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Great expectations: Social 
distancing in anticipation of 
pharmaceutical innovations

Miltiadis Makris1 and Flavio Toxvaerd2

Date submitted: 3 November 2020; Date accepted: 4 November 2020

This paper analyzes equilibrium social distancing behavior when 
pharmaceutical innovations, such as effective vaccines and treatments, 
are anticipated to arrive. Once such innovations arrive, costly social 
distancing can be reduced. We characterize how the anticipation of such 
innovations influences pre-innovation social distancing. When vaccines 
are anticipated, equilibrium social distancing is ramped up as the 
arrival date approaches to increase the probability of reaching the post-
innovation phase in the susceptible state. In contrast, under anticipated 
treatment, equilibrium social distancing is phased out by the time of 
arrival. We compare the equilibrium paths with the socially optimal 
counterparts and discuss policy implications.

1	 School of Economics, University of Kent.
2	 Faculty of Economics, University of Cambridge.
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“Our strategy is to suppress the virus, protecting the economy, education and the NHS,

until a vaccine can make us safe”.

- Matt Hancock, UK Health Secretary, October 1, 2020.1

“Vaccines and therapeutic drugs might be available in a year or so’s time. But it is a

foolish strategy to rely on them, and to keep us in lockdown — or other severe social-

distancing measures —until such a time”.

- Ross Clark, The Spectator, April 2020.2

In the absence of effective vaccines and antiviral treatments, individuals and public

health authorities have been entirely reliant on non-pharmaceutical interventions such as

social distancing and lockdowns. These interventions, while often justified, have proven

extremely costly from both a social and an economic perspective and there is a general

recognition that such restrictive measures as shelter-in-place orders are not sustainable

in the long run. Equally, it is widely recognized that until effective pharmaceutical in-

terventions become available, a return to normality is unlikely to be possible. In short,

containing the epidemic will involve social distancing to some extent till vaccines and

treatments become available. But an important question remains. Once the pharmaceu-

tical innovations appear on the horizon, how will and should people behave leading up to

that moment? In other words, how exactly is social distancing phased out? This is the

question we consider in the present analysis.

In this paper, we study positive and normative questions of infection control via non-

pharmaceutical interventions (NPIs), when pharmaceutical innovations are anticipated.

In particular, we are interested in better understanding how the anticipation of effective

vaccines and treatments changes ex-ante incentives to engage in social distancing and how

such effects differ across innovations. To this end, we study a stylized susceptible-infected-

recovered (SIR) model of infection control in which decision makers can reduce infection

risk at a cost. At some known future time T , a perfectly functioning pharmaceutical

innovation such as a vaccine or a treatment becomes available, obviating any further

social distancing. A perfect treatment means that any infected individual who is treated

immediately recovers, while a perfect vaccine means that anyone who is vaccinated obtains

perfect and lasting immunity. In this setting, we characterize the equilibrium and socially

optimal paths of social distancing. We show that these paths depend on whether the

innovation is a treatment or a vaccine. The reason for this is that while treatment can

be given to any infected individual regardless of when the individual was infected (in

1https://www.gov.uk/government/speeches/extended-measures-to-protect-more-areas-of-england-
from-coronavirus

2Britain Can’t Rely on a Vaccine to Ease Lockdown Restrictions, The Spectator,
https://www.spectator.co.uk/article/britain-can-t-rely-on-a-vaccine-to-ease-lockdown-restrictions
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particular, irrespective of whether the individual was infected before or after the arrival

of the treatment), only susceptible individuals can benefit from the arrival of the vaccine.

The effect of this is that for treatment, the value of social distancing decreases as the

arrival date approaches. In fact, on the date of arrival, no social distancing takes place

at all. In contrast, before the arrival of the vaccine, social distancing by individuals is

ramped up just before arrival, to increase the chances that they can benefit from the

vaccine.

To illustrate these points, we consider three scenarios. In the benchmark, no pharma-

ceutical innovation ever arrives and so the decision makers must resort to social distancing

throughout the epidemic. In addition, we consider the case where the innovation arrives

before peak prevalence is reached in the benchmark scenario and the case where it arrives

after. These three cases allow us to not only determine how the arrival of the innovation

influences pre-innovation social distancing efforts, but also how this dependence changes

across the stages of the epidemic.

It should be noted that strictly speaking, the key date for the purpose of decision

making is the date of availability, rather than the date of innovation. Thus our analysis

equally applies to situations where the pharmaceutical innovations have already been

made but where decision makers are awaiting delivery of the vaccine or treatment, as the

case may be.

The paper contributes to the larger literature on economic epidemiology, in particular

to the literatures on social distancing and on the interaction of several instruments of

disease control. Rowthorn and Toxvaerd (2020) analyze the interaction of equilibrium

and socially optimal social distancing and treatment in a model of recurrent infection

(SIS) when both are present, while Toxvaerd and Rowthorn (2020) consider equilibrium

and socially optimal use of treatment and vaccination in isolation in an SIR environment.

Toxvaerd (2019) considers the welfare effects of policies such as pre-exposure prophylaxis

in an SIS model of social distancing. Giannitsarou, Kissler and Toxvaerd (2020) study

a model of socially optimal social distancing in an SEIRS model with vital dynamics.

In their model, the social planner values lives beyond the active planning horizon, after

which the disease is no longer a concern. They show that the social planner may have

an incentive to increase the number of survivors at the end of the planning horizon, thus

prompting an increase in social distancing as the end date approaches. Some of our results

have a similar character, although they differ in the details and in their interpretation.

Toxvaerd (2020) and Makris (2020) consider equilibrium social distancing in settings

where no pharmaceutical interventions are forthcoming and are therefore comparable to

our benchmark scenario.

In an important early paper, Auld (2003) considers the role of expectations of a
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future vaccine arrival and incentives to self-protect. In particular, he distinguishes be-

tween anticipated and “surprise”innovations and the counterweighing effects of imperfect

vaccines. In a macroeconomic model of disease propagation, Eichenbaum, Rebelo and

Trabandt (2020) consider the possibility of a vaccine or a treatment that arrives with a

constant probability in each period. As in our paper, they characterize how the possible

arrival of these pharmaceutical innovations interact with other decisions, in their case

over consumption and labour supply. In contrast to our results, they show that in the

competitive equilibrium, the possibility of such innovations makes very little difference

in their framework. A central difference between our setup and theirs is that the arrival

process has a constant hazard rate (i.e. the arrival probability is constant over time),

whereas in our model, individuals know that arrival is approaching as time passes. This

introduces an additional source of non-stationarity to our model over and above that in

the underlying epidemiological dynamics. Last, Bognanni et al. (2020) consider a spatial

macroeconomic-epidemiological model of social distancing in which a vaccine may arrive.

In contrast to our analysis, theirs do no feature forward-looking behavior and thus their

results are not directly comparable to ours.

1. Decentralized Decision Making

Consider a susceptible-infected-recovered compartmental model of an infectious disease.

Time is continuos and at some instant t, an individual is either susceptible and belongs

to the compartment S(t), infected and infectious and belongs to the compartment I(t)
or recovered and immune, thus belonging to the compartment R(t). We will denote
the measures of these compartments by S(t), I(t) and R(t) respectively. In this model,

infection spreads though meetings between susceptible and infected individuals at a rate

that depends on underlying biology and social distancing behavior. In particular, we

assume that behaviour reduces the infectiousness parameter β to some level β(1−d(t)) <
β, where d(t) ∈ [0, 1] is a measure for social distancing. Once infected, individuals recover
spontaneously at some exogenous rate γ > 03. The dynamics are given by

Ṡ(t) = −β(1− d(t))I(t)S(t) (1)

İ(t) = I(t) [β(1− d(t))S(t)− γ] (2)

Ṙ(t) = γI(t) (3)

1 = S(t) + I(t) +R(t) (4)

S(0) ≈ 1, S(0) + I(0) = 1, S(0) > γ/β (5)

3The model is readily extended to include the possibility of disease-induced mortality. One simple
way to include this possibility is to replace γ with γ/(1− σ), where σ ∈ [0, 1] is the probability that the
individual will die of the disease before recovering. This formalisation of mortality is discussed further
in Keeling and Rohani (2008).
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Assume that the individuals earn some flow payoff π > 0 while susceptible but expe-

rience a decrease in flow payoffs to some level π < π while infected. Once they recover,

they return to earning flow payoff π. Individuals discount the future at rate ρ > 0.

Let pi(t) ∈ [0, 1] denote the probability at instant t ≥ 0 of residence in health state
i = S, I,R for the individual. At time T > 0, a pharmaceutical intervention becomes

available (either treatment or vaccine). For all times t < T , the individual can only

mitigate infection risk by choosing social distancing d(t) ∈ [0, 1] at cost c(d(t)) with
c′ > 0 and c′′ ≥ 0. For simplicity, we can take c(d) = d2/2 where c′(d) = d and c′′(d) = 1.

The problem to be solved by a susceptible individual is given by

max
d(t)∈[0,1]

∫ T

0

e−ρt {pS(t)[π − c(d(t))] + pI(t)π + pR(t)π} dt+e−ρT [pS(T )VS+pI(T )VI+pR(T )VR]

(6)

In this objective function, Vi is the expected net present value of entering the post-

innovation phase inhabiting health state i = S, I,R. These values depend on the nature
of the pharmaceutical innovation and will be further characterized below.

The individual’s problem is solved subject to the following system of differential equa-

tions:

ṗS(t) = −(1− d(t))βI(t)pS(t), pS(0) = 1 (7)

ṗI(t) = (1− d(t))βI(t)pS(t)− γpI(t) (8)

ṗR(t) = γpI(t) (9)

It is worth emphasizing that under decentralized decision making, each individual takes

the aggregate dynamics as given and chooses a path of social distancing in order to

maximize his or her individual expected discounted utility. The outcome is thus one

of perfect foresight equilibrium, in which the aggregate dynamics that the individuals

anticipate when choosing their social distancing policies actually materializes.

Let λDi (t) denote the costate variables for the state variables pi(t), i = S, I,R. Then
the individual’s current-value Hamiltonian is given by

HD = pS(t)[π − c(d(t))] + pI(t)π + pR(t)π (10)

−λDS (t)(1− d(t))βI(t)pS(t) (11)

+λDI (t)[(1− d(t))βI(t)pS(t)− γpI(t)] (12)

+λDR(t)γpI(t) (13)
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A necessary condition for individual maximization is that

∂HD

∂d(t)
= −pS(t)c′(d(t)) + βI(t)pS(t)[λ

D
S (t)− λDI (t)] = 0 (14)

which can be re-written as

c′(d(t)) = βI(t)[λDS (t)− λDI (t)] (15)

This equation just means that for the individual to be best responding, the marginal cost

of social distancing must equal the marginal benefit, measured by the avoided expected

utility cost from becoming infected. With quadratic costs, we get that

d(t) = βI(t)[λDS (t)− λDI (t)] (16)

To complete the characterization of the equilibrium path of social distancing, we need

to determine the evolution of the three costate variables and impose the appropriate

transversality conditions. The laws of motion for the costate variables are:

λ̇DS (t) = ρλDS (t)−
∂HD

∂pS(t)
(17)

= λDS (t) [ρ+ (1− d(t))βI(t)]− λDI (t)(1− d(t))βI(t)− [π − c(d(t))]

λ̇I(t) = ρλDI (t)−
∂HD

∂pI(t)
(18)

= λDI (t) [ρ+ γ]− λDR(t)γ − π

λ̇DR(t) = ρλDR(t)−
∂HD

∂pR(t)
= ρλDR(t)− π (19)

Last, the transversality conditions are

λDS (T )e
−ρT = VS (20)

λDI (T )e
−ρT = VI (21)

λDR(T )e
−ρT = VR (22)

The transversality conditions will play a prominent role in this analysis and so it is useful

to recall their interpretation.4 In general, the costate variable λDi (t) captures the value

of being in state i = S, I,R. The transversality conditions simply express the present
value of residence in the different health states on the date of innovation as being equal to

the post-innovation continuation value, which depends on the health state in which the

4This is a fixed-end-time problem with a salvage value. The transversality conditions for this case are
given in Caputo (2005, Theorem 10.3, p. 277).
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individual enters this phase (and is further analyzed in what follows) and on the nature

of the pharmaceutical intervention.

