399,083 414,847 399,083 399,083 414,847 399,083 399,083 414,847 399,083 399,083

Panel B: First Stage Estimates of Inflow on SCI

Weighted SCI 6759.300∗∗∗ 8362.031∗∗∗ 9188.484∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗

(268.328) (363.540) (392.011) (0.00002) (0.00002) (0.00003)

F 635 530 289 1,264 930 467

Columns 1-3 shows our main regression specification 1, with inflows from the five NYC boroughs as the explanatory variable rather than total inflows. Columns 4-5 repeat the exercise using inflow per capita as the outcome
variable. Column 7-12 repeats the exercise for columns 1-6, where inflow from New York City is instrumented with the weighted SCI, as in 2. The sample period is March 1 through July 13. Standard errors are in parentheses,
and * denotes 10% significance, ** denotes 5% significance, *** denotes 1% significance. Note that all coefficients and standard errors in Panel A are scaled up by 1× 103, with the exception of columns 4-6, where coefficients
and standard errors are scaled up by 1× 106. All coefficients and standard errors in Panel B are scaled up by 1× 106.
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TABLE VI: Impact of Migration on COVID-19 Cases with Clustering at the Commuting Zone Level

Panel A: COVID-19 Case Growth Against Inflow

OLS IV

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inflow 92.585∗∗∗ 12.022∗ 8.288 267.821∗∗∗ 197.785∗∗ 194.605∗∗

(17.086) (6.678) (8.082) (36.036) (80.534) (85.408)
Per Capita Inflow -771.807∗∗∗ -151.848 -199.698 -2969.855 261.882 197.772

(207.943) (224.998) (227.826) (11562.496) (223.374) (147.866)
High Incoming Cases 4779.249∗∗∗ 4563.025∗∗∗ 4595.383∗∗∗ 5444.178∗∗∗ 6661.104∗∗∗ 7040.705∗∗∗

(757.515) (831.002) (830.135) (894.825) (1463.364) (1628.642)
High Incoming Cases Per Capita 48.924∗∗∗ 49.372∗∗∗ 49.372∗∗∗ -0.090 0.063∗∗∗ 0.060∗∗∗

(1.637) (1.649) (1.649) (0.543) (0.013) (0.009)
Far Indicator 3622.632 2333.182 -1362.127 0.427 -0.119 -1.102 3214.693 1842.587 -18806.066∗ 0.317 0.008 -0.074

(3400.618) (1724.929) (2869.619) (2.024) (1.520) (2.756) (3336.820) (1797.050) (10336.236) (1.271) (0.013) (0.060)
Far Indicator × Inflow 20.448 113.999∗∗

(16.700) (56.528)
Far Indicator × Per Capita Inflow 369.540 30.254

(856.118) (24.184)
Controls N Y Y N Y Y N Y Y N Y Y
State ×Month × Population Decile FE Y Y Y Y Y Y Y Y Y Y Y Y
N 414,847 399,083 399,083 414,847 399,083 399,083 414,847 399,083 399,083 414,847 399,083 399,083

Panel B: First Stage Estimates of Inflow on SCI

Weighted SCI 42947.436∗∗∗ 29688.738∗∗∗ 32749.326∗∗∗ -0.002 0.006 0.003
(443.427) (456.984) (526.249) (0.006) (0.005) (0.005)

F 112 85 74 0 2 3

Columns 1-3 shows our main regression specification 1. Columns 4-6 repeat the exercise using inflow per capita as the outcome variable. Column 7-12 repeats the exercise for columns 1-6, where inflow
is instrumented with the weighted SCI, as in 2. The sample period is March 1 through July 13. Standard errors are in parentheses, and * denotes 10% significance, ** denotes 5% significance, *** denotes
1% significance. Note that all coefficients and standard errors in Panel A are scaled up by 1× 103, with the exception of columns 4-6, where coefficients and standard errors are scaled up by 1× 106. All
coefficients and standard errors in Panel B are scaled up by 1× 106. Estimates in this table have standard errors clustered at the Commuting Zone level.
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Overall, our findings also potentially help explain the result in Kuchler, Russel, and

Stroebel (2020), that greater social connections with Westchester (another pandemic hub)

helps to predict subsequent COVID-19 deaths. A plausible transmission mechanism,

which we explore here, is the refugee behavior of New York City residents into these

socially connected regions, which has been frequently cited by local officials as a possible

transmission mechanism of the disease.10

IV CONCLUSION

We document substantial urban flight in the wake of the COVID-19 pandemic and find

large effects of this migration on the growth in COVIV-19 cases elsewhere in the country.

We observe large migration responses by individuals living in major urban areas. In

New York City, for instance, as much as 15-20% of Manhattan had fled by the middle of

the summer in 2020. These individuals came from areas which were disproportionately

wealthy, white, and young. These individuals appear to have left for regions with a high

degree of social connections to New York City, suggesting that individuals are taking

shelter with friends and family.

We then use the social networks structure to develop a causal estimate of the impact of

migration on case growth. We find that instrumented migration patterns predict subse-

quent rise in cases in destination counties, suggesting that urban flight helped to seed the

pandemic from an initially urban disease to a more widespread nation-wide pandemic.

Our work has implications for public policy in the wake of the disease. First, it high-

lights an important phenomenon of urban flight. Wealthy individuals, who contribute

disproportionately to the local revenue and tax base of cities, are more likely to flee cities.

10For instance, the Governor of Rhode Island mandated a 14-day quarantine for New York City resi-
dents entering the state, punishable with a fine or arrest, see https://www.nytimes.com/2020/03/28/us/

coronavirus-rhode-island-checkpoint.html
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This finding points to important challenges for municipal finances in the wake of the pan-

demic, and has implications for the future of cities. Second, our work highlights the role

of domestic migration in spreading the pandemic. As such, our work suggests the pos-

sible value of travel restrictions—in the form of banks, quarantine periods, or requiring

testing as a precondition for entry—to help curb the spread of COVID-19.
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INTERNET APPENDIX

FIGURE A1: Propensity to Leave Cities: Inflow

Panel A: March Panel B: April

Panel C: May
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We use data from Google Trends to predict the effect of the COVID-19 
pandemic on future births in the United States. First, we show that 
periods of above-normal search volume for Google keywords relating 
to conception and pregnancy in US states are associated with higher 
numbers of births in the following months. Excess searches for 
unemployment keywords have the opposite effect. Second, by employing 
simple statistical learning techniques, we demonstrate that including 
information on keyword search volumes in prediction models significantly 
improves forecast accuracy over a number of cross-validation criteria. 
Third, we use data on Google searches during the COVID-19 pandemic 
to predict changes in aggregate fertility rates in the United States at the 
state level through February 2021. Our analysis suggests that between 
November 2020 and February 2021, monthly US births will drop sharply 
by approximately 15%. For context, this would be a 50% larger decline 
than that following the Great Recession of 2008-2009, and similar in 
magnitude to the declines following the Spanish Flu pandemic of 1918-
1919 and the Great Depression. Finally, we find heterogeneous effects of 
the COVID-19 pandemic across different types of mothers. Women with 
less than a college education, as well as Black or African American 
women, are predicted to have larger declines in fertility due to COVID-19. 
This finding is consistent with elevated caseloads of COVID-19 in low-
income and minority neighborhoods, as well as with evidence suggesting 
larger economic impacts of the crisis among such households.
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1 Introduction

The COVID-19 pandemic has had significant consequences for human mortality. At their peak,
all-age weekly excess deaths exceeded 14% in Germany, 45% in the US, 90% in Italy, and
154% in Spain[1]. While most attention is focused on the current mortality and economic
consequences of the pandemic, its effects on fertility are currently unknown[2]. In spite of
this uncertainty, some in the popular media have suggested the pandemic will result in a “baby
boom” as couples spend more time together. Such pronouncements are viewed with skepticism
by many demographers, citing evidence on the short-term fertility effects from other mortality
crises, including natural disasters [3] [4] [5] [6] and previous pandemics [7] [8]. These studies
generally show that mortality spikes are followed by reductions in births within a year, with
some evidence of fertility rebounds after several years [9]. Theoretically, these declines are
explained by couples’ aversion to childbearing during periods of economic uncertainty, in an
unhealthy environment, or by increased spontaneous pregnancy termination due to stress or
disease [10]. While some rebounds have been even larger than the initial decline and led to
long-run increases in fertility, these usually occur when mortality spikes are concentrated in
children as parents attempt to replace deceased offspring — a mechanism which should be
less relevant for the COVID-19 pandemic, since it primarily affects mortality among older
individuals [5] [6].