The salvage values on the right-hand sides of the transversality conditions (20), (21)

and (22), are value functions that depend on the post-innovation regime, and on whether

the innovation is a treatment or a vaccine. With costly or imperfect innovations, e.g. with

a partially protective vaccine or a treatment that only induces recovery with a delay, there

will generally be a role for social distancing even after the arrival of the pharmaceutical

innovation. While this is conceptually a straightforward extension of our analysis, we

focus on the simpler case in which the innovations are costless and perfect. This means

that post-innovation, there is no role for social distancing. This simplification allows us to

focus on the characterization of social distancing and how it is affected by the anticipation

of the innovation. In a later section, we outline how our main conclusions are modified

when imperfections in vaccines and treatment are taken into account.

After substituting the explicit policy (16) into (1)-(3) and (17)-(19), we have re-

duced the problem to analyzing the behavior of the system of differential equations for

(S(t), I(t), R(t), λDS (t), λ
D
I (t), λ

D
R(t)) with appropriate terminal conditions for the costate

variables and appropriate initial conditions for the epidemic variables.

Before embarking on the detailed analysis of equilibrium social distancing when phar-

maceutical innovations are anticipated, we will briefly discuss the benchmark in which

individuals only rely on non-pharmaceutical interventions throughout. In this setting,

each individual’s behavior is dictated by two considerations, namely current prevalence

and the future path of the epidemic. First, because an individual’s present probability

of becoming infected is proportional to disease prevalence, as this changes so does the

incentive to self-protect, all else equal. Second, the value of remaining healthy, which

justifies engaging in costly social distancing, changes across the stages of the epidemic.

From the perspective of an individual, who treats the path of the epidemic as exogenously

given, infection risk is hump-shaped. This means that there will typically be two dates

at which a given prevalence level is reached; at the first, prevalence is increasing while

at the second, it is decreasing. But the individuals will value protection more on the

second date than on the first. This is because on the first date, future infection hazards

are much greater than on the second date and thus the value of getting safely through

the next small time interval is higher later in the epidemic.

The upshot of this is that while the incentive of individuals to self-protect qualitatively

follows disease prevalence, they also intensify over time, ceteris paribus.

For all simulations presented in this paper, we have used MATLAB R2017a on Mac-

Book Pro, 2018, running macOSHigh Sierra version 10.13.6. We used the epidemiological

parameters γ = 1/4.5 and β = 0.5, drawing on Lourenco et al. (2020). For the economic
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Figure 1: Equilibrium Prevalence and Social Distancing When Anticipating Treatment.

parameters, we use π = 0, π = −1 and ρ = 0.05/365. We arrived at the numerical solu-
tion using the “shooting method”. Namely, we numerically solved for the initial values of

the costate variables that ensure that the dynamic system satisfies the transversality con-

ditions. For the derivation of the dynamic paths, we used the ODE solver ode45.m. For

the numerical solution of the initial values of the costate variables, we used the gradient-

free minimisation solver fminsearch.m to minimise the squared sum residuals between

the simulated and the values required from the transversality conditions of the costate

variables at T .

1.1. The Case of a Perfect Treatment. Assume that the treatment is costless and

works instantaneously. This means that once the treatment becomes available, there is

no need for costly social distancing. This is because any individual that becomes infected

can immediately recover at no cost and thereby essentially neglect the risk of infection.

Consequently, the value functions in the post-treatment phase are

VS = VI = VR =
π

ρ
(23)

8
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

-1
9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

In other words, the health state of an individual going into the post-treatment phase

is completely immaterial for the individual’s wellbeing. A susceptible or recovered indi-

vidual will earn flow payoff π (recalling that the former will expend no effort on social

distancing), while an infected individual can ensure this same flow payoff instantaneously

through treatment at no cost.

The equilibrium dynamics in this scenario are illustrated in Figure 1, where the upper

panel shows disease prevalence while the lower panel shows social distancing. We consider

three cases, namely arrival of a treatment in period 60, 80 and 120, respectively. The

black line shows the benchmark case in which the innovation arrives when the disease has

practically died out, namely T = 120. In this case, treatment plays essentially no role

for aggregate dynamics. In contrast, the blue line shows a case in which the treatment

arrives before peak prevalence is reached in the benchmark. Several features of this case

are worth noting. First, at early stages of the epidemic, social distancing is significantly

higher than in the benchmark. This has the effect of suppressing disease prevalence.

Second, we see that social distancing is gradually phased out entirely, reaching zero on

the date that treatment arrives. The reason for this is that as the arrival of treatment

approaches, the welfare loss from falling ill becomes lower, because there is a higher chance

of making use of the treatment. An individual who becomes infected at time T − ε is not
much worse off than someone who gets infected at time T , because he or she will only

be in the infected state momentarily till the treatment arrives. Third, we note that there

is a discontinuity in disease prevalence when the treatment arrives. The reason is that

under our assumptions of costless and perfect treatment, once the innovation arrives at

date T , infected individuals all get treated immediately, causing both disease prevalence

and incidence (i.e. cases of new infections) to drop to zero. With imperfect treatment,

these curves would have kinks at date T but not necessarily discontinuities.

Last, the red line shows a case in which the treatment only arrives after peak preva-

lence is reached in the benchmark. In this case, social distancing is also higher than

the benchmark at the early stages (which in turn suppresses disease prevalence), and is

eventually phased out entirely to reach zero on the date of arrival. It should be noted

that the effects of anticipated innovations in treatment depend on the rate of recovery

from infection. The faster people recover from infection, the lower is pre-innovation social

distancing.

Overall, the paths of equilibrium social distancing start at a negligible level. Social

distancing starts intensifying as prevalence picks up. It then peaks, before being phased

out completely by the arrival date of the treatment. It is notable that the earlier the

treatment arrives, the earlier is social distancing exerted and the faster does it peak. As

a natural consequence of this path of social distancing, equilibrium disease prevalence is
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Figure 2: Equilibrium Prevalence and Social Distancing When Anticipating Vaccination.

on the whole lower than in the no-innovation benchmark.

1.2. The Case of a Perfect Vaccine. Assume that the vaccine is costless, has

no side effects and provides instantaneous and perfect protection against infection in

perpetuity. In this case, a susceptible individual will immediately vaccinate as soon as

the vaccine becomes available and therefore earn flow payoff π from then onward. This

means that the value functions for susceptible and recovered individuals in the post-

vaccine phase are

VS = VR =
π

ρ
(24)

In contrast, infected individuals cannot benefit from the vaccine and earn π while infected.

Once recovered, their flow payoff increases to π. Thus the value function for an infected

individual is

VI =
1

ρ

[
ρπ

ρ+ γ
+

γπ

ρ+ γ

]
(25)

This is simply the expected net present value for an individual who is infected and who

will recover at rate γ > 0.

Direct inspection shows that for the case of a vaccine, VI < VS = VR. This is the
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reason that decision-makers, whether individuals or the social planner (discussed shortly),

attach an added value to entering the post-vaccine regime while still susceptible.

The equilibrium dynamics for this scenario are illustrated in Figure 2. Again, the

black line shows the benchmark case where vaccine only arrives when the disease has

practically died out, at T = 120. The blue line shows the case where the vaccine arrives

before peak prevalence has been reached in the benchmark. We see that in this case, social

distancing is uniformly higher than in the benchmark case till the innovation arrives. In

turn, this causes a suppression of disease prevalence. The same pattern is evident from

the red line, showing a case where the vaccine arrives after the peak. In both cases,

we note that disease prevalence is continuous. Once the vaccine arrives, all remaining

susceptible individuals get costlessly immunized such that there are no new infections.

Any individuals who entered the post-innovation phase as infected slowly recover, causing

disease incidence to become negative. This accounts for the tapering off of prevalence

after the innovation date.

In contrast to the case of treatment, when the vaccine arrives there is a discontinuity

in social distancing. The reason is that as soon as the vaccine arrives, all remaining sus-

ceptible individuals immediately become immunized. As the vaccine and social distancing

are perfect substitutes in avoiding infection but the vaccine is costless, it is optimal to

cease social distancing and instead get immunized. In contrast, an individual who is still

susceptible at time T −ε has a very strong incentive to engage in costly social distancing,
because remaining susceptible for just a moment longer ensures that the individual can

benefit from perfect and costless protection in the post-vaccine regime.

Last, we note that the earlier the vaccine arrives, the higher is the equilibrium path

of social distancing. This in turn causes a lower path of disease prevalence.

2. Centralized Decision Making

We next consider the first-best path of pre-innovation social distancing. The problem to

be solved by the social planner is given by

max
d(t)∈[0,1]

∫ T

0

e−ρt {S(t)[π − c(d(t))] + I(t)π +R(t)π} dt+e−ρT [S(T )VS+I(T )VI+R(T )VR]

(26)
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subject to

Ṡ(t) = −β(1− d(t))I(t)S(t) (27)

İ(t) = I(t) [β(1− d(t))S(t)− γ] (28)

Ṙ(t) = γI(t) (29)

1 = S(t) + I(t) +R(t) (30)

I(0) ≈ 0, I(0) + S(0) = 1, S(0) > γ/β (31)

Note that in contrast to the problem solved by the individuals under decentralized decision

making, the social planner explicitly takes into account that its choice of aggregate social

distancing influences the aggregate dynamics of the disease.

Letting λCi (t) denote the costate variables for the state variables i = S(t), I(t), R(t),

the planner’s current-value Hamiltonian is given by

HC = S(t)[π − c(d(t))] + I(t)π +R(t)π (32)

−λCS (t)(1− d(t))βI(t)S(t) (33)

+λCI (t)[(1− d(t))βI(t)S(t)− γI(t)] (34)

+λCR(t)γI(t) (35)

A necessary condition for the optimal policy is that

∂HC

∂d(t)
= S(t)

[
−c′(d(t)) + βI(t)

(
λCS (t)− λCI (t)

)]
= 0 (36)

For quadratic costs, the socially optimal policy is given by

d∗(t) = βI(t)
[
λCS (t)− λCI (t)

]
(37)

The laws of motion for the costate variables are then

λ̇CS (t) = ρλCS (t)−
∂HC

∂S(t)
(38)

= λCS (t) [ρ+ (1− d(t))βI(t)]− λCI (t)(1− d(t))βI(t)− [π − c(d(t))] (39)

λ̇CI (t) = ρλCI (t)−
∂HC

∂I(t)
(40)

= λCI (t) [ρ+ γ − (1− d(t))βS(t)] + λCS (t)(1− d(t))βS(t)− λCR(t)γ − π (41)

λ̇CR(t) = ρλCR(t)−
∂HC

∂R(t)
= ρλCR(t)− π (42)

The transversality conditions are given by the counterparts of (20)-(22) under decentral-
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Figure 3: Optimal Prevalence and Social Distancing When Anticipating Treatment.

ized decision making, namely

λCS (T )e
−ρT = VS (43)

λCI (T )e
−ρT = VI (44)

λCR(T )e
−ρT = VR (45)

Before considering the effects of anticipated pharmaceutical interventions, we again con-

sider the no-innovation benchmark. In contrast to individuals’equilibrium behaviour,

the social planner cares about the welfare of the entire population, rather than that of

a single individual. In practice, this means that the planner will want to keep track of

both the evolution of susceptible and infected individuals. Under social planning, it is

also the case that disease prevalence is hump-shaped, as was the case under equilibrium

social distancing. But in addition, the planner is now sensitive to the wellbeing of the

susceptibles, who decrease in measure over time. As in all SIR type models, herd immu-

nity builds up over time, as infected individuals gradually recover and become immune

to further infection.
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2.1. The Case of a Perfect Treatment. Figure 3 shows the dynamics of preva-

lence and social distancing chosen by the central planner in anticipation of a treatment.

Relative to the paths under equilibrium behavior, we note a number of differences, some

qualitative and some quantitative. First, under first-best policies, social distancing is

overall more extensive than in equilibrium except at the last stage before the innovation.

This stems from the fact that the social planner factors in the positive externalities of

disease prevention in choosing its optimal policy. This causes disease prevalence to be

lower under the social optimum. Second, while the social planner also phases out social

distancing completely by the innovation date, it implements a significant and relatively

constant level from the outset until the late stages before the treatment arrives. This

causes disease prevalence to be monotone increasing throughout the pre-innovation phase.