Fertility change has significant economic and social consequences[11] [12]. Reductions
in birthrates accelerate population ageing, increasing dependency ratios in populations already
far below replacement fertility, such as in Southern Europe and East Asia[13]. This can lower
economic growth by reducing the fraction of working age population, while simultaneously
increasing the burden of caring for the elderly, both through public social programs as well
as private channels[14] [15]. However, these social and economic effects are mainly affected
by long-run fertility change. If the mortality crises only leads to a postponement of child-
bearing and leaves lifetime births per woman unchanged, the long-run economic effects from
postponement should be minimal. However, recent post-crisis fertility declines — including
the 2008-2009 financial crisis – did not experience a rebound and led to permanently lower
fertility rates. Since the exact nature of the effect of COVID-19 on the future of human fertil-
ity is unclear, the economic and social affects of the crisis due to demographic change is also
unknown.

Human gestation takes on average 268 days, so there is a natural delay from the onset
of these crises and their effect on full-term births [16]. For example, full-term births from
conceptions realized during the rapid onset of the pandemic in February or March of 2020
would not appear until November or December. Unfortunately, this delay in understanding the
effect of the pandemic on fertility is compounded since natality data generally does not become
available for analysis instantaneously. For example, the US Natality File birth microdata from
the National Center for Health Statistics (NCHS) are generally released at least 6-9 months
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after the end of the year in which those births occurred. Therefore, the earliest analyses of the
pandemic’s beginnings on birth outcomes using these traditional data will not be available until
late 2021, with more detailed analyses including births from early 2021 not becoming available
until late 2022. Even in countries which have faster data releases, significant delays between
the advent of births and the release of data hamper the ability of researchers to make timely
analyses of the relationship between COVID-19 and fertility rates.

An emerging literature suggests that data on Google searches can be used to monitor a
number of social and biological phenomena in the absence of more reliable or timely data.
Such data have been used for real-time analyses of disease outbreaks such as the seasonal
flu and Dengue[17] [18], as well as studies on well-being [19], tourism [20], financial trading
behavior [21], and demographic processes such as fertility [22], migration [23], sexual behavior
[24] [25] [26], and mortality [27]. Moving beyond now-casting with Google data is generally
difficult due to complexity or uncertainty surrounding the long-term processes which govern
such phenomena. Fortunately, behavior and information-seeking surrounding human gestation
takes place in predictable phases, and with well-known time lags, making Google search data
particularly appealing for prediction. As an example, morning sickness generally only occurs
during the first trimester, so an increase in searches for morning sickness and its symptoms may
help pinpoint an increase in the fertility rate over half a year in the future, and with an accuracy
of just a few months.

In addition to uncertainty surrounding the pandemic’s effect on fertility, there may be im-
portant heterogeneous effects across sub-national regions, or between socioeconomic groups.
For example, COVID-19 incidence and mortality have been elevated among the Black or
African American community in the US, and the economic impacts have been particularly
acute for workers with lower levels of education[28] [29]. Additionally, while planned births
may fall as the economic fallout of the pandemic induces couples to delay childbearing, re-
duced contraceptive access may lead to an increase in unintended pregnancies. This effect is
particularly acute for areas with historically poor contraceptive access: A 2020 UNFPA report
noted that COVID-19 is already excacerbating unmet family planning needs due to a variety of
reasons, including decreased demand for health facility visits, unavailability of trained medical
staff, and supply chain distruptions for contraceptive commodities[30]. Analyzing differential
changes in Google search volumes across regions with varying proportions of ethnic and other
socioeconomic groups may yield deeper insights into the potential effects of COVID-19 on
fertility.

In addition, heterogeneous changes in the types of keywords searched across regions may
help pinpoint specific mechanisms by which the pandemic will affect fertility. For exam-
ple, information-seeking on Google regarding emergency contraception may indicate possible
changes in unplanned pregnancies, while searches for miscarriages may indicate fetal loss. Fi-
nally, inasmuch as behavior regarding conception and sexual behavior is considered by many to
be socially taboo, some individuals may be more willing to search for such information on the
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internet than to discuss their behavior in person [26]. Therefore, although Google data is only
an imperfect reflection of the behaviors which affect fertility, it may more accurately reflect
actual behavioral change than a direct self-report of those behaviors.

In this study, we use high-frequency data Google search term volume for keywords re-
lated to fertility to predict the direction, magnitude, and timing of fertility change expected
from the pandemic in the United States at the state level. We do this in four steps. First, we
show that periods of above-normal search volume for Google keywords relating to conception
and pregnancy are associated with higher numbers of births in the following months. Excess
searches for unemployment keywords has the opposite effect. Second, by employing simple
statistical learning techniques, we demonstrate that including information on keyword search
volumes in prediction models significantly improves forecast accuracy over a number of cross-
validation criteria. Third, we use data on Google searches during the COVID-19 pandemic to
predict changes in aggregate fertility rates in the United States at the state level through Febru-
ary 2021. Finally, we test for heterogeneous effects of the COVID-19 pandemic on fertility by
education, ethnic identity, and age of mother, and by parity of birth.

2 Data and Methods

2.A Google Data

Our data on keyword search frequency comes from Google Trends (http://trends.google.com),
a website which allows users to access data on Google keyword search frequency, stratified by
geographic regions ranging from as large as a country to as small as a city. Data for smaller
geographic areas can be more difficult to use, since the data are suppressed unless the overall
search volume reaches a minimum threshold. For this article, we use data from the state level
in the United States to ensure a wide selection of available search terms, yet still preserve
geographic variation in search frequency.

2.B Natality Data

Data on births by state and month are from the National Vital Statistics System (NVSS) which
is part of the National Center for Health Statistics (NCHS). Monthly birth counts for each US
state and the District of Columbia from 2004-2018 were used, since 2004 was the year the
Google search data began, and 2018 is the most recent year of data on births is available. This
yields 15 years of usable data across 51 geographic regions, or 9,180 possible state-month-year
observations.
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3 Methods

3.A Keyword Selection

Keyword sets were created in a multi-step process. Initially, keywords were chosen by brain-
storming possible words which we believed to be predictive, specific, and common enough
for use in forecasting. We then sought input from other researchers to inform ourselves of
any important topics or keywords we might be missing. Due to the necessarily arbitrary ini-
tial keyword set, all keywords were pre-selected before looking at Google data in order to
avoid data-mining. Details on each selected keyword or topic and their meaning are discussed
in the Supplemental Information. The list of inital keywords or topics are: Baby Heartbeat,
BabyCenter, Birth Control, Clearblue, Conceive, Cytotec, Dilation and Curettage, Divorce,
Emergency Contraception, File Unemployment How, Folate, Furlough, Human chorionic go-
nadotropin (hCG), Intra-uterine Device (IUD), In-vitro Fertilization (IVF), Layoff, Medical
Abortion, Midwife, Miscarriage, Misoprostol, Missed Period, Morning After Pill, Morning
Sickness, Obygn, Online Dating, Ovulation, Ovulation Test, Plan B, Porn, Pregnancy, Preg-
nancy Bleeding, Pregnancy Symptoms, Pregnancy Test, Pregnant, Prenatal Vitamins, Sexually
Transmitted Infection (STI), Ultrasound, Unemployment, Unemployment Office, Unprotected
Sex, and a control set. We then subjected each keyword to a series of three screens in order to
test goodness of fit and predictive power. These screens are mentioned in the main text, and
described more fully later in this section and in the Supplemental Information. In addition, de-
tails on our statistical learning method for selecting the most predictive keywords for the MSPE
Reduction keyword set are also outlined in the Supplemental Information.