On the innovation date, there is a discontinuous jump down to zero. In contrast, in equi-

librium, prevalence can be non-monotone if the innovation date is after the date at which

peak prevalence is reached in the no-innovation benchmark.

2.2. The Case of a Perfect Vaccine. Figure 4 shows disease prevalence and so-

cial distancing chosen by the central planner when anticipating a vaccine. Relative to

the equilibrium paths of social distancing, the socially optimal ones have a few notable

differences, qualitatively as well and quantitatively. First, optimal social distancing is

generally more intensive than the equilibrium level (save for the final stretch before the

innovation date). This is because the planner takes into account all external effects that

flow from the imposed social distancing. In turn, this causes the socially optimal path of

disease prevalence to be significantly lower than its equilibrium counterpart.

Second, while equilibrium social distancing roughly follows the path of disease preva-

lence, with very low initial levels and a subsequent gradual increase, the socially optimal

path features significant social distancing from the outset until the late stages before the

arrival of the vaccine. Note that when a vaccine is anticipated, neither optimal nor equi-

librium social distancing is phased out before the innovation date, as is the case when

a treatment is anticipated. Although the final pre-innovation equilibrium level of social

distancing is higher than that chosen by the social planner at the same date, we cannot

conclude that individuals engage in too much social distancing. The reason is that be-

cause individuals have engaged in less social distancing till that point, disease prevalence

is much higher in equilibrium than it would have been under social planning and therefore

the two levels of social distancing are not directly comparable.

Recall that when anticipating a treatment, both individuals and the planner decrease

social distancing at the end of the pre-innovation phase. In contrast, under the anticipa-

tion of a vaccine, the individuals ramp up social distancing while the planner decreases

it. This can be explained as follows. Individuals attach a high value to reaching the
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Figure 4: Optimal Prevalence and Social Distancing When Anticipating Vaccination.

post-vaccine phase as susceptibles and therefore ramp up protection till the very last

moment. The planner also attaches a high value to this happening, but has managed

aggregate prevalence throughout the pre-innovation phase. This means that just before

the vaccine arrives, prevalence is relatively modest, allowing it to somewhat decrease

social distancing. The optimal paths of social distancing are not phased out, but end

at a strictly positive level. This is a testament to the value attached by the planner to

increasing the measure of susceptibles that can benefit from the vaccine.

2.3. Aligning Private and Social Incentives. As is often the case in economic

models of infection control, there is a wedge between private and social costs and benefits

of social distancing. The reason is that individuals do not internalize the positive external

effects that flow from their efforts to avoid infection. As shown in Rowthorn and Toxvaerd

(2020), there are incentive schemes that correct for such external effects and implement

the socially optimal outcomes. These can be subsidy/penalty schemes that are attached

either to the protective behavior itself (like furlough schemes, which encourage people

to stay at home rather than to go to work) or to the health status of individuals (like a

reward for remaining uninfected). Often, such schemes are very complicated and must
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be modified as the epidemic progresses, which severely limits their practical use. In

contrast, in the present setup there is a scheme that is very simple to implement and

which may provide individuals some incentives to self-protect. Under this scheme, once

the vaccine becomes available, individuals who get vaccinated also receive a reward. As

the health state of an individual is known in our model, only those who have never

been infected by date T will get vaccinated. This means that only at-risk individuals are

eligible. This scheme achieves two separate goals. First, it incentivizes vaccine uptake,

itself an activity that has strong positive externalities (see Chen and Toxvaerd, 2014).

Second, it incentivizes social distancing in the pre-vaccination phase by rewarding those

who make it through to the vaccination phase having never been infected. This scheme is

both easy to communicate and to implement. It should be noted that this is a decidedly

second-best policy and that it is unlikely to be possible to implement the first best through

this scheme. The incentive scheme that implements the first-best outcome modifies the

entire path of the costate variables. In contrast, the proposed second-best scheme only

fixes the value of the costate variables at date T .

3. Discussion

In this paper, we have considered a stylized model of social distancing to analyze the

effects of forthcoming pharmaceutical innovations on pre-innovation social distancing.

We show that decision makers react differently to anticipated treatments and vaccines.

When anticipating a vaccine, it is important for the decision maker to reach the post-

innovation phase while still susceptible, for otherwise the vaccine has no value. This means

that as the arrival date of the vaccine approaches, the risk-reducing efforts are increased

over time till the individual is effectively immunized. In contrast, when anticipating a

treatment, reaching the post-innovation phase while susceptible is less critical. This is

because someone who is (still) infected by the time that treatment becomes available can

still benefit from treatment, therefore reducing the value of social distancing just before

it becomes available. Thus social distancing is in this case entirely phased out, ceasing

completely by the time the treatment arrives.

Although antiviral treatment will have an important role to play in managing the

epidemic, effective mass vaccination is likely to make the most difference on aggregate.

Our analysis makes an important point and offers a clear policy recommendation. The

anticipated arrival of an effective vaccine should not be taken as a license to loosen restric-

tions and reduce social distancing. In contrast, individuals and public health authorities

should redouble their efforts to reduce the number of new cases to ensure that people

may actually benefit from the protection afforded by an effective vaccine once it arrives.

In the main analysis, we have for simplicity assumed that treatments and vaccinations

were both costless and perfect. This allowed us to express the post-innovation value
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functions and thus the transversality conditions entirely in terms of model parameters.

We will briefly discuss how our main insights change when the treatment or vaccine is

imperfect.

In the case of imperfect treatment, there are several effects to consider. Assume that

treatment, rather than inducing instant recovery, only does so with a delay. This is the

formalization used in Toxvaerd and Rowthorn (2020). Since the treatment is costless, it

will be taken up by any infected individual as soon as it becomes available. Thus the post-

innovation value function will be a composite expression that takes into account both the

flow payoff π earned while infected and the flow payoff π earned when recovered, suitably

weighed by the rate at which the individual recovers under treatment. Thus relative to

the case of a perfect treatment, the value function VI is unambiguously lower. Turning to

individuals who reach the post-innovation phase as susceptibles, it’s clear that becoming

infected now involves switching to a health state where the individual earns flow payoff

ρVI rather than π, as is the case when treatment induces instant recovery. For that

reason, we have that ρVS < π. In other words, the value of reaching T as susceptible

has now decreased. This means that even though an imperfect treatment now becomes

available, the individual must still engage in costly social distancing. The value VR
remains unchained. Since two of the transversality conditions change in response to the

imperfections in treatment, it is not possible in general to say what the net effect on

pre-innovation social distancing is, without adding more structure.

In the case of an imperfect vaccine, the effects are simpler to describe. Assume that

once a vaccine is taken, it reduces the infectivity parameter β to σβ where σ ∈ [0, 1] is
the failure probability of the vaccine. This formalization nests two extreme cases. When

σ = 0, we are back in the perfect vaccine case at which no further social distancing

is chosen after date T . When σ = 1, then the vaccine is completely useless and the

innovation date T has no impact on social distancing; the paths of social distancing and

prevalence mirror those of the T → ∞ benchmark. For any intermediate value of the

failure probability σ, the nature of the individual’s problem is the same before and after

the innovation date, but the post-innovation infectivity rate is now reduced because of the

partial protection afforded by the vaccine. But relative to the perfect vaccine case, the

post-innovation value function VS is unambiguously lower as the individual will have to

still engage in costly social distancing after vaccination, while the value functions VI and

VR remain unchanged. This means that the transversality conditions are altered to make

it less valuable to enter the post-innovation phase as a susceptible. This is reflected in a

lower incentive to engage in social distancing ex-ante-innovation.

Last, it now seems increasingly likely that immunity gained by recovered individuals

wanes over time, although the extent of this waning is not yet fully understood. While we
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have conducted our analysis within the framework of the SIR model, in which recovered

individuals obtain permanent immunity to re-infection, our main insights are robust to the

possibility of waning immunity. While waning immunity changes the underlying dynamics

of the disease, the non-stationarity introduced by the anticipation of pharmaceutical

innovations remains, as does the incentives to prevent infection in the pre-innovation

phase.
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We hand-collect a time-series database of business closures and related 
restrictions for every county in the United States since March 2020. We 
then relate these policies to future growth in deaths due to Covid-19. 
To our knowledge, ours is the most comprehensive database of U.S. 
Covid-19 business policies that has been assembled to date. Across 
specifications, stay-at-home orders, mandatory mask requirements, 
beach and park closures, restaurant closures, and high risk (Level 2) 
business closures are the policies that most consistently predict lower 
4- to 6- week-ahead fatality growth.  For example, baseline estimates 
imply that a county with a mandatory mask policy in place today will 
experience 4- week and 6- week ahead fatality growth rates that are each 
1% lower (respectively) than a county without such an order in place.  
This relationship is significant, both statistically and in magnitude.  
It represents 12% of the sample mean of weekly fatality growth.  The 
baseline estimates for stay-at-home, restaurant and high-risk business 
closures are similar in magnitude to what we find for mandatory mask 
policies.  We fail to find consistent evidence in support of the hypothesis 
that some of the other business restrictions (such as spa closures, school 
closures, and the closing of the low- to medium- risk businesses that 
are typically allowed in Phase I reopenings) predict reduced fatality 
growth at four-to-six- week horizons.  Some policies, such as  low- to 
medium- business risk closures may even be counterproductive.  To 
address potential endogeneity concerns, we conduct two tests.  First, we 
exploit the fact that many county regulations are imposed at the state-
level through Governors’ executive orders.  Following the intuition that 
smaller counties often inherit state-level regulations that are intended to 
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Nash, Daniel Nguyen, Joojo Ocran, Preston Smith, Mingjun Sun and Crystal Wang for excellent research 
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reduce transmission and deaths in more populous regions, we remove the 
5 most populous counties in each state from the sample.  In the second 
test, we match counties that lie near (but not on) state borders to counties 
in different states that are also near (but not on) state borders and are 
within 100 miles of that county.  Absent policy differences, these nearby 
counties should see similar trends in virus transmission; making them 
good controls.  We continue to find that stay-at-home, mandatory masks, 
beach and park closures, restaurant closures, and high risk business 
closures all predict declines in future fatality growth.
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Worldwide, the Covid-19 pandemic has taken more than one million lives to date. In an 

attempt to slow this loss of life, policy-makers around the globe have introduced a wide range of 

interventions. But there is still widespread disagreement about which policies are effective. Given 

concerns about the economic costs of widespread business and social restrictions, it is crucial that 

policy-makers make informed trade-offs.  This paper aims to shed empirical light on this issue.   We 

construct a time-series database of business closures and related restrictions for every county in the 

United States since March 2020 and we relate these policies to future growth in deaths due to Covid-

19.  County-level restrictions are the unit of interest because a county is the finest level of detail for 

which daily death counts are available.  To our knowledge, ours is the most comprehensive database 

of U.S. Covid-19 business restrictions that has been assembled to date.    

State and county governments in the US have introduced a variety of policies to reduce virus 

transmission and deaths.  These include: stay-at-home orders; general business closures; specific 

closures targeting bars, restaurants, gyms and spas; no visitation policies at nursing homes; 

mandatory mask orders; park and beach closures; and limits on the size of gatherings.  We collect 

start and end dates (and policy restarts, where applicable) for each of these and we use them to relate 

current policy interventions to future growth in fatalities.  The variety of tools available to regulators, 

heterogeneous adoption and staggered timing that we observe in the data can help us understand the 

role of policy.   Recent papers report somewhat conflicting results on how effective various policies 

have been. For example, Courtemanche et al. (2020) find evidence that some government-imposed 

restrictions have aided in Covid-19’s control, while Atkeson et al. (2020) suggest that they may not. 

Another strand of literature seeks indirect evidence of the impact of policies on health by looking at 

changes in mobility (e.g., Dave et al., 2020a; Nguyen et a. 2020 both report evidence that restrictions 

do decrease mobility). Many of these recent papers focus on policies introduced at the state level 

(e.g., Abouck and Heydari, 2020; Friedson et al., 2020; Dave et al., 2020) or they rely on cross-

country evidence (e.g. Askitas, Tatsiramos and Verheyden, 2020), where social norms, healthcare 

infrastructure, and demographics are likely to vary widely.  We analyze counties rather than states (or 

countries) so that we can exploit the granularity of the available fatality data as well as county 

location and relative size within a state (to improve the overall interpretation of our findings).  We 

focus on fatalities rather than cases because of substantial variation in testing capacity over time and 

region.    We examine a number of specifications that are designed to deal with the twin issues of 

potential false positives and false negatives.  Given the progression of the virus (i.e., days from 
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exposure to infection to hospitalization and death), we focus most of the discussion on the 

4- to 6- week ahead horizons because these are more likely to capture the true effects of 

current policies. 