3.B Prediction Model

Our baseline prediction model is an OLS regression as follows:

Ysmy = αsm +
2∑

s=1

γs ∗ ts +
W∑
w

T∑
l=t0

βw,t−lI
w
smy + εsmy (1)

where s, m, and y index state, month, and year respectively, αsm is a state-month fixed
effect, γs ∗ t is a state specific linear and quadratic time trend. The independent variables Iwsmy

are the natural log of the normalized search volume as given by the google data and whose
construction are outlined in the supplemental information. The double summation represents
a series of β coefficients for the effects of different keywords search volumes at a number
of monthly time lags. The dependent variable Y is the natural log of births, implying the
interpretation of the βs are an elasticity — the percentage change in births from each percentage
change in monthly search volume. We use t0 of 7 and a T of 12, representing monthly time
lags from 7-12 months before birth. Huber–White standard errors are utilized for estimation.
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3.C Data Screens and Cross-Validation Techniques

We use three data screens to reduce our initial keyword set. We first omits any keyword for
which more than 1/3 of the 9,180 state-month observations were missing. Second, we further
omitted any keywords that were not jointly or individually significant predictors of births for the
lagged months 7-12. We call this the Significance screen, which selected 14 keywords for in-
clusion, listed in alphabetical order: ClearBlue, Divorce, HCG, IVF, Layoff, Morning Sickness,
Ovulation, Porn, Pregnancy Test, Pregnancy, Pregnant, STI, Ultrasound, and Unemployment.

Next, the MSPE Reduction screen used a statistical learning procedure called forward step-
wise selection to select the keywords from the Significance screen which lead to the largest
reduction in mean squared prediction error (MPSE). To find this MSPE reduction, we used a
variation of the ”Leave-One-Out” cross-validation technique in which for each tested keyword
set, we omit two years of data, train the data using the remaining 13 years, and then use the
estimated associations to predict births in the omitted two years. We then calculate the pre-
diction error as the absolute value — in percentage terms — of the difference between these
predictions and the actual births for every state-month. We then repeat for every possible com-
bination of two years of data, resulting in 105 model runs. We then average the mean squared
prediction error across the runs to find the MSPE for that keyword set.

The forward step-wise selection learning procedure proceeds as follows. First, the base
model without any keywords is estimated. Then, we add each keyword one at a time to the
model (and a control keyword) and employ the MSPE calculation procedure described above
for each word. The word which minimizes the MSPE the most is selected, and becomes part of
the base model. Then a second round begins, where each remaining word is selected to be added
to this new base model one at a time, and the word which minimizes the MSPE is selected.
This procedure continues until the additional reduction is MSPE is less than one percentage
point. This screen selected five keywords, listed in order of selection: Unemployment, HCG,
Clearblue, Unemployment Office, and Ovulation. (See Supplemental Information for more
details.)

Additionally, two extra topical screens were utilized to explore heterogeneity between word
types as described in the article — the Early indicators screen (including the words Clearblue,
HCG, Morning Sickness, Ovulation, Pregnancy Test, Pregnancy, Pregnant), and Unemploy-
ment screen (including the words Unemployment, Unemployment Office, and Layoff).

4 Results

In our first step, we tested associations between 40 fertility-related keywords and monthly births
at the state level in the United States between 2004 and 2018. Our keywords are listed in the
Material and Methods section, with further descriptions and keyword selection methodologies
are found in the Supplemental Information. Our estimation methodology utilized an Ordinary
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Least Squares (OLS) regression which controlled for seasonality in both births and keyword
searches, which controls for time-independent state effects and state-specific time polynomials.
We also included a set of control keywords as a proxy for overall internet use.

We estimated the month-specific effect of each keyword on births for each month between
1 to 12 months before the observed state-level births, and plot these results for a subset of key-
words in Figure 1. Specifically, we show the results for seven of the most predictive keywords
(ClearBlue, Morning Sickness, IVF, Ovulation, Pregnancy, Ultrasound, and Unemployment)
and our control keyword set. These findings confirm that there are intuitive associations be-
tween fertility-related keywords and future births. For example, excess searches for ”Clear-
Blue” — the name of a popular brand of pregnancy test in the US — is significantly associated
with more births 5-8 months later, with the largest effect 7 and 8 months later. This is consistent
with the timing when many pregnant women are experiencing their first pregnancy symptoms
at 4-8 weeks after conception. Similarly, excess searches for ”Morning Sickness” are associ-
ated with more births 6-8 months later, corresponding with the first trimester when morning
sickness generally occurs.

For our second step, we conduct model cross-validation to show that including subsets of
pregnancy related keywords in our estimation model reliably improve the predictive power
beyond our baseline model. This is important, since simple associations between individual
keywords may be spurious, or a result of model over-fitting. We use well-accepted statistical
learning methodologies and divide our data into a training data set and a test data set – the
first of which is used to estimate the associations between keywords and births, and the sec-
ond to test the predictive power of the keywords out-of-sample. We find that including these
keywords increases forecast model precision by approximately 25% over a number of criteria.
Descriptions of these cross-validation techniques and their results are given in the Supplemental
Information section.

Third, we used these estimated associations between future births and pregnancy-related
keyword searches to forecast state-level births through February 2021 using Google search
volumes up to July 2020. These results are displayed in Figure 2, in which state-specific pre-
dictions using our model with Google searches are aggregated to the national level, and then
shown relative to the same predictions using the model without searches. Displaying our re-
sults in terms of this relative index has the benefit of showing the predicted deviation in births
between the models in percentage terms relative to what would be otherwise expected in a com-
parable month. We compared four different keyword sets against this baseline, where the selec-
tion criteria for each are fully explained in the Supplemental Information. Briefly however, the
Significance keyword set contains those keywords which were both jointly significant across
all monthly lags included in our model and individually significant for at least one monthly
lag; the MSPE keyword set was the set of words which minimized the Mean Square Prediction
Error (MSPE) using a forward step-wise keyword selection criteria; the Early keyword set only
included words which were statistically significant and concerned early pregnancy keywords
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Figure 1: Fertility Keyword Searches and Later Births. These figures show regression co-
efficients between births in a state and Google keyword search volume for the preceding 12
months. Coefficients are elasticities, and can be interpreted as the change in births due to a
doubling of keyword search volume in a given month. Dashed lines represent 95% confidence
intervals.
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Figure 2: Predicted 2020 US Births by Month. National predicted births, for various keyword
sets, relative to the corresponding prediction without keyword searches, and normalized to
100 in October 2020. The four keyword sets are: Significance, including keywords whose
associations meet statistical significance thresholds; MSPE, including keywords selected from a
mean-squared prediction error minimizing forward step-wise learning selection criteria; Early,
including keywords related to early pregnancy; and Unemployment, including keywords related
to economic conditions.
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unrelated to health services; an Unemployment keyword set which only contained statistically
significant keywords related to unemployment.

Each of the keyword sets — with the exception of Early pregnancy indicators — show
similarly striking results: beginning in November 2020, fertility is predicted to fall by several
percentage points each month until February 2021. For example, using the MSPE reduction
keyword set, we predict the number of births in February 2021 will be just 84.3% of what they
would have been for a normal February. Estimates for the Unemployment keyword set are
almost identical to those for the MSPE Reduction keyword set. The Significance keyword set
predicts a smaller — yet still very large — decline to just 88.1% of expected births. All of these
declines are highly statistically significant at the 0.1% level. However, the Early indicators key-
word set shows almost no decline at all — fertility is predicted to be a statistically insignificant
98.8% of its normal level.
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These disparate estimates can be explained by examining changes in Google search vol-
ume for specific keywords as a result of the pandemic. In the Supplemental Information, we
show Google keyword search volume for the keywords shown in Figure 1, after having been
corrected for seasonality. Several patterns emerge in these figures. First, whereas searches
for many words fell dramatically around the first state-wide shutdown, many fertility-related
search terms have remained surprisingly stable throughout the crisis. The words which did
decline have a unifying commonality: they all relate to prenatal or conception services which
must be experienced in a clinical setting. For example, searches related to “Obgyn”, “Ultra-
sound”, and “IVF” (In-vitro fertilization) all fell sharply. However, it is unlikely that searches
for ultrasounds — which generally are associated in our data with pregnancies in the late 1st
and 2nd trimester — fell sharply due to significant declines in conceptions in December and
January. The abrupt decline in searches for these words likely reflected an interruption in clin-
ical services due to state-wide shutdowns and social distancing behavior. Conversely, highly
predictive words which do not involve prenatal services such as “ClearBlue”, “Morning Sick-
ness”, “Ovulation”, and “Pregnancy” were essentially unaffected by the coronavirus pandemic.
Therefore, in spite of their predictive power, forecasts based solely on these keywords — such
as our Early indicators keyword set — imply no large negative effect of the pandemic on fertil-
ity.

However, the results are reversed for any keyword set which includes words related to
unemployment. It is well documented that fertility is sensitive to economic conditions, and
generally follows a counter-cyclical pattern[10]. As seen in Figure 1, excess searches for un-
employment around and immediately before the time of conception (8-11 months before birth)
are strongly associated with lower birthrates. This is presumably due to some couples timing
their births to avoid periods of financial hardship or economic uncertainty[10]. In addition,
searches for unemployment jumped to 20 times their normal level by April – a month after
the first statewide lockdown – and stabilized by the beginning of June to approximately half
this amount. The combination of large changes in search volumes for unemployment and large
coefficient values from our prediction model for this keyword imply that the pandemic and its
subsequent economic fallout will strongly decrease fertility, as shown in the Unemployment,
Significance, and MSPE keyword set estimates in Figure 2.

Finally, we explore whether our predicted effects vary across different states, or by type
of birth. Among the latter, we consider four sources of heterogeneity – maternal education,
age, and ethnicity, and by parity of birth. We find sizable differences across US states: the
state with the highest predicted decline between October 2020 and February 2021 using the
MSPE reduction set is Hawaii with reduction of 23.6%, while the lowest decline is found in
Connecticut of only 11.9%. As shown in the Supplemental Information, the largest predicted
declines are generally in the Southern US and the Rust Belt, with the exception of Hawaii. In
Figure 3, we only present our results based on differences in maternal education and ethnicity –
those for parity and maternal age are found in the Supplemental Information, and demonstrate
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Figure 3: Predicted Fertility Decline by Various Mother Characteristics. The top panel shows
national predicted births, by group, for the Significance keyword set, relative to the correspond-
ing prediction without keyword searches, and normalized to 100 in October 2020. The bottom
panel shows a scatter-plot relating the predicted fertility decline between Oct. 2020 and Feb.
2021 – after controlling for COVID-19 cases per capita and population density – by the fraction
of the population in the respective subgroup in that state. Data source: American Community
Survey 2013-2017, authors calculations.
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somewhat smaller declines for first births and no differences by maternal age.
In Figure 3, we find that mothers with less of education or who identify as Black or African

American are predicted to have sharper declines in births. We do this in two ways. First, we
change the dependent variable in our prediction model from all births in a state to only births
for each educational or ethnic subgroup, and present the same relative birth index as in Figure
2, but now broken out by subgroup. For comparison, we do this analysis using the Significance
keyword set, which predicted an average decline in fertility of 11.9% These results are found
in the top row of Figure 3. Second, in the bottom row of Figure 3 we plot the overall predicted
decline, by state, between October 2020 and February 2021 — after controlling for COVID-19
cases per capita and population density — against the fraction of the population in each state
belonging to various ethnic or educational groups. We find that for those who have completed
a Bachelor’s degree or higher, the COVID-19 pandemic is predicted to have very little effect on
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fertility. Specifically, by Feb 2021 we only predict a statistically insignificant 3.1% decrease
in fertility for this group. However, for both women with only some college, and those with
only a high school degree, we predict a 13% decline. Similarly, states with a higher fraction of
women with at least a Bachelor’s degree have smaller predicted fertility decline than states with
lower Bachelor’s degree attainment. By ethnic group, we find very small effects for Hispanics
(2.9% decline) relative to non-Hispanic Whites (9.2% decline) and Black or African Americans
(15.3% decline). We also find that states with larger Black or African American populations
have larger predicted declines in fertility.

5 Discussion

A 15% collapse in births over a four-month period would be unprecedented in the modern
United States. Therefore, it may be useful to explore the plausibility of this prediction. To
do so, we consider three major crises in the US with similarities to the current pandemic: the
Spanish Flu pandemic of 1918-1919, the Great Depression of 1929-1933, and the financial
crisis of 2008-2009. In doing so, it is important to keep in mind that the context of the current
pandemic is fundamentally different from each of these crises, and therefore these comparisons
should be taken with a measure of caution. However, as the coronavirus pandemic itself is in
many ways unprecedented, these three crises arguably serve as the best comparisons at our
disposal.

The first crisis we consider is the 1918–1919 H1N1 influenza A pandemic — commonly
known as the Spanish Flu. Birth rates fell 13% from 1918 to 1919 in the United States, with a
small rebound in 1920 and 1921[8]. This decline is strikingly similar to that predicted for the
current pandemic in this study. The fertility effects of the Great Depression are also very similar
in magnitude to the Spanish Flu and our prediction for the COVID-19 pandemic. Between
1929 and 1933, birthrates fell by 15.2%[31]. Finally, the financial crisis of 2008-2009 caused
a smaller decline in fertility, albeit in response to a smaller economic crisis. From May 2008 to
October 2010, births fell by 9.3% and failed to rebound thereafter.

The evolution of births over these three crises suggests that a 15% decline in the fertility
rate in response to the COVID-19 pandemic is not unreasonable. Using the above information
on changes in unemployment and changes in births, the response of predicted births to un-
employment for the current pandemic is firmly between the response from the financial crisis
and the Great Depression. Calculating the elasticity of births to unemployment — defined as
the ratio between the percentage change in births and the percentage change in unemployment
— yields an elasticity of -0.050 for the current pandemic, firmly between that of the financial
crisis (-0.109) and the Great Depression (-0.027). Importantly, if there is a rebound in births
later in the year, the decline in fertility could be significantly less that 15%, lowering this elas-
ticity substantially. Therefore, the main difference between the prediction of this study and the
evolution of fertility during these three crises is not the magnitude of the decline, but rather the
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speed. Since the current pandemic has led to historically fast increases in unemployment, this
suggests that similarly rapid decreases in fertility may be expected.

Our finding that individuals identifying as Black or African American, or with lower edu-
cational attainment, have larger predicted declines in fertility can be interpreted in two ways.
First, areas with high concentrations of African Americans have been more impacted by COVID-
19: incidence among Black individuals was 2.6 times higher than for non-Hispanic whites, and
mortality was 2.1 times higher[28]. Since individuals of lower socioeconomic status are dispro-
portionately affected by the virus, this could manifest in higher predicted fertility declines[29].
Second, it may be that the heterogeneity in the predicted fertility effect is not caused by the
differential impact of the virus itself, but rather from the uneven economic fallout of the pan-
demic. Historically, during recessions employment losses are often concentrated among minor-
ity groups – and among Black individuals in particular – and the current economic downturn
is no exception. Between Feburary and April of 2020, the unemployment rate among non-
Hispanic White Americans rose from 3.1% to 14.2%, while for Black or African Americans
it rose from 5.8% to 16.7%. While these initial increases were similar, the recovery has been
much slower for Black or African Americans: by August of 2020 non-Hispanic White unem-
ployment had fallen back to 7.3%, yet Black unemployment remained elevated at 13.0%. The
patterns in unemployment between educated and uneducated workers were even more striking,
peaking at only 8.4% for those with a Bachelor’s degree or higher, compared with 17.3% and
21.2% for non-college graduates with and without a high school diploma respectively[32].