 Overall, we find that stay-at-home orders, mandatory mask requirements, beach and 

park closures, restaurant closures, and high risk (Level 2) business closures are the policies 

that most consistently predict lower 4- to 6- week-ahead fatality growth.  These relationships 

are significant, both statistically and in magnitude. For example, baseline estimates imply that 

a county with a mandatory mask policy in place today will experience 4- week and 6- week 

ahead fatality growth rates that are each 1% lower than a county without one.  These 

reductions represent 12% of the sample mean of weekly fatality growth.  Stay-at-home 

policies, restaurant closures, beach and park closures, and high risk business closures are all 

associated with reductions in fatalities that are similar in magnitude. While we do find some 

evidence that closing gyms and limiting gatherings to 10 people also predict lower fatality 

growth, we fail to find consistent evidence in support of the hypothesis that closing spas, 

schools, and general low to medium-risk businesses reduce fatality growth.1  In fact, closing 

retail establishments and relatively low risk businesses (those allowed to reopen in a typical 

Phase 1 reopening) appears to have been counterproductive. This may indicate substitution 

by the public into other types of activities that increase transmission. 

Any study that tries to link policy interventions and outcomes has to somehow 

distinguish between correlation and causation. Policies that are put in place near the natural 

peak of the outbreak will be followed by mechanical declines in death rates and can lead to 

false positives.  Policies that only partially mitigate death rates may yield false negatives. We 

try to deal with the false positive and negative issue through a variety of methods. First, all of 

our regressions control for the current level of deaths per capita, lagged fatality growth rates, 

and a number of demographic and weather-related variables.  Thus, our regressions predict 

differences in the future growth in fatalities in two counties that today have the same current 

level of deaths per capita, the same recent trajectory in deaths and similar demographics and 

climate.  They differ in that their governments have introduced different policy 

interventions. 

1These are businesses that are allowed to open in what many states call Phase 1. Businesses in this category vary 
according to the counties’ definitions of risk, but the often include retail outlets, offices, outdoor dining at restaurants, 
childcare services, and manufacturing facilities. Phase 2 typically expands the list to barbers, spas, gyms and other 
personal care services. 
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Second, we use the fact that many of the county regulations that we observe are imposed at 

the state-level through Governors’ executive orders.  Even if we assume optimal policy-setting by 

the states, it is likely that what is optimal for some counties within a given state is not optimal for 

others.  Moreover, a state’s most populous areas are likely to be an important focus of state 

regulators. Following this intuition, we remove the top 5 most populous counties in each state from 

the sample and we repeat the analysis.  The idea is that smaller counties often inherit state-level 

regulations that are intended to reduce transmission and deaths in more populous regions of each 

state.  To date, we have seen legal challenges to state regulations brought by rural counties in 

Pennsylvania, reports of defiance of state mandates in some California and Texas counties, and 

requests by some North Carolina and Maryland counties for looser state restrictions. All of this 

suggests less populous areas are not driving policy. This lets us examine potentially “out of 

equilibrium” policies in the more rural areas to help with identification. 2  When we do so, we 

continue to find that masks mandates, masks for employees, beach and park closures, and gym 

closures are all significantly negatively related to fatality growth, both 4- and 6- weeks ahead.  In 

addition, stay-at-home orders, restaurant closures, bar closures and the closure of higher risk 

businesses (those typically associated with Phase 2 reopenings) predict lower fatalities 6 weeks out.  

Other policies, such as closing schools and some higher risk businesses closures (those businesses 

typically associated with Phase 3 reopenings) fail to yield consistently negative and statistically 

significant parameters. Limiting gatherings to between 11 and 100 people and closing low risk 

businesses appear to be counterproductive.  The evidence on gatherings is somewhat surprising. It 

may be that limits at 100 simply encourage smaller close contact gatherings. 

 Finally, we conduct matched-sample tests in which we focus on policy variation near state 

borders.  However, unlike typical designs that exploit discontinutities by focusing on differences 

between counties that lie on state boundaries, we focus on the subset of counties that lie near, but 

not on, a state border.  For expositional purposes, we refer to these counties as “near-border” 

counties.  We examine these near-border counties (as opposed to on-the-border counties) to reduce 

spillover effects. These spillovers come in two forms. First, if a neighbor’s policy reduces disease 

2 See e.g., County of Butler, et al. v. Thomas W. Wolf, et al. (Civil Action No. 2:20-cv-677); “Newsom 
threatens California counties that defy coronavirus rules as cases spike” San Francisco Chronicle 6/24/2020; 
“North Texas counties are declaring themselves 100% open for business despite COVID limits,” Fort-Worth 
Star Telegram 6/19/2020; “Governor to Henderson County: Decision to reopen economy will be based on 
experts, officials”, Times-News, 5/4/2020; and “Commissioners to Hogan: Let us reopen” Herald Mail 
Media, 5/22/2020. 
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transmission in its jurisdiction, it will also lower the transmission level across the border and 

thereby reduce fatalities in the county of interest. Second, a restrictive policy in one county 

(such as bar closures) and a less restrictive one in a neighboring county may induce residents 

of the county with the tighter restriction to travel to and engage in otherwise prohibited 

activities in the less restrictive one.  These spillovers can cause direct comparisons between 

the counties that share a border to generate false negatives and false positives. We try to 

mitigate this problem by putting at least a one-county buffer between any near-border 

county in our sample and its neighboring state.  

In the near-border county analysis, potential matches must be in another state and 

have a population centroid within 100 miles of the target county’s population centroid. 

Among this group, the county that is closest to the county of interest across several 

population and weather characteristics (based on a Euclidean measure) is then selected. 

Once a match is selected, the near-border neighboring county’s policies are added as control 

variables in the predictive regressions. The underlying assumption is that differences in 

policies across state borders are likely due to differences in opinion (which introduces 

exogenous error).  Under these assumptions, we find that stay-at-home orders, mandatory 

masks, park and beach closures, and some gathering limits predict lower future fatality 

growth at both the 4- and 6- week horizons.   Policies restricting nursing home visits, 

restaurant closures, some of the tighter gathering limits, and closures of higher risk 

businesses predict lower future fatality at either the 4- or 6-week horizons.  Gym closures, 

spa closures, school closures, as well as general low-risk business closures do not appear to 

curb fatality growth rates. Low risk business closures again seem counterproductive.   

In addition to current deaths per capita and lagged growth rates, we include a 

number of additional controls variables to sharpen the overall interpretation.  We control for 

population demographics, including age, race, and the fraction of the population residing in 

nursing homes.  We also control for per capita income, housing and population density, 

extreme weather conditions (which might drive the population indoors), time since a 

county’s first reported case, and time since March 1, 2020 to control for potential 

improvements over time in the management and treatment of Covid-19.  Some of the 

control variables are of independent interest.  For example, our evidence is consistent with 

findings in the literature on demographic disparities in Covid-19 (e.g., Millitt et al. 2020; 

Moore et al. 2020), with higher growth in deaths in counties with a greater proportion of 
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Black and Hispanic individuals in the population, in counties with lower per-capita income, and in 

those counties with high rates of some comorbidities such as diabetes.  We also find that extreme 

weather has additional explanatory power. 

We leave policy-makers with the unenviable task of balancing public health concerns with 

the costs and benefits associated with the various restrictions that have been considered. Our 

primary goal is to provide data that can inform the calculation.  Still, we also emphasize that mask 

mandates appear to be effective in every specification and are accompanied by relatively low 

economic and social costs. The evidence that masks are beneficial is growing rapidly (Howard et. al 

(2020) provide a review of the literature3), but our paper is the first (to our knowledge) to compare 

its effectiveness to such a wide range of alternative interventions. Other policies come at higher cost.  

In those cases, we hope our results can help policy makers better assess the necessary tradeoffs. 

The paper proceeds as follows.  Section 2 provides a description of the data and county-level 

policy variables.  Section 3 relates policies to future t-week ahead growth rates in fatalities.  Section 4 

concludes. 

2. Data 
 

The main goal of this paper is to relate weekly growth in fatalities to policies restricting businesses 

and related activities.  The data come from a variety of sources, which we describe below. 

 

2.1 Growth in New Deaths 

The fatalities data are from USAFacts.org, which disseminates daily U.S. deaths and 

confirmed cases at the county level.  For each week t, we examine the relationship between policies 

in place and the future growth in new deaths due to Covid-19. The dependent variable of interest is 

the t-week ahead growth in fatalities.  Due to potential irregular reporting following weekends, we 

focus the analysis on Wednesday-to-Wednesday weekly growth rates, calculated as: 

,

, 1

( ) ln i t

i t

Deaths
Growth t

Deaths −

 
=   

 
, where Deathsi,t  is the total cumulative deaths in county i at the end of 

week t. 

We control for 6 weeks of lagged weekly growth rates in all regressions.  Because the growth 

variable is undefined if a county has zero deaths, we begin the analysis 6 weeks after each county’s 

3 See also Abuluck et al (2020) and Lyu and Wehby (2020). 
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first reported death.4  The last forecast date is September 1, 2020, which means that we 

predict fatality growth through October 13, 2020.  We end the forecast period on September 

1, 2020 in part to avoid trying to estimate how school re-openings may impact overall 

transmission and ultimately fatalities. In many states, school re-openings have been occurring 

at the district level. In some cases, these openings were reversed following infections, and 

then reopened after a quarantine period. All of this introduces substantial within-county and 

between-county variation that we have not gathered data on and for which we cannot 

control in the regressions.  Moreover, school reopenings vary widely in their implementation 

(e.g., some schools following various hybrid models, some fully in-person), adding further 

complications to the analysis. 

  
2.2 Policies 

We collect the county-level restrictions through internet searches for county and 

state orders (usually available on their websites) as well as news publications. When the state 

document that imposes an order is found but does not clarify the date on which a restriction 

becomes effective or ends, we conduct a search of news articles to determine the start or end 

date. Because news reports can provide inconsistent information, we try to find at least two 

articles to confirm the date.5  

 Table 1 shows the full list of policies that we track. In many cases, the date that a 

particular order goes into effect is collected from Governors’ executive orders and impacts 

all counties within a given state.  In some cases, county commissioners issue their own 

orders. In a few others, state courts overturned some or all of the regulations. When 

gathering the data, unless a state order applies to every county and negates all of the 

individual county orders, the date of the state’s order is entered only into the counties to 

which it applies. A county is recorded as having an order in place on a particular date if 

either the county or the state imposes that order on or before the date in question and 

neither the county nor the state is recorded as having ended the order. A court order ending 

4 In the Appendix, we provide robustness analysis in which we replace weekly death growth rates with the 
change in deaths per capita from week t-1 to week t. This allows us to preserve all data for counties with zero 
deaths to date. While the estimated magnitudes can differ with the alternative definition of fatality growth and 
the statistical significance increases with this larger sample size, many of our main findings are qualitatively 
similar. 
5 To further improve the data’s accuracy, most of the entries have been verified two or three times by 
different individuals. 
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a restriction is entered into the counties to which it applies on the date that the court order goes into 

effect.  

In addition to county and state government websites, emails were sent to all counties 

(usually public health divisions, where such contact information is listed on county websites) 

to confirm the restrictions and dates that in our data.  In most cases, when we heard back, 

respondents provided confirmation that the information was either correct or that our start 

or end date was off by less than one week.6  Whenever we receive corrections, we replace 

our data with the data from the email response.    