There are several important caveats to this study which should be noted. First, the evi-
dence presented here can be interpreted in two ways. According to the first interpretation, since
google search volume related to pregnancy behavior and symptoms alone – and the correspond-
ing fertility prediction – did not change significantly over the course of the pandemic, there is
little reason to think that there will be a large decrease in births as a result. In this view, the
effect of the large implied changes in unemployment can be ignored, because if high unemploy-
ment searches truly implied fewer future births, we would expect fewer searches for morning
sickness, pregnancy tests, and other fertility keywords as a result. We do not observe such re-
ductions. However, the second interpretation concludes that because unemployment searches
are strongly associated with future births, and because these searches have spiked since the
beginning of the pandemic, fertility will decline by approximately 15%. Since our methodol-
ogy shows that searches related to unemployment are far more predictive than the rest of our
keywords combined, an objective data science perspective would favor this interpretation. Im-
portantly however, neither interpretation includes the possibility of a large increase in births,
notwithstanding recent speculation.

The second important caveat is that this method can only predict fertility change up to 9-12
months in the future, leaving the long-run effects of the pandemic unknown. If the decline
in fertility is simply due to a postponement in births, completed lifetime fertility may remain
relatively unchanged. However, even if these predicted declines are primarily due to couples
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postponing children they still intend to have, this may still negatively affect long-run fertility.
Since the 1970s there has been a shift towards births at later ages as women postpone child-
bearing for educational or career motives[33]. Since fecundity declines rapidly towards the
end of a woman’s childbearing years, women in their late 30s and early 40s who further delay
childbearing due to the pandemic may face unexpected difficulties trying to conceive, leading
to unintentionally lower completed lifetime fertility [34]. If this happens, the resulting lower
completed fertility and accompanying shift to an older population age structure has significant
social and economic consequences, particularly for regions already well below replacement
fertility. Decreasing tax revenue, greater costs for social programs for the elderly, pension lia-
bilities, increased health care costs, reduced economic growth, and increased burdens of caring
for the elderly are all important policy issues surrounding falling fertility rates and the resulting
aging of the population. [33] [15] [11] [12].
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Lockdowns and Well-Being: Evidence from Google Trends. page 55, 2020.

[20] Boriss Siliverstovs and Daniel S. Wochner. Google Trends and reality: Do the proportions
match? Journal of Economic Behavior & Organization, 145(C):1–23, 2018.

[21] Tobias Preis, Helen Susannah Moat, and H. Eugene Stanley. Quantifying Trading Be-
havior in Financial Markets Using Google Trends. Scientific Reports, 3(1):1684, April
2013.

[22] Francesco Billari, Francesco D’Amuri, and Juri Marcucci. Forecasting Births Using
Google. In Proceedings of the 1st International Conference on Advanced Research Meth-

ods and Analytics. Universitat Politècnica València, July 2016.
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Supplemental Information

Word Selection Methodology

Choosing a set of keywords with which to analyze search frequency is not straightforward for
several reasons. First, there is no a priori agreed upon set of keywords which should be both
theoretically associated with — and empirically predictive of — pregnancy. Second, words
associated with pregnancy generally have multiple meanings, which meanings can also change
over time.1 Third, different keyword sets may have different associations for different types of
pregnancy behaviors.2 Finally, the same keywords may theoretically have different correlations
with births at various pregnancy timeframes.3

The lack of a defined, agreed upon pregnancy keyword set may lead to several statistical and
ethical problems when determining which keywords to include. For example, an unscrupulous
researcher may datamine keywords to find those which are correlated with pregnancy, ignore
those which don’t, and present the highly predictive nature of these keywords as evidence that
Google searches are excellent at predicting births. Even consciously ethical researchers may be
tempted to engage in unconscious motivated reasoning to include or exclude words once they
see the results on how predictive they actually are. Unfortunately, without a predetermined
word set, part of the word selection process is necessarily at least partially arbitrary.

Pregnancy and Birth Keywords

The first step in our word selection process was to consult a number of sources to identify
possible words. We consulted the literature on Google keywords and any aspect of fertility –
unfortunately, these are very scarce. The only paper we could find specifically on pregnancy
and Google searches was Billari et al (2013), which utilized three keywords – ovulation, preg-
nancy, and maternity. Other papers utilized keyword sets which, while related to pregnancy,
were not pregnancy specific. For example, Markey and Markey (2013) developed a keyword set
for pornographic, sexual, and mate-seeking keywords, which was subsequently used in Wilde,
Apouey, and Jung (2017) and Wilde, Lohmann, and Chen (2020). Additionally, Lohmann and

1For example, the term “Plan B” – a popular brand-name emergency contraceptive in the United States which
can reduce unplanned pregnancies – could also refer to generic back-up plans completely unrelated to pregnancy.
Another example is the word “Tinder” – before 2012, it referred to a type of fireword, yet after 2012 the majority
of searches referred to a online dating app.

2For example, searches for emergency contraceptives may indicate a higher incidence of risky or unplanned
sexual behavior, which may lead to more births. However, the same searches for emergency contraceptive may be
an indication that for the same amount of risky sexual behavior, a higher proportion of those acts are accompanied
by actions to reduce unplanned pregnancy, leading to fewer pregnancies.

3For example, searches regarding pregnancy or ovulation tests may be positively associated with pregnancy 9
to 11 months later as it suggests more individuals may be trying to get pregnant. However, a high frequency of
searches for these same tests will likely be negatively associated with births 1 to 5 months later, since if a large
fraction of women in a population are currently pregnant, there should be a lower fraction of women trying to get
pregnant.
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Albarracin (2019) developed an exhaustive keyword set for sexually transmitted infections. We
then consulted online sources such as such as pregnancy and maternity websites, dictionaries,
and thesauruses. Finally, we conducted a number of interviews with women which had ex-
periences with different aspects of pregnancy, such as miscarriage, unexpected pregnancies,
abortion, etc.

After this initial round, we reduced our keyword set to those 40 keywords which we believed
would be 1) specific enough to be highly correlated with births, 2) broad enough to have enough
data to run our analysis, and 3) which would sufficiently cover each of the following seven
aspects of pregnancy: Unplanned Pregnancies, Pregnancy Intentions, Pregnancy Symptoms,
Prenatal Services, Miscarriage, Economic Indicators, and Other. Importantly, we determined
this final keyword set before looking at any data. These words and word groupings can be
found in Table 1 in this supplement.

Once fixing this initial keyword set, we employed three systematic screens to allow us
to objectively choose keyword subsets for analysis without conscious or subconscious bias
in word selection. All three of these screens take a data-oriented approach. The first screen
regarded sample size – if the search frequency for a given keyword was missing for more than
1/3 of the total state-month observations, it did not pass screen one. Of our 40 initial words,
only 6 did not pass this screen: Morning After Pill, Unprotected Sex, Baby Heartbeat, Cytotec,
File Unemployment How, and Furlough. Screens two and three were data-driven relevance
screens, are referred to as the Significance and MPSE screens in the body of the paper, and will
be described in detail in the Methodology section of this supplement. In short, a word passed
screen two if it was jointly partially correlated with births at specific time lags in our main
regression specification, and passed screen 3 if it was selected by a commonly used variable
selection algorithm.

Control Keywords

Our method for determining control keywords was similar to that which determined pregnancy
keywords, in that we began by selecting a large set of possible control words. We combined a
set of two keyword groups: commonly searched words as reported by Google, and common –
but not specific – words in the English language. Specifically, we created an initial keyword set
of the 25 most searched words reported by Google in the United States from 2004 to the present,
in addition to 40 of the most commonly used words in the English language: the nominative
and accusative personal pronouns (me, you, I, us, we, they, she, he, it); the major interrogative
pronouns and other “w”-words (who, what, where, why, how, which, whose, whom); definite
and indefinite articles (the, a, an); common conjunctions (and, but, or); superlatives (best,
worst); various conjugations of common verbs (be, is, are, were, do, does, did, have, has, had,
can, could, would, should); and “of”. Of these 65 words, the top ten words with the highest
search volumes are: the, of, how, a, is, what, and, me, you, and do. Searches for these ten
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Table 1: Keyword Selection Criteria.

Topic or Screen
Word Keyword 1 2 3

Controls
Control Set* Keyword X X X

Unplanned Pregnancy
Emergency Contraception Topic X
“Morning After Pill” Keyword
Plan B Keyword X
STI Topic X X
“Unprotected Sex” Keyword
Online Dating* Keyword X

Pregnancy Intention
Clearblue Keyword X X 3
Conceive Keyword X
HCG - Weight - Diet Keyword X X 2
IVF Topic X X
Ovulation Topic X X 5
Ovulation Test Keyword X
Pregnancy Test Topic X X

Pregnancy Symptoms
Missed Period Keyword X
Morning Sickness Topic X X
Pregnancy Symptoms Keyword X

Prenatal Services
BabyCenter Topic X
Folate Topic X
Midwife Topic X
Obygn Keyword X
Prenatal Vitamins Topic X
Ultrasound Keyword X X

Pregnancy Termination
Baby Heartbeat Keyword
Cytotec Keyword
Dilation and Curettage Topic X
Medical Abortion Topic X
Miscarriage Topic X
Misoprostol Topic X
Pregnancy Bleeding Keyword X

Unemployment
File Unemployment How Keyword
Furlough Keyword
Layoff Topic X X
Unemployment Keyword X X 1
“Unemployment Office” Keyword X 4

Other
Birth Control Topic X
Divorce Topic X X
IUD Topic X
Porn Keyword X X
Pregnancy Topic X X
Pregnant Keyword X X

*See Google Data section for extra details.
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words comprise over 50% of the combined search volume for the larger 65 word control set.
For simplicity, we use these top ten as our control set. In practice, our control search variable
is a single aggregate search index for any search involving any of these 10 words, standardized
in the same manner as described below in the Google Data section.

Data

Google Data

Our data on keyword search frequency comes from Google Trends (http://trends.google.com),
a website which allows users to access data on Google keyword search frequency, stratified by
geographic regions ranging from as large as a country to as small as a city. Data for smaller
geographic areas can be more difficult to use, since the data are suppressed unless the overall
search volume reaches a minimum threshold. For this paper, we use data from the state level
in the United States to ensure a wide selection of available search terms, yet still preserve
geographic variation in search frequency.

Google Trends does not provide information on the actual number of keyword searches.
Rather, it provides a relative search index which reports aggregate searches as a percentage of
the most searched term and time period, which is given the value of 100. Therefore, the search
index may vary depending on the time frame requested, as well as the set of keywords in a given
query. In order to standardize the data, we requested the data for the entire 15-year sample one
keyword and state at a time. We then divided the keyword frequency for each word by the state-
specific mean, giving us a search frequency index for each state and word with a mean value
of 1. Therefore, each search frequency observation can be interpreted as the percentage of the
average search frequency for a given word in a given state. For example, in the descriptive
statistics in Table 2, the maximum search frequency for the term “unemployment” is reported
as 3.72. This means that for that specific month and year in that state, searches were 3.72 times
higher than the monthly state average for that word over the 15-year period. One benefit of
specifying the search frequency in this fashion is that it is easy to interpret – coefficients in
our regression will represent the effect of a doubling of search frequency from the mean on the
outcome of interest. Missing, incomplete, or relatively low frequency search data are reported
as 0, which we set to missing.

Search data in Google can be specified as either a keyword or topic, which are measured
differently. For keywords, Google reports searches with an exact keyword match, while for
topic searches, Google utilizes an algorithm which attempts to include other searches which
have to do with the keyword, but may not include the actual keyword itself. Unfortunately, this
algorithm is proprietary to Google, and therefore is somewhat of a black box.

In Table 1, we report each of our search terms, whether we utilized the keyword or topic
search data, and whether the keyword passed a given screen. Topical searches were priori-
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Table 2: Descriptive Statistics

Variable Obs Mean S.d. Min Max

Natality Variables
Births 9,180 6,602 7,776 359 51,747
Ln(Births) 9,180 8.27 1.04 5.94 10.85

Keyword/Topics
Control Set* 9,180 1 0.16 0.64 1.35
BabyCenter 8,744 1 0.62 0.07 8.22
Birth Control 9,153 1 0.24 0.24 3.88
Clearblue 7,097 1 0.71 0.15 9.03
Conceive 7,916 1 0.60 0.17 12.95
Divorce 9,173 1 0.22 0.21 4.64
Dilation & Curettage 7,917 1 0.65 0.17 11.84
Emergency Contra. 8,725 1 0.43 0.14 8.30
Folate 8,633 1 0.54 0.17 7.90
HCG* 8,641 1 0.51 0.15 6.53
IUD 8,712 1 0.38 0.20 4.83
IVF 8,627 1 0.52 0.12 9.31
Layoff 8,575 1 0.75 0.15 11.00
Medical Abortion 7,286 1 0.61 0.15 9.60
Midwife 8,498 1 0.60 0.14 7.24
Miscarriage 8,927 1 0.35 0.23 6.20
Misoprostol 6,693 1 0.76 0.18 10.81
Missed Period 7,931 1 0.51 0.17 6.83
Morning Sickness 8,424 1 0.49 0.20 7.04
Obgyn 8,618 1 0.41 0.11 4.06
Online Dating* 9,162 1 0.42 0.12 2.31
Ovulation 9,086 1 0.26 0.22 4.02
Ovulation Test 7,198 1 0.59 0.18 9.72
Plan B 8,398 1 0.40 0.11 6.14
Porn 9,180 1 0.35 0.25 2.29
Pregnancy 9,180 1 0.18 0.35 1.96
Pregnancy Bleeding 7,954 1 0.61 0.20 8.90
Pregnancy Symptoms 8,945 1 0.38 0.19 6.28
Pregnancy Test 8,975 1 0.32 0.21 4.80
Pregnant 9,177 1 0.37 0.12 2.12
Prenatal Vitamins 7,838 1 0.55 0.19 6.43
STI 9,064 1 0.54 0.18 8.07
Ultrasound 9,069 1 0.35 0.16 5.43
Unemployment Office 8,283 1 0.61 0.13 9.09
Unemployment 9,155 1 0.54 0.09 3.81

*See Google Data section for extra details.
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tized over keywords when possible. In order to understand these terms, a note on the logic
behind the Google Trends search algorithm is necessary. Certain delimiters, such as ”, -, and
+ allow users to change the combinations of keywords searched. A search for a single key-
word will yield the search frequency index counting all searches that contain that keyword,
including searches which contain other words. For example, the reported search volume for
keyword “pregnant” will contain searches for “am I pregnant”. If more than one keyword is
entered, the resulting Google search volume will contain only searches which contain both
words in the same search. In essence, the space delimiter serves as the Boolean logic operator
”and”. The Boolean “or” operator is “+”. For example, the search Emergency Contraception
will contain only searches which contain both “Emergency” and “Contraception”, while the
search Emergency+Contraception will contain all searches which either contain “Emergency”
or “Contraception”. The “-” operator removes searches containing a specified keyword. For
example, one of our search terms mentioned in the paper was “HCG” short for Human chori-
onic gonadotropin, a hormone produced by a woman’s body for the maternal recognition of
pregnancy. Testing for the presence of this hormone in urine serves as the basis for many
pregnancy tests. However, in the early 2010s, a fad diet called “The HCG Diet” rose then
fell in popularity, leading to increases in searches for HCG unrelated to pregnancy. There-
fore, we specified our search query as HCG - Weight - Diet, which kept searches for HCG,
but removed any search which contained HCG but also included either the word Weight or
Diet. Finally, keyword searches in quotations require an exact string match. Returning to our
example, the search Emergency Contraception will include all searches which include both
the words “Emergency” and “Contraception”, independent of where those words appear in the
query, whereas the search “Emergency contraception” will only include searches which that
exact string. Therefore, a search for “Where do I find contraception in an emergency” would
be counted in the former search, but not the latter.