 

2.3 Other Control Variables 

We control for several demographic variables known to be associated with Covid-19 

fatalities.  These include: the fraction of the population that are Black, Hispanic, Asian, Native 

American and other races (Black, Hispanic, Asian, Native American and Other, respectively); fraction of 

the population that is over the age of 65 (Age65plus) and over the age of 85 (Age85plus);  the fraction 

of the population living in nursing home facilities (Nursing Home Pop.); per capita income; the 

fraction of the population with diabetes, are obese or who smoke (Diabetes, Obesity, Smokers, 

respectively); density of the population, defined as total population divided by the land square miles 

of the county; and housing density.  The demographic controls that come from the U.S. Census are 

based on the most recent year for which data are available. Per capita income is from the Bureau of 

Economic Analysis. Finally, county health data on diabetes, obesity and smoking comes from 

County Health Rankings & Roadmaps (see https://www.countyhealthrankings.org/ for additional 

details). 

 We also control for weather conditions, given the evidence that indoor transmission is more 

likely than outdoor spread and that climate has the potential to play a role (e.g., Baker et al. (2020); 

Quian et al. (2020); Carlson et al. (2020)).   We introduce five weather variables to capture the 

propensity of people to find outdoor air uncomfortable and to seek temperature-controlled indoor 

environments: HotHumidWeekdays, equals 1 of the average weekday temperature is above 80 degrees 

and the average weekday dew point is above 60; HotHumidWeekends, the percentage of weekend days 

6 At the time of this writing, we received replies from 240 counties.  In 61.3% (147) of the responses, there 
were no suggested changes.  When we received changes, they were: additions to the list of orders (18.3 
percent of responses); date corrections within one week of the original week (4.2%); and date corrections 
exceeding 7 days of the original week (2.9%).  The remainder (13.3 percent of the responses) contained other 
information, such as links (without further clarification) to orders we had already parsed. 
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in which the average weekend temperature is above 80 degrees and the average weekend dew point 

is above 60; ColdWeekdays, the percentage of weekdays (Monday through Friday) in which the 

average temperature is below 60 degrees; ColdWeekends, the percentage of weekend days in which the 

average temperature is below 60 degrees; and AverageTemperature, the absolute value of the difference 

between the average daily temperature for the week and 70 degrees.  The weather data are at the 

station level and are obtained from the National Climatic Data Center.  We take the daily average of 

each temperature and dew point variable from the 3 weather stations that are closest to the 

coordinates of the county’s population centroid. 

 Finally, we consider the number of days since the county’s first reported case of Covid-19 

and the number of days since March 1, 2020.  The latter is included to control for potential 

improvements in the treatment and management of the virus over time.  Table 2 summarizes all of 

the fatality, policy, and control variables that we use in the analysis. 

3. Empirical Analysis 
 

3.1 Forecasting t-week-ahead fatality growth 

We begin with a baseline specification, in which we forecast one-, two-, four- and 

six- week ahead fatality growth rates as a function of: current and lagged deaths per capita; a 

vector of lagged weekly death growth rates; the interaction between lagged growth rates and 

the current level of deaths per capita; time since the first positive Covid-19 case in the 

county; and the time since March 1, 2020.  We also include the controls for current weather 

conditions and county demographics.  The results are in Table 3.   

From Column (1) of Table 3, we observe that weekly fatality growth rates are positively 

autocorrelated at up to approximately 4 lags, are increasing with the current level of fatalities, and 

decreasing in the lagged level of fatalities and with the interaction of current fatalities and past 

growth rates (i.e., when recent growth rates and current deaths per capita are high, future growth in 

deaths is predicted to be lower).  We also find that the growth in deaths is generally higher in 

climates where temperatures are uncomfortable (i.e., they deviate more from 70 degrees) and on hot 

and humid weekdays.  Colder temperatures on weekdays and weekends appear to dampen the 

relationship between uncomfortable weather and deaths.  For whatever reason, people may interact 

less during colder weather.  We find that counties with greater Black, Hispanic and Native American 

populations experience greater fatality growth than other counties.  Counties with larger nursing 
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home populations7, higher population densities and more residents who are obese or smoke also see 

greater future growth in fatalities.  Per capita income predicts lower future fatalities.  We also find 

that housing density is associated with lower future fatalities.  It may be that urban areas with more 

dense housing are also those with better medical care or better adherence to distancing practices.8 

From this baseline specification, we add policy variables so that we can examine the main 

economic question of interest.  The goal is to hold the constant the current level and recent 

trajectory of new deaths so that we can compare the future growth in fatalities in counties with and 

without various restrictions in place at time t. 

 

3.2 Baseline Analysis:  Policy interventions and t-week ahead weekly fatality growth 

The main regression specification, in which we forecast the t-week ahead weekly growth in 

fatalities (Growth(t+x)) is as follows.  
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In the calculated growth rate, X is set to 1, 2, 4 or 6 depending on the specification. Policies is the 

vector of policies in place in county i during week t, as defined in Table 1; DaysFirst is the number of 

days since the first case is reported in the county; t is the number of days since the beginning of the 

sample period (March 1, 2020), and Controls are a vector of population demographics and other 

county-level control variables, as shown in Table 2.  All standard errors are clustered at the county 

level.    

The specification in Equation (1) uses information available through week t to forecast the –

X week-ahead weekly growth rate in fatalities.  We focus on the relationship between fatalities and 

policies in place as of week t, after controlling for the current level of deaths per capita, the recent 

trajectory of growth rates, and a number of demographic and other controls.  According to the 

7 The fraction of the population residing in nursing home residents is more important than the fraction of the 
population that is elderly in predicting future fatalities. 
8See e.g., Hamidi, Sabouri and Ewing (2020). 
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CDC, the median incubation period from exposure to symptom onset is 4-5 days.  Among 

people with severe disease, the median time to ICU admission from the onset of illness or 

symptoms ranges from 10-12 days. 9   For patients admitted to the hospital and who do not 

survive, Lewnard et al. (2020) report a median duration of hospital stay of 12.7 days (ranging 

from 1.6 to 37.7).  Given the progression of the virus, we focus the discussion on the 4- to 

6- week ahead horizons because these are more likely to capture the true effects of current 

policies than the 1- and 2-week ones. Links between policies and short-term fatality growth 

could reflect autocorrelation in policies (i.e., we could observe a link between a given policy 

and week-ahead deaths because that policy remains in place in a county for some time).  But 

they might also indicate existing trends or show when a policy is perhaps coincidental or 

even reactive.  The longer-horizon forecasts are less likely to reflect trends or reactive 

policies. 

Results from the above analysis are in Table 4.  Columns (3) and (4), in which we predict 4- 

and 6- week ahead weekly fatality growth, are of greatest interest. Policies that have negative and 

significant coefficient estimates (i.e., predict lower future fatality growth) at both 4- and 6- weeks are: 

employee mask recommendations, mandatory mask use for the general population, restaurant 

closures, gym closures, and beach and park closures.  Those with negative and significant 

coefficients at one of these horizons are: stay at home orders, no elective procedures, limiting 

gatherings to 10 and high-risk business closures (Risk Level 2).10   

Among the policies with statistically significant and negative coefficients, it is possible that 

some of the coefficients reflect existing trends that are not captured in the lagged fatality controls.  

We compare the findings for short- and longer- horizon fatality growth to help with the overall 

interpretation.  If the week 1 and week 2 coefficient values and significance levels are different from 

what we see in weeks 4 and 6, then it is less likely that the findings at the horizons of interest reflect 

a trend.  In Table 4, the estimated coefficients on stay-at-home, employee masks, mandatory mask 

policies, beaches and park closures, elective procedures, restaurant closures, and Risk Level 2 closure 

policies are all more negative and/or more significant as we lengthen the horizon from 1- and 2- 

weeks to 4- and 6- weeks.  This strengthens the conclusion that these policies are likely to reduce 

9 https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html.   
10 Bar closures also show a negative and significant coefficient at the 6-week horizon, but that coefficient is 
positive and significant at 4 weeks.  It may take time for policies that could impact transmission among the 
bar-going population to impact deaths in those more vulnerable to the virus.  Also note that bars are closed 
whenever restaurants are closed, but they often stay closed longer. 
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fatality growth.   The employee mask, no elective procedures, and high-risk business closure (Risk 

Level 2) coefficients even switch signs as we vary the horizon.   

Table 4 shows that some policies are associated with higher future fatality growth. State of 

emergency declarations and spa closures show significant coefficient estimates for both 4- and 6-

weeks.  The state of emergency findings are consistent with what one might expect since these 

declarations indicate that a policy maker expects to need resources to manage a future crisis.  The 

spa closure findings are more surprising, but could indicate a movement of these services into other 

less safe settings.  Policies where the estimated coefficient is positive and significant at either the 4- 

or 6-week horizon are: gathering limits set at 100, closing low- to medium risk businesses (Risk 

Level 1) and re-openings reversed. In most of these cases, the coefficients become more positive 

and significant as the forecast horizon is lengthened.  The Risk Level 1 and re-opening reversal 

policies are consistent with one another since lower risk businesses are often closed when 

reopenings are reversed.  The findings may indicate that broad business closure policies are actually 

counterproductive.  The gathering limit finding is somewhat surprising, especially in light of the 

negative relationship between the tighter gathering variable and future deaths.  It may be that 

gathering limits set at 100 encourage larger-than-ideal small group events.   

Nursing homes are a major source of coronavirus fatalities.11  The finding in Table 4 that 

banning family nursing home visits did not lead to a strong reduction in future fatalities seems 

inconsistent with what we know about the number of nursing home deaths relative to the rest of the 

population. However, all of the regressions control for the number of nursing home residents 

relative to total population (coefficients on this variable are positively and significant at all horizons, 

as shown in Table 3).  It may be that most of the nursing home cases resulted from unregulated 

factors rather than family visits. As documented in Chen, Chevalier and Long (2020) staff and 

service people frequently travel between nursing homes and they may have been the primary 

spreaders of infections.   

Because the policy variables are dummies, the estimated magnitudes of the coefficients in 

Columns (3) and (4) of Table 4 are directly comparable.  For example, the estimated coefficients of 

−0.010 and −0.017 on mandatory masks and employee masks, respectively, are significant both 

statistically and in magnitude (they imply reductions in fatality growth that are between 12 and 20% 

11 As of October 30, the New York Times reports that approximately 38% of U.S. Coronavirus deaths have 
been linked to nursing homes.  https://www.nytimes.com/interactive/2020/us/coronavirus-nursing-
homes.html? 
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of the sample mean fatality growth of 0.085).  These are in line with the magnitudes of the  

estimated coefficients on stay-at-home orders (-0.010), restaurant closures (-0.011), gym closures (-

0.013), and Risk Level 2 business closures (-0.014).  This type of comparison useful because the 

costs of these policies are likely to differ substantially.   

Below, we summarize the main findings from Table 4.  The table lists policies with 

significant estimated coefficients at the 4- and 6- week horizons.  We consider a particular result 

“significant” if we observe a statistically significant coefficient at one or both of the horizons (i.e., 4- 

week and/or 6- week)and where we do not observe a statistically significant coefficient of the 

opposite sign over either horizon.  The policies in bold indicate a change sign or change in 

significance when we vary the horizon from short (1- to 2- weeks) to longer.   

 
 
Summary of Findings in Table 4.  Relationships between policy variables and future fatality 
growth. 
 
 Significant at 4 or 6 Week 

Horizon 
Significant at both 4 and 6 
Week Horizons 
 

Negative, Significant Stay-At-Home, Risk Level 2 
Closed, No Elective 
Procedures, Gatherings limited 
to 10 

Employee Masks, 
Restaurants Closed, 
Mandatory Masks, Gyms 
Closed, Beaches or Parks 
Closed 

Positive, Significant No gatherings over 100, 
Risk Level 1 Closed, 
Reopenings Reversed 

State of Emergency, Spas 
Closed 

 
Bold indicates a change sign or change in significance when we vary the horizon from short to 
longer. 

 

3.3 Removing counties likely to be the focus of regulators (the state’s most populous 
counties) 
   
While suggestive, the evidence in Table 4 does not establish a causal link between policies and future 

fatality growth rates.  The overall interpretation is blurred by the fact that some policies may be put 

in place near the natural peak of the outbreak and therefore, mechanical declines in death rates can 

coincide with policy introductions.  Controlling for current and past fatality and growth in fatalities, 

as well as varying the horizon over which we predict future weekly deaths helps with the 
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interpretation. An ideal experiment would take pairs of identical counties, impose regulation R in 

one county and not the other, and then measure differences in future fatalities across the “treated” 

counties versus those that are untreated.  Because we do not have access to this type of experiment, 

we use the fact that many county regulations are imposed at the state level (through Governors’ 

orders) to help with the identification.  If we assume that state regulators primarily focus on the 

state’s most populous counties, then smaller counties inherit state-level regulations that are intended 

to reduce transmission and deaths in the more populous regions of each state (allowing us to 

observe “out-of-equilibrium” policies).  Following this intuition, we remove each state’s 5 most 

populous counties from the sample and repeat the analysis in Table 4.  