Returning to Table 1, the keywords are listed exactly how they were queried by the system,
including the ”, -, and + operators. There are two exceptions. The first is the Control Set,
which as explained in the Control Keywords section, was specified as the + of + how + a +
is + what + and + me + you + do. The other exception is Online Dating. For this query,
we found that both the keyword and the topic yielded unbelievably low search volume given
the popularity of online dating. We concluded that a better query would be a composite term
including combined searches for popular dating sites. Therefore, for our online dating keyword,
we used the search term match.com + tinder + okcupid + bumble + zoosk + eHarmony + POF +
plenty of fish, reflecting a combination of the seven most popular online dating platforms used
over our sample period (Note that POF is merely an abbreviation for the site Plenty of Fish,
whose url is pof.com).
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Natality Data

Data on births by state and month are from the National Vital Statistics System (NVSS) which
is part of the National Center for Health Statistics (NCHS). From this system, we get monthly
birth counts for each US state and the District of Columbia. We only utilize births in years since
2004 as this is the year Google search data begins. As of this writing, the most recent year of
data on births is 2018, giving us a total of 15 years of monthly birth data at the state level, or
9,180 state-month-year observations. In addition, this system allows users to aggregate births
by various sub-groupings, such as educational attainment, age of mother, etc. We used these
data by these sub-groupings in our heterogeneity analysis.

Methodology

Model

Our prediction model relies on linear OLS fixed effects regression. Specifically, we estimate
the following prediction model:

Ysmy = αsm +
2∑

s=1

γs ∗ ts +
W∑
w

T∑
l=t0

βw,t−lI
w
smy + εsmy

where s, m, and y index state, month, and year respectively, αsm is a state-month fixed effect,
2∑

s=1

γs ∗ ts is a state specific time polynomial, and the double summation represents a series

of β coefficients for the natural log of the normalized search volume for different keywords
at a number of monthly time lags. The dependent variable Y is the natural log of births,
implying the interpretation of the βs are an elasticity – the percentage change in births from
each percentage change in search volume. We use t0 of 7 and a T of 12, representing monthly
time lags from 7-12 months before birth. Huber-White standard errors are utilized. Given the
state-month fixed effects, this regression effectively controls for state-specific seasonality in
both births and keyword search volumes. In essence, it estimates the effect on births of larger
than normal search volume for a given month, in a given state, compared with that same month
and state across years. It also controls for changes in aggregate births over time specific to the
state due to the linear and quadratic time terms.

For the results on the association between births and google searches at different time lags
shown in Figure 1 of the main text, we expand the lagged month parameters from between
7 and 12 months before birth to 1 and 12 months in order to capture more time effects for
illustrative purposes. However, since our prediction model is about early prediction, including
all this information would only allow us to forecast births one month in advance. As a result,
in our main prediction model we only include information on google searches 7 months before
birth and earlier.
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Assessing Predictive Power

The significant associations between certain keywords and later births presented in Table 1 in
the main text do not necessarily imply that these keywords can effectively be used in prediction.
For example, over-fitting is a common and well-known problem in forecasting. Conversely,
however, if important explanatory variables are excluded, then even highly predictive variables
may not be sufficient to accurately forecast. Therefore, there is generally a trade-off between
increasing the number of explanatory variables – thereby increasing the information used in
prediction — and over-fitting the data.

To explore a range of keyword sets on this trade-off spectrum, we use a set of keyword
screens with varying levels of stringency. Our first, most basic screen is to omit any keyword
which has more than 1/3 of the 9,180 state-month observations missing. Our next screen, the
Significance screen, takes the first screen and omits any keyword for which both of the follow-
ing conditions are not true: 1) the month-specific estimated associations are jointly significant
at the 5% level for the lagged months 7-12 while also controlling for all other included key-
words, and 2) there is at least one month among the lagged months 7-12 which is individually
significant at the 5% level. We implement this screen in an iterative process, where all Screen
1 variables are initially included in the regression equation. Keywords are removed if they fail
to meet either conditions above, and then the model is re-run with the reduced keyword set and
the conditions reapplied until the only words remaining are those for which both conditions are
met. We report in Table 3 the results of each of four rounds which were necessary to select the
final keyword set according to this methodology, and report which words were dropped at each
round. This screen selected 14 keywords for inclusion, listed in alphabetical order: ClearBlue,
Divorce, HCG, IVF, Layoff, Morning Sickness, Ovulation, Porn, Pregnancy Test, Pregnancy,
Pregnant, STI, Ultrasound, and Unemployment.

For our third screen, we employ a statistical learning methodology which uses out-of-
sample tests to determine predictive power, in order to select a keyword set which optimizes
predictive power while minimizing the number of keywords. In this methodology, our data set
is divided into two groups: a training data set, and a test data set. The training data set is used to
estimate the associations between the words and the births, while the test data set is used to test
the predictive power of the word estimates, as evaluated by changes in goodness-of-fit measures
compared with a model which does not include any keywords as predictors. In the interest of
computational feasibility, we use a variation on the leave-p-out cross validation methodology
which omits two years of observations at a time, which we call leave-2-years-out (L2YO) cross
validation. As we have 15 years of data, this creates 105 possible two-year combinations, and
hence 105 model runs to test the predictive power of each keyword set.

We apply this L2YO methodology to select an optimal keyword set from among the Screen
1 keywords, using a process of forward step-wise selection, which is carries out as follows.
First, the base model without any keywords is estimated. Then, we add each keyword one at a
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Table 3: Significance Screen Word Selection

Word Round 1 Round 2 Round 3 Round 4

Clearblue X X X X
Divorce X X X X
HCG X X X X
IVF X X X X
Layoff X X X X
Morning Sickness X X X X
Ovulation X X X X
Porn X X X X
Pregnancy Test X X X X
Pregnancy X X X X
Pregnant X X X X
STI X X X X
Ultrasound X X X X
Unemployment X X X X
Dilation & Curettage X X X
Miscarriage X X
Obgyn X X
Unemployment Office X X
BabyCenter X
Birth Control X
Conceive X
Emergency Contra. X
Folate X
IUD X
Medical Abortion X
Midwife X
Misoprostol X
Missed Period X
Online Dating X
Ovulation Test X
Plan B X
Pregnancy Bleeding X
Pregnancy Symptoms X
Prenatal Vitamins X
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Table 4: MSPE Screen Word Selection

Round Word Cumulative ∆
Mean MSPE

1 Unemployment -20.7%
2 HCG -23.3%
3 Clearblue -24.6%
4 Unemployment Office -25.7%
5 Ovulation -26.7%
6 STI -27.5%

time to the model (with the control keyword), and calculate the prediction error as the absolute
value in percentage terms of the difference between these predictions and the actual births for
every state-month. We then repeat for each of 105 combination of two years of data. We
then find the mean squared prediction error (MSPE) across the runs for that keyword set. The
keyword which minimizes the MSPE is selected, and becomes part of the base model. Then
a second round begins, where each remaining word is added to this new base model one at a
time, and the new word which minimizes the MSPE is also selected. This procedure continues
until the additional reduction is MSPE is less than one percentage point. In Table 4, we report
for each round the word selected and the respective cumulative reduction in MSPE. Employing
this screen selects five keywords, listed in order of selection: Unemployment, HCG, Clearblue,
Unemployment Office, and Ovulation.

We find that both the Significance keyword set and the MSPE keyword set significantly
improve forecast accuracy. To demonstrate this, we plot a moving average of the MSPE by
month for each of three keyword sets between 2004-2018 – the model without keywords, the
model utilizing the Significance keyword set, and the model with the MSPE keyword set. In
Figure 4 we show the average MSPE across all the training data sets by year, and in Figure
5 we do the same for the test data sets. In these figures, we see that both the Significance
and MSPE keyword sets lower model prediction error relative to a model without keywords.
Significantly, the efficacy of using keywords to predict fertility is especially high during crises –
prediction error using both keyword sets during the 2008-2009 financial crisis is approximately
half as large as the model without keywords. This is a comforting result for the purposes of our
exercise, since we are using these keywords to predict fertility during the COVID-19 crisis.
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Figure 4: Training Error
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Figure 5: Test Error
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Other Results

Searches and Fertility

In this section we show how keyword search volume changed during the COVID-19 pandemic.
Specifically, in Figure 6 we plot adjusted keyword search volumes from January 1st, 2018 to
July 31st, 2020 for a series of keywords. On each plot, we include two vertical lines for the
reader’s reference. The first line is on January 13, 2020, which corresponds with the estimated
arrival date of the first COVID-19 case to the United States. The second vertical line corre-
sponds with March 19th, the date of the first state-wide stay-at-home order in California.

Plotting the raw search data can be misleading since keyword search volumes generally
follow seasonal patterns. Therefore, we first filter the data in the following manner: First, we
estimate a regression model for each keyword with search volume as the dependent variable,
and month and week effects as independent variables. Second, we save the residuals from
this regression and add them to the average keyword volume over this time period. Third, we
normalize the volume such that February 1st, 2020 equals 100, in order to see the effect of the
pandemic as a percentage increase in searches 6 weeks before the stay-at-home orders were
implemented.

Other Robustness and Heterogeneous Effects

In this section, we present various robustness checks, as well as additional results which were
mentioned in the main text. Figure 7 presents our main results across different model lag
structures. In the model presented in the main text, we include information on keyword searches
from 7 months before birth to 12 months before birth, allowing us to predict births 7 months into
the future. In this figure, we show three models, one in which we use 7-12 month keyword lags,
another in which we use 8-12 month lags, and finally a third with 9-12 month lags. The model
is surprisingly robust across different lag structures. Interestingly, we find that the extended
model predicts a small birth rebound beginning in April 2021.

In Figure 3 in the main article, we show heterogeneous birth predictions by educational
attainment and ethnic group. In Figure 8 we provide additional predictions by parity and ma-
ternal age. We find little evidence of differences by maternal age. However, we do find that
first births are predicted to be less affected by the pandemic than higher parity births.

In Figure 9 we show differences in predicted fertility decline across US states. We plot a
heat map by state, showing the predicted decline in fertility between October 2020 and February
2021.

In Figure 10 we show a state-level scatter plot of the predicted fertility decline between Oct
2020 and Feb 2021, versus cumulative Covid-19 cases per capita as of Jul 2020. While one
might expect that areas with higher caseloads would have larger predicted declines in fertility,
we find the opposite. However, this is likely explained by our findings on education – the states
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Figure 6: Seasonality-Adjusted Keyword Search Volumes
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Figure 7: Predicted 2020 US Births by Month
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Figure 8: Predicted Fertility Decline by Various Mother Characteristics.
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Figure 9: Predicted Fertility Decline between Oct. 2020 and Feb 2021, by State.

Figure 10: Predicted Fertility Decline and Covid-19 Caseload
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with the highest COVID-19 incidence were large, urban states, which also have higher levels
of education than rural states.

Estimated Coefficients

Table 5 reports the estimated coefficients from our model with which we predict fertility. The
top panel presents the coefficients for the MSPE keyword set, which the bottom panel presents
coefficients for the Significance keyword set.
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Table 5: Estimated Coefficients Used in Prediction

MSPE Screen Coefficients
Unemployment HCG Clearblue

t-7 0.0010 (0.0035) 0.0015 (0.0023) 0.0040*** (0.0014)
t-8 -0.0134*** (0.0042) -0.0038* (0.0022) 0.0058*** (0.0014)
t-9 -0.0055 0.0041) -0.0026 (0.0022) 0.0013 (0.0014)
t-10 -0.0208*** (0.0041) -0.0078*** (0.0022) 0.0021 (0.0014)
t-11 -0.0130*** (0.0040) -0.0078*** (0.0022) 0.0031** (0.0014)
t-12 0.0120*** (0.0035) -0.0058*** (0.0021) 0.0018 (0.0014)

Unemp. Office Ovulation Control
t-7 0.0015 (0.0018) 0.0126*** (0.0044) 0.0472** (0.0198)
t-8 -0.0021 (0.0018) 0.0227*** (0.0046) -0.0373* (0.0217)
t-9 -0.0014 (0.0018) 0.0089** (0.0043) -0.0320 (0.0206)
t-10 -0.0040** (0.0018) 0.0082* (0.0043) 0.0117 (0.0210)
t-11 -0.0027 (0.0018) -0.0095** (0.0041) -0.0212 (0.0195)
t-12 0.0025 (0.0017) -0.0105** (0.0043) 0.0219 (0.0165)

Significance Screen Coefficients
Clearblue Divorce HCG IVF

t-7 0.0041*** (0.0014) 0.0085* (0.0046) 0.0011 (0.0022) -0.0010 (0.0022)
t-8 0.0047*** (0.0014) 0.0117*** (0.0045) -0.0036* (0.0021) -0.0002 (0.0021)
t-9 0.0012 (0.0014) 0.0196*** (0.0046) -0.0042** (0.0021) -0.0053** (0.0023)
t-10 0.0010 (0.0013) 0.0101** (0.0044) -0.0077*** (0.0022) -0.0079*** (0.0022)
t-11 0.0023* (0.0014) 0.0037 (0.0048) -0.0066*** (0.0021) -0.0020 (0.0022)
t-12 0.0004 (0.0014) 0.0123*** (0.0044) -0.0071*** (0.0021) 0.0003 (0.0020)

Layoff Morning Sickness Ovulation Porn
t-7 0.0002 (0.0015) 0.0061*** (0.0020) 0.0137*** (0.0046) -0.0161 (0.0103)
t-8 0.0005 (0.0016) 0.0052*** (0.0020) 0.0206*** (0.0048) 0.0142 (0.0119)
t-9 0.0023 (0.0016) 0.0017 (0.0020) 0.0087* (0.0045) -0.0026 (0.0122)
t-10 -0.0061*** (0.0015) 0.0012 (0.0020) 0.0107** (0.0045) 0.0361*** (0.0117)
t-11 0.0056*** (0.0015) 0.0004 (0.0019) -0.0018 (0.0043) 0.0191 (0.0124)
t-12 -0.0040*** (0.0014) -0.0010 (0.0019) -0.0052 (0.0043) -0.0088 (0.0106)

Preg. Test Pregnancy Pregnant STI
t-7 0.0040 (0.0039) 0.0317*** (0.0120) -0.0077 (0.0081) -0.0064 (0.0041)
t-8 0.0123*** (0.0037) -0.0022 (0.0121) -0.0040 (0.0080) -0.0077* (0.0041)
t-9 0.0046 (0.0038) -0.0120 (0.0118) -0.0037 (0.0077) -0.0025 (0.0041)
t-10 0.0059 (0.0038) -0.0468*** (0.0119) -0.0037 (0.0075) -0.0027 (0.0041)
t-11 0.0065 (0.0041) -0.0326*** (0.0123) -0.0247*** (0.0078) 0.0036 (0.0043)
t-12 0.0086** (0.0037) -0.0164 (0.0118) 0.0079 (0.0077) -0.0001 (0.0037)

Ultrasound Unemployment Control
t-7 0.0057 (0.0038) 0.0033 (0.0034) 0.0240 (0.0203)
t-8 -0.0063* (0.0037) -0.0150*** (0.0041) -0.0438** (0.0221)
t-9 -0.0083** (0.0036) -0.0054 (0.0039) -0.0377* (0.0216)
t-10 -0.0132*** (0.0040) -0.0213*** (0.0040) -0.0015 (0.0208)
t-11 -0.0068* (0.0035) -0.0124*** (0.0040) -0.0426** (0.0206)
t-12 -0.0113*** (0.0036) 0.0103*** (0.0036) 0.0232 (0.0184)

Huber-White Standard errors in parentheses to the right of each estimate. *** 1%, ** 5%, *10% significance levels.
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