The results using only the less populous counties are in Table 5. Here, stay-at-home orders, 

asking employees to wear masks, mask mandates, park closures, restricting elective procedures, 

restaurant closures, gym closures, and high risk business closures all show comparable or stronger 

negative relationships with future fatality growth than in the full sample. Assuming the initiation of 

these policies was driven by infection rates in the more populous counties, these results buttress the 

idea that all of these policies indeed reduce infection rates and thus ultimately deaths.  Unlike in 

Table 4, we no longer see evidence that gathering limits to 10 are helpful.  For this variable, the 

estimated coefficients for both 4- and 6-week ahead fatality growth are no longer significant, even 

the 10% level.   

Like Table 4, the estimates in Table 5 suggest that some policies were counterproductive.  

Spa closures again produce positive and significant coefficient coefficients. We also, again, observe 

positive and significant coefficients on closing firms designated as Level 1 Risk and reversing some 

business re-openings. However, only one of the two coefficients is statistically significant and, in the 

case of Level 1 Risk businesses, the estimated values are not much different from those in the 1 and 

2 week columns.  Table 5 also shows that issuing a state of emergency and imposing gathering limits 

of between 11 and 100 people also generates positive coefficient estimates 4 and 6 weeks out.  As in 

Table 4, school closings, mask recommendations (distinct from mandates for the general population 

or guidelines for employees), and nursing home visitation policies are all insignificant at the 4- and 6-

week horizons.  We summarize the Table 5 findings below.  
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Summary of Findings in Table 5.  Relationships between policy variables and future fatality 
growth, excluding the State’s most populous counties 
 
 Significant at 4 or 6 Week 

Horizon 
Significant at both 4 and 6 
Week Horizon 
 

Negative, Significant Stay-At-Home, No Elective 
Procedures, Restaurants 
Closed,  Risk Level 2 
Closed, Risk Level 3 Closed 

Employee Masks, Mandatory 
Masks, Beaches or Parks 
Closed, Gyms Closed 

Positive, Significant State of Emergency, No 
gatherings over 100, Risk 
Level 1 Closed, Reopenings 
Reversed 

Spas Closed 

 
Bold indicates a change sign or change in significance when we vary the horizon from short to 
longer. 
 

3.4 County pair analysis 

In this section, we exploit variation in policies across matching counties to help sharpen the 

interpretation. Standard methodology would compare outcomes in two counties that share a border 

but are in different states – a nearest neighbor analysis. In this setting, there are significant concerns 

about spillover effects.  That is, a policy that reduces infections and ultimately fatalities in one 

county is likely to be helpful to neighbors as well. These cross-border effects may then yield 

estimates that imply a policy has no value to the jurisdiction imposing it when, in reality it is not only 

effective, but so effective that its neighboring jurisdictions benefit as well.12  

To help mitigate the policy spillover problem, this paper uses a variant of the nearest 

neighbor pairing system. We still focus on counties that are near state borders, but any county with a 

border on the state line is removed from the database. This leaves only counties interior to their 

state, putting at least one county between them and the impact of a neighboring state’s policies. 

From the list of interior counties, we calculate the distance between its population centroids it and 

the population centroids of all other counties. For a given target county, any interior county whose 

population centroid lies within 100 miles of the target and is located in a different state is then 

12 Spillover effects can also generate false positives. Suppose a county with a large number of infections 
relative to its neighbor closes a venue (such as bars) and its neighbor does not. Residents of the county with 
the higher infection rate and tighter restriction may travel across the border to circumvent the regulation. 
Transmissions will then increase in the neighboring county relative to the county that imposed the rule. It will 
then appear, on a relative basis, that the rule reduced the fatality rate in counties that imposed it. In reality, the 
rule just increased fatalities in neighboring county. 
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considered as a possible match. From the set of possible matches, counties are compared on per 

capita income, fraction of the population over 85, population density, housing density, weekly 

temperature and rain. These variables are all standardized so that a difference of 1 standard deviation 

is coded as 1. The distance between the counties in characteristic space is then the equally weighted 

Euclidean distance based on a list of demographic and weather variables. 

 ( )2

, . ,
1

n

i j k i k j
k

d x x
=

= −∑   (2) 

Where di,j is the hedonic distance between county i and j. The xk,I and xk,j represent the standardized 

value of characteristic k for county i and j respectively. A county i is then paired with the county that 

generates the lowest value of di,j among the eligible set. By matching on both demographic and 

weather-related properties, the two counties should have similar propensities with regard to 

infection rates and ultimately fatalities while minimizing spillover effects.   

The results of the matched county analysis are in Table 6.  We find that stay at home orders, 

mask mandates for the general population, closing parks, and limiting gathering sizes all bring 

statistically significant lower death rates at both the 4- and 6- week horizons.  The magnitudes of the 

estimated coefficients on these variables in Table 6 are all larger than those in the earlier tables; 

however, we also find the estimated coefficients on mask mandates and beach and park closures to 

be more similar as we vary the horizon from 1- to 6- weeks than in the earlier tables.  This could be 

due to autocorrelation in policies, where these policies remain in effect for much of the sample 

period for the nearby border county subsample.  We also find that restaurant closures, nursing home 

visitation policies, rules that require acceptance of Covid-positive patients, and Risk Level 2 business 

closures are related to lower death rates at the 6-week horizon.  And all three gathering limits predict 

lower 4-week ahead fatality growth. 

As in Tables 4 and 5, the evidence in Table 6 again suggests that low-risk business closures 

and reopening reversals may be counterproductive..  The estimated coefficients on these policies are 

statistically insignificant in the regressions forecasting fatality growth 1- and 2- weeks out and they 

become significant at the 4- and 6-week horizons, which supports the interpretation that the 

reversals may have been counterproductive. We also find that bar closures and school closures are 

associated with greater fatality growth at the 4-week horizon.  This relationship becomes negative 

but insignificant at the 6-week horizon.      
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Table 6 shows no relationship between several of the policies and future growth in fatalities.  

Unlike in the earlier tables, we do not find a significant relationship between gym and spa closures 

and future fatalities at the 4- and 6- week horizons in the near-border analysis.  Because the matched 

county analysis is least likely to suffer from endogeneity problems, we interpret the earlier evidence 

on the effectiveness of these specific policies with some caution.  Below, we summarize the findings 

in Table 6. 

 

Summary of Findings in Table 6.  Relationships between policy variables and future fatality 
growth near state borders 
 
 Significant at 4 or 6 Week 

Horizon 
Significant at both 4 and 6 
Week Horizon 
 

Negative, Significant Nursing Homes Accept 
Pos., No Nursing Home 
Visits, Restaurants Closed, 
Gatherings limited to 10, No 
gatherings over 100, Risk 
Level 2 Closed 

Stay-At-Home, Mandatory 
Masks, Beaches or Parks 
Closed, Gatherings limited to 
>100 

Positive, Significant No Elective Procedures, 
Risk Level 1 Closed, Schools 
Closed  

Reopenings Reversed, State 
of Emergency 

 
Bold indicates a change sign or change in significance when we vary the horizon from short to 
longer. 
 

A condensed summary of all of the estimates in the paper (across Tables 4, 5, and 6) 

can be found in Appendix Table A.1. For those focusing on the restrictions with the most 

robust results, in terms of reducing fatality growth, they are: Stay-at-home orders, mandatory 

mask requirements, beach and park closures, restaurant closures, and high risk (Level 2) 

business closures. These policies predict lower 4- to 6- week-ahead fatality growth in all 3 

empirical approaches. 

 

3.5 Robustness to the inclusion of counties with zero deaths to date 

We focus the analysis on counties that have already experienced fatalities due to Covid-19.  One 

benefit of doing so is that we can examine the relationship between policies and future fatalities in 

settings where we are sure that the virus is in the community. To check the robustness of the results 

to the inclusion of counties with zero deaths to date, we repeat the analysis using the weekly change 
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in fatalities per 10,000 population instead of ,

, 1

ln i t

i t

Deaths
Deaths −

 
  
 

 .  This alternative definition of fatality 

growth allows us to preserve data for the counties without any fatalities to date.   

The results can be found in the Appendix Tables A.2 through A.5 and many of them are 

consistent with what we report in the main text. Under this alternative metric, employee mask 

policies, mask mandates for the general population, and high risk business closures are associated 

with lower future growth in fatalities in all three empirical approaches.  These are consistent with the 

main findings, although it is Risk Level 3 rather than Risk Level 2 businesses that appear to be most 

helpful under the alternative definition.  Restaurant closures and gym closures appear to be helpful 

in two of three specifications, as does limiting gatherings to 10 people. Also consistent with what we 

find in the main tables, some policies, like keeping Risk Level 1 businesses shut, reversing a prior 

reopening, and limiting gatherings to 100 seem counterproductive in two of three specifications (all 

except the near-border analysis in Table A.5).    

While most findings are qualitatively similar, there are a few differences.  The main 

qualitative difference between the findings in the Appendix Tables and those in the main text is that, 

once we consider counties with zero current deaths and define fatality growth as the change in 

deaths per capita, the estimated sign on the stay-at-home coefficients become positive and 

significant.  It may be that people in areas with very low current deaths due to the virus feel 

comfortable substituting into riskier activities when faced with stay-at-home orders. The nursing 

home visitation policy coefficients are also positive, while they are mixed in the main tables.  Closing 

spas appears to be helpful at the 4- to 6- week horizon (it appears to be counterproductive in Tables 

4 and 5), and closing parks and beaches does not appear to impact future increases in deaths per 

capita.  These differences suggest that the effectiveness of some policy tools can depend on the 

prevalence of Covid-19 in the county.  The consistency of the findings for masks and high risk 

business closures suggest that these policy tools can mitigate future deaths, regardless of the current 

prevalence of the virus. 

4. Conclusion 

U.S. policy-makers have the unenviable job of trading off costs and benefits in a situation 

where human lives are at stake.  This paper aims to aid in this decision-making by providing 

evidence that relates a variety of policies to future growth in fatalities due to Covid-19.  We find that 

stay-at-home orders, mandatory mask requirements, beach and park closures, restaurant closures, 
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and high risk (Level 2) business closures are the policies that most consistently predict lower 

4- to 6- week-ahead fatality growth.  These relationships are significant, both statistically and 

in magnitude.  We also find some evidence that employee mask policies, closing gyms, and 

limiting gatherings to 10 people are associated with lower fatality growth.  

At the same time, some policies may have been counterproductive: closing spas, 

closing risk level 1 businesses, reversing openings, and rules that limit gatherings to a 

maximum of up to 100 are all associated with higher future fatality growth in at least two of 

three specifications. State of Emergency orders also fall into this category. However, unlike 

the other policies examined in this paper, emergency declarations do not in and of 

themselves impose any restrictions on the population. In this case we may be seeing 

evidence that policy makers are foreseeing the troubles that lie ahead.  

The regressions produce estimates of the magnitude of policy effectiveness, which 

can be weighed against each policy’s cost.  Lawmakers place their own weights in their policy 

objective functions when balancing various tradeoffs.  However, lower-cost regulations such 

as mask mandates appear to be obvious choices as the world waits for advances in science.   

This is consistent with recommendations in Abaluck et. al (2020); Lyu and Wehby (2020). 

There are some limits to the overall interpretation of this paper’s findings.  For 

example:  there is likely to be unobserved variation in enforcement and adherence to 

policies, some populations may voluntarily limit their activities, and we lack a clean 

experimental setting that would allow us to make unambiguous causal statements.  Still, the 

results in this paper strongly suggest that a small number of targeted interventions are likely 

to curb the loss of life, while other potentially costly measures are less effective.   

This paper does not address other outcomes that are of considerable interest, such as 

hospitalizations (relevant to younger segments of the population than fatalities) and 

positivity rates.13  At the time of this writing, county-level data on these variables is still very 

limited; thus, we leave these analyses to future research. 

  

13 Huber and Langen report that earlier lockdown restrictions led to lower hospitalizations and death rates in 
Germany. 

39
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 2

0-
59



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

References 

Abouk, Rahi and Babak Heydari, 2020. The immediate effect of Covid-19 policies on social 
distancing behavior in the United States. 
 
Abaluck, Jason, Judith Chevalier, Nicholas Christakis, Howard Forma, Edward H. Kaplan, Albert 
Ko, and Sten H. Vermund, 2020. The case for universal cloth mask adoption and policies to increase 
the supply of medical masks for health workers, Covid Economics 5, 147-159. 
 
Askitas, Nikos Konstantinos Tatsiramos, and Bertrand Verheyden, 2020. Lockdown strategies, 
mobility patterns and Covid-19, Covid Economics 23, 263-302. 
 
Atkeson, Andrew, Karen Kopesky and Tao Zha, 2020. Four stylized facts about Covid-19, NBER 
working paper http://www.nber.org/papers/w27719.  
 
Baker Rachel E., Wenchang Yang, Gabriel A. Vecchi, C Jessica E. Metcalf, and Bryan T. Grenfell, 
2020. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic, Science. 2020 
Jul 17;369(6501):315-319.  
 
Carlson, Colin J., Anna C. R Gomez, Shweta Bansal and Satie J. Ryan, 2020. Misconceptions about 
weather and seasonality must not misguide Covid-19 response, Nature Communications 11, 4312. 
 
Chen, M. Keith, Judith A. Chevalier and Elisa L. Long, 2020. Nursing home staff networks and 
Covid-19, NBER Working Paper 27608. 
 
Courtemanche, Charles, Joseph Garuccio, Anh Le, Joshua Pinkston, and Aaron Yelowitz, 2020. 
Strong social distancing measures in the United States reduced the COVID-19 growth rate, Health 
Affairs 39(7), 1237-1246. 
 
Dave, Dhaval., Andrew I. Friedson, Kyutaro Matsuzawa, and Joseph H. Sabia, 2020.  When do 
shelter-in-place orders fight Covid-19 best?  Policy heterogeneity across states and adoption time. 
 
Dave, Dhaval., Andrew I. Friedson, Kyutaro Matsuzawa, Joseph H. Sabia and Safford, Samuel, 
2020.  Were urban cowboys enough to control Covid-19? Local shelter-in-place orders and 
coronavirus case growth. NBER Working Paper 27229. 
 
Hamidi, Shima, Sabouri, Sadegh, and Reid Ewing, 2020, Does density aggravate the covid-19 
pandemic? Journal of the American Planning Association 86(4), 495-509. 
 
Friedson, Andrew I., Drew McNichols, Joseph J. Sabia, and Dhaval Dave, 2020. Did California's 
Shelter-in-Place Order Work? Early Coronavirus-Related Public Health Effects, NBER Working 
Paper No 26920. 
 
Gupta, Sumedha Thuy D. Nguyen, Felipe Lozano Rojas, Shyam Raman, Byungkyu Lee, Ana Bento, 
Kosali I. Simon, Coady Wing, 2020. Tracking public and private responses to the Covid-19 
epidemic:  Evidence from state and local government actions, NBER Working Paper 27027. 
 

40
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 2

0-
59

http://www.nber.org/papers/w27719


COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Howard, Jeremy, Austin Huang, Zhiyuan Li, Zeynep Tufecki, Zdimal Vladimir, Helene-Mari van der 
Westhuizen, Arne von Delfto, Amy Pricen, Lex Fridmand, Lei-Han Tangi, Viola Tang, Gregory L. 
Watson, Christina E. Baxs, Reshama Shaikhq, Frederik Questier, Danny Hernandez, Larry F. Chun, 
Christina M. Ramirezh, and Anne W. Rimoint, April 12, 2020. Face masks against Covid-19: An 
evidence review, PNAS Preprint. 
 
Huber, Martin and Henrika Langen, 2020. The impact of response measures on Covid-19-related 
hospitalization and death rates in Germany and Switzerland. 
 
The Initiative on Global Markets, March 27, 2020. Policy for the Covid-19 Crisis (Survey).  
 
Lewnard, Joseph A., Lewnard,Vincent X. Liu, Michael L. Jackson, Mark A. Schmidt, Britta L. Jewell, 
Jean P. Flores, Chris Jentz, Graham R. Northrup, Ayesha Mahmud, Arthur L. Reingold, Maya 
Petersen, Nicholas P. Jewell, Scott Young, and Jim Bellows, 2020. Incidence, clinical outcomes, and 
transmission dynamics of severe coronavirus disease 2019 in California and Washington: prospective 
cohort study, BMJ; 369:m1923. 
 
Lyu, Wei, and George L. Wehby, Evidence from a natural experiment of state mandates in the U.S., 
Health Affairs 39(8), 1419-1425. 
 
Millett, Gregorio A., Austin T. Jones, David Benkeser, Stefan Baral, Laina Mercer, Chris Beyrer, 
Brian Honermann, Elise Lankiewicz, Leandro Mena, Jeffrey S. Crowley, Jennifer Sherwood, Patrick 
S. Sullivan, 2020. Assessing differential impacts of Covid-19 on black communities, Annals of 
Epidemiology 47, 37-44. 
 
Moore, Jazmyn T. , Jessica N. Ricaldi, Charles E. Rose, Jennifer Fuld, Monica Parise, Gloria J. Kang, 
Anne K. Driscoll, Tina Norris, Nana Wilson,  Gabriel Rainisch, Eduardo Valverde, Vladislav 
Beresovsky,  Christine Agnew Brune,  Nadia L. Oussayef, Dale A. Rose,  Laura E. Adams, Sindoos 
Awel; Julie Villanueva,  Dana Meaney-Delman, Margaret A. Honein, 2020. CDC Morbidity and 
Mortality Weekly Report, August 21, 2020. Disparities in incidence of Covid-19 among 
underrepresented racial/ethnic groups in counties identified as hotspots. 
 
Nguyen, Thuy D., Sumedha Gupta, Martin Andersen, Ana Bento, Kosali Simon and Cody Wing, 
2020, Impacts of state reopening policy on human mobility, NBER Working Paper 27235.  
 
Qian, Hua, Te Mao, Li LIU, Xiohong Zheng, Danting Luo, and Yuguo Li, 2020. Indoor 
transmission of SARS-CoV-2. 
  

41
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 2

0-
59



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 1: County-Level Business Restrictions due to Covid-19 

This table provides descriptions of each of the policy interventions.  Policy variables are dummies 
equal to one if a given policy is effective during week t and zero otherwise. 
 
Policy Intervention Description  
Stay at Home "Stay-at-home order" issued by state or county government. 

 
State of Emergency "State of Emergency" issued by state or county government. 

 
Nursing Home Must Accept 
Positive 

Nursing homes required to accept Covid-19 positive residents. 

No Nursing Home Visitation Nursing home visitors prohibited. 
 

Schools Closed14 Schools closed. 
 

Employee masks Mandatory or recommended face coverings for employees. 
 

Masks recommended in public Recommended face coverings in public. 
 

Mandatory masks in public Mandatory face coverings anywhere.  This includes policies that 
mandate face coverings in all public places, as well as those that 
require masks in a subset of public places. 
 

Beaches and parks closed Beaches or parks completely closed to the public. Closures must 
be total; no pedestrian traffic.  
 

No elective procedures Any elective medical procedures (medical procedures including 
dental and eye) prohibited. 
 

Restaurants closed Restaurants closed with the possible exception of take-out 
services. 
 

Bars closed Bars and nightclubs closed with the possible exception of take-
out services. 
 

Gyms closed Fitness facilities and gyms closed to all indoor activities. 
 

Spas closed Personal care services spas closed to all indoor activities. 
 

  

14 The sample ends on September 1, 2020, just as schools began to reopen.  Most schools in the U.S. were 
closed from sometime in March through the end of August.  Thus, the Schools Closed variable captures 
variation in school closures at the onset of the crisis. 
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Table 1 (cont’d) 

Policy Intervention Description  
Gatherings limited to 10 Gathering ban, where gatherings are limited to 10 people. 

 
No gatherings over 100 Gathering ban, where the limit is less than or equal to 100 

people, and greater than 10. 
 

No gatherings, limit>100 Gathering ban, where the limit exceeds 100 people. 
Risk Level 1 Closed General business closure policy in effect.  Business risk levels are 

defined in accordance with the reopening phases set by counties.  
When a county adopts more than 4 phases, we group additional 
phases according to their proximity to one another in time.  If all 
businesses are open, Risk Level 1, Risk Level 2, Risk Level 3, 
Risk Level 4 dummies all equal zero.  When a general business 
closure policy is in effect, Risk Level 1, Risk Level 2, Risk Level 
3, Risk Level 4 dummies all equal one. 
 

Risk Level 2 Closed Phase 1 reopening policy in effect, where all but low and 
medium-risk businesses remained closed.  When a county is in 
Phase 1, the Risk Level 1 dummy equals zero and the dummies 
for Risk Levels 2, 3, and 4 all equal one. 
 

Risk Level 3 Closed Phase 2 reopening policy in effect, where higher and highest risk 
businesses remained closed.  When a county is in Phase 2, the 
Risk Level 1 and 2 dummies equals zero and the dummies for 
Risk Levels 3 and 4 equal one. 
 

Risk Level 4 Closed Phase 3 reopening policy in effect, all but the highest risk 
businesses remain closed.   When a county is in Phase 3, the Risk 
Level 1, 2, and 3 dummies equals zero and the dummy for Risk 
Levels 4 equals one. 
 

Business re-openings reversed Phased business reopening reversed 
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Table 2 

This table summarizes the fatality, policy, demographic and weather variables.  Each observation is a 
county-week between March 1, 2020 and September 1, 2020.  Fatality variables are in Panel A.  
Deaths Per Capita is defined as total deaths per 10,000 population as of week t.  Weekly fatality 
growth (Growtht) is the natural log of: total deaths as of week t, divided by the total deaths as of week 
t-1.  Only counties with at least one death as of week t-6 are included in the sample.  Weekly change 
in deaths per capita is the first-difference of Deaths Per Capita from week t-1 to week t.  Panel B 
shows the policy variables.  All policy variables are dummies equal to one if a given policy is 
effective during week t.  Policies are defined in Table 1.  Demographics and other controls are in 
Panel C. Black, Hispanic, Asian, Native American and Other, are the fraction of the county’s population 
that are White, Black, Hispanic, Asian, Native American and other races/ethnicities (respectively). 
Age65plus and Age85plus are the fractions of the population that are over the age of 65 and over age 
85.  Nursing Home Population is the fraction of the population living in in skilled nursing facilities.  Per 
Capital Income is the average per capita income in the county.  Diabetes, Obesity and Smokers are the 
fractions of the population with diabetes, are obese or who smoke, respectively.  Population density is 
defined as total population divided by the land square miles of the county.  Housing Density is defined 
as the total number of homes in the county divided by residential land area.  HotHumidWeekdays and 
HotHumidWeekends are the percentage of weekdays and weekend days (respectively) in which the 
average temperature is above 80 degrees and the dew point is above 60.  ColdWeekdays and 
ColdWeekends are percentage of weekdays and weekend days in which the average high temperature is 
below 60 degrees. AverageTemperature, the average daily temperature for the week. Time Since First Case 
is the natural log of the number of days since the first reported case of Covid-19 in a county and t is 
the natural log of the number of days since March 1, 2020. 

 
Panel A.  Fatalities 

Variable N Mean Median 25th Pctl 75th Pctl Std Dev 
Deaths per capita 25,459 3.354 1.776 0.725 4.204 4.338 
Growtht 25,459 0.085 0.000 0.000 0.105 0.166 
Weekly change in deaths 
per 10,000 

25,459 0.212 0.000 0.000 0.241 0.464 
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Panel B.  Policies 
Variable N Mean 25th Pctl Median 75th Pctl Std Dev 

Stay at Home 25,459 0.076 0.000 0.000 0.000 0.265 
State of Emergency 25,459 0.991 1.000 1.000 1.000 0.097 
Nursing Home  Accept 
Pos. 

25,459 
0.204 0.000 0.000 0.000 0.403 

No Nursing Home Visit 25,459 0.690 0.000 1.000 1.000 0.462 
Schools Closed 25,459 0.992 1.000 1.000 1.000 0.088 
Employee Masks 25,459 0.816 1.000 1.000 1.000 0.388 
Masks Recommended 25,459 0.930 1.000 1.000 1.000 0.255 
Mandatory Masks 25,459 0.489 0.000 0.000 1.000 0.500 
Parks Closed 25,459 0.032 0.000 0.000 0.000 0.175 
No Elective Procedures 25,459 0.053 0.000 0.000 0.000 0.225 
Restaurants Closed 25,459 0.113 0.000 0.000 0.000 0.317 
Bars Closed 25,459 0.354 0.000 0.000 1.000 0.478 
Gyms Closed 25,459 0.192 0.000 0.000 0.000 0.394 
Spas Closed 25,459 0.147 0.000 0.000 0.000 0.354 
Gatherings Limited to 10 25,459 0.462 0.000 0.000 1.000 0.499 
No gatherings over 100 25,459 0.419 0.000 0.000 1.000 0.493 
Gathering limit over 100 25,459 0.082 0.000 0.000 0.000 0.275 
Risk Level 1 Closed 25,459 0.024 0.000 0.000 0.000 0.154 
Risk Level 2 Closed 25,459 0.139 0.000 0.000 0.000 0.346 
Risk Level 3 Closed 25,459 0.399 0.000 0.000 1.000 0.490 
Risk Level 4 Closed 25,459 0.630 0.000 1.000 1.000 0.483 
Bus. Openings Reversed 25,459 0.057 0.000 0.000 0.000 0.233 
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Panel C:  Demographic and Other Controls 
Black 25,459 12.900  1.500  5.500  18.300  16.418  
Hispanic 25,459 9.781  2.500  5.000  10.900  12.948  
Asian 25,459 1.998  0.500  0.900  2.100  3.404  
Native American 25,459 1.232  0.200  0.300  0.600  4.930  
Other 25,459 17.065  14.500  16.800  19.100  4.111  
Age65plus 25,459 2.038  1.600  1.900  2.400  0.710  
Age85plus 25,459 2.338  0.500  1.200  2.600  3.577  
Nursing Home 
Population 

25,459 
0.608  0.352  0.551  0.784  0.378  

Per Capita Income 24,952 45,438  37,363  42,483  49,863  14,365  
Diabetes 25,459 12.172  9.400  11.600  14.400  3.952  
Obesity 25,459 32.801  29.300  33.300  36.600  5.619  
Smokers 25,459 17.401  15.059  17.335  19.591  3.341  
Population Density 25,459 488.564  39.756  93.488  289.373  2,558.500  
Housing Density 25,459 209.157  19.160  42.514  123.633  1,214.750  
Average Temperature 25,459 7.275  3.666  7.034  10.129  4.639  
Hot Humid Weekdays 25,459 0.180  0.000  0.000  0.000  0.385  
Hot Humid Weekends 25,459 0.241  0.000  0.000  0.000  0.427  
Cold Weekday 25,459 0.057  0.000  0.000  0.000  0.190  
Cold Weekend 25,459 0.059  0.000  0.000  0.000  0.221  
Time Since First Case 25,459 4.678  4.477  4.727  4.927  0.297  
t 25,459 4.856  4.682  4.913  5.056  0.253  
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Table 3 
This table shows results of regressions in which we regress one-week-ahead death growth rates on: 
current and lagged cumulative deaths per 10,000 population in the county (Deaths Per Capita); lagged 
one-week fatality growth rates; the interaction between current per capita deaths and the lagged one-
week growth rates; and time controls.  Growth(t-x) denotes the x-week lagged growth rate in deaths.  
Deaths Per Capita(t-x) denotes the x-week lagged cumulative deaths per 10,000 population in the 
county.  Int(t-x) denotes Deaths Per Capita*Growth(t-x). Time Since First Covid Case is the number of 
days since the first reported case of Covid-19 in a county and t is the number of days since March 1, 
2020.  The demographic variables are defined in Table 2.  Each observation is a county-week.  All 
standard errors (in parentheses) are clustered at the county level. *** denotes significance at the 1% 
level; ** denotes significance at the 5% level; * denotes significance at the 10% level. 
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 (1) (2) (3) (4) 
VARIABLES Growtht+1  S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 

Deaths Per Capita 0.0293*** 0.0088 0.0181* 0.0108 -0.0010 0.0057 0.0002 0.0046 
Growtht-1 0.1586*** 0.0121 0.1368*** 0.0121 0.0571*** 0.0086 0.0142* 0.0080 
Growtht-2 0.1110*** 0.0115 0.0538*** 0.0094 0.0164** 0.0076 -0.0073 0.0068 
Growtht-3 0.0391*** 0.0088 0.0277*** 0.0077 0.0010 0.0078 -0.0062 0.0065 
Growtht-4 0.0234*** 0.0071 -0.0032 0.0062 -0.0140** 0.0060 -0.0164*** 0.0057 
Growtht-5 -0.0033 0.0055 -0.0023 0.0058 -0.0134*** 0.0047 -0.0182*** 0.0054 
Growtht-6 0.0006 0.0045 -0.0117*** 0.0042 -0.0204*** 0.0039 -0.0169*** 0.0038 
Deaths Per Capt-1 -0.0300** 0.0124 -0.0206* 0.0116 -0.0062 0.0067 -0.0198*** 0.0057 
Deaths Per Capt-2 -0.0006 0.0094 -0.0124* 0.0065 -0.0016 0.0051 0.0085 0.0053 
Deaths Per Capt-3 -0.0158*** 0.0052 0.0054 0.0043 -0.0064* 0.0035 0.0008 0.0036 
Deaths Per Capt-4 0.0080** 0.0040 -0.0002 0.0030 0.0051* 0.0029 -0.0026 0.0031 
Deaths Per Capt-5 0.0057** 0.0028 0.0040 0.0028 0.0029 0.0024 0.0047** 0.0023 
Deaths Per Capt-6 -0.0029* 0.0016 -0.0012 0.0017 -0.0002 0.0016 0.0008 0.0016 
Intt-1 -0.0343*** 0.0074 -0.0287*** 0.0090 -0.0158*** 0.0046 -0.0131*** 0.0036 
Intt-2 -0.0094* 0.0054 -0.0085** 0.0040 -0.0038 0.0032 0.0049 0.0038 
Intt-3 -0.0052** 0.0024 0.0002 0.0022 -0.0011 0.0019 0.0008 0.0016 
Intt-4 0.0019 0.0017 0.0018 0.0012 0.0034*** 0.0012 0.0015 0.0011 
Intt-5 0.0033*** 0.0010 0.0015 0.0010 0.0030*** 0.0008 0.0035*** 0.0008 
Intt-6 0.0006 0.0007 0.0022*** 0.0007 0.0022*** 0.0008 0.0016** 0.0007 
Days Since First Case 0.0294** 0.0128 0.0429*** 0.0140 0.0377*** 0.0136 0.0162 0.0157 
Days Since Mar. 1 -0.0048 0.0156 -0.0381** 0.0168 -0.0586*** 0.0166 -0.0605*** 0.0195 
Avg Temperature 0.0019*** 0.0003 0.0027*** 0.0004 0.0026*** 0.0003 0.0026*** 0.0003 
Hot Humid Weekday 0.0189*** 0.0040 0.0192*** 0.0038 0.0157*** 0.0037 0.0056 0.0035 
Hot Humid Weekend 0.0007 0.0034 -0.0010 0.0034 0.0019 0.0031 -0.0065** 0.0031 
Cold Weekdays 0.0102 0.0081 0.0058 0.0092 -0.0109 0.0081 -0.0335*** 0.0073 
Cold Weekend -0.0183*** 0.0055 -0.0272*** 0.0059 -0.0336*** 0.0059 -0.0358*** 0.0050 
Age 65+ 0.0002 0.0004 0.0003 0.0004 0.0001 0.0005 0.0001 0.0005 
Age 85+ -0.0008 0.0025 -0.0015 0.0028 -0.0014 0.0029 -0.0003 0.0030 
Asian 0.0002 0.0003 0.0002 0.0003 0.0002 0.0004 0.0002 0.0004 
Black 0.0007*** 0.0001 0.0007*** 0.0001 0.0007*** 0.0001 0.0006*** 0.0001 
Hispanic 0.0007*** 0.0002 0.0007*** 0.0002 0.0009*** 0.0002 0.0009*** 0.0002 
Native Americans 0.0007*** 0.0003 0.0007** 0.0003 0.0003 0.0003 0.0003 0.0003 
Other 0.0007 0.0005 0.0005 0.0006 0.0004 0.0006 -0.0002 0.0005 
Per Capita Income -0.0000*** 0.0000 -0.0000*** 0.0000 -0.0000*** 0.0000 -0.0000*** 0.0000 
Population Density 0.0000*** 0.0000 0.0000*** 0.0000 0.0000*** 0.0000 0.0000*** 0.0000 
Diabetes 0.0015*** 0.0004 0.0018*** 0.0004 0.0021*** 0.0004 0.0019*** 0.0004 
Obesity -0.0004 0.0003 -0.0005* 0.0003 -0.0007** 0.0003 -0.0005 0.0003 
Smokers 0.0005 0.0004 0.0006 0.0005 0.0010* 0.0005 0.0010* 0.0005 
Housing Density -0.0000** 0.0000 -0.0000** 0.0000 -0.0000** 0.0000 -0.0000*** 0.0000 
Nursing Home Pop. 0.0123*** 0.0039 0.0155*** 0.0044 0.0134*** 0.0048 0.0157*** 0.0048 
Constant -0.0863*** 0.0304 0.0189 0.0316 0.1589*** 0.0329 0.2683*** 0.0355 
Observations 24,952  24,952  24,950  24,950  
Adjusted R-squared 0.1021  0.0863  0.0749  0.0684  
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Table 4.  Policy interventions and t-week-ahead weekly fatality growth 
This table shows results of regressions in which we regress x-week-ahead weekly death growth rates Growth(t+x) on policy dummies and 
county demographic variables.  All of the variables are defined in Tables 1 and 2.  As in Table 3, we also control for current and lagged 
cumulative deaths per 10,000 population in the county; lagged one-week fatality growth rates; the interaction between current per capita 
deaths and the lagged one-week growth rates; time controls; and demographics controls.  These controls are estimated but not reported in 
the table.  Each observation is a county-week.  All standard errors (in parentheses) are clustered at the county level. *** denotes 
significance at the 1% level; ** denotes significance at the 5% level; * denotes significance at the 10% level. 
 (1) (2) (3) (4) 
VARIABLES Growtht+1 S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 
Stay at Home 0.000 0.004 0.003 0.005 0.004 0.005 -0.010** 0.004 
State of Emergency 0.022*** 0.008 0.025*** 0.010 0.024** 0.010 0.027*** 0.011 
Nursing Accept Pos. -0.000 0.003 0.001 0.003 0.002 0.003 -0.001 0.003 
No Nursing Visits 0.015*** 0.002 0.012*** 0.003 0.003 0.003 0.003 0.003 
Schools Closed -0.015 0.012 -0.019 0.014 -0.019 0.016 -0.008 0.017 
Employees Masks 0.007** 0.003 0.006* 0.004 -0.015*** 0.004 -0.017*** 0.004 
Masks Recommended 0.002 0.005 -0.000 0.005 -0.005 0.005 0.000 0.005 
Mandatory Masks -0.005* 0.002 -0.007*** 0.003 -0.010*** 0.003 -0.010*** 0.003 
Beaches or Parks Closed -0.004 0.005 -0.012*** 0.005 -0.013*** 0.004 -0.010** 0.005 
No Elective Procedures 0.022*** 0.008 0.010 0.008 -0.012* 0.007 0.006 0.006 
Restaurants Closed 0.000 0.004 -0.002 0.005 -0.010** 0.005 -0.011** 0.004 
Bars Closed 0.013*** 0.003 0.010*** 0.003 0.007** 0.003 -0.007** 0.003 
Gyms Closed -0.007** 0.003 -0.013*** 0.003 -0.016*** 0.003 -0.013*** 0.004 
Spas Closed 0.008** 0.003 0.011*** 0.004 0.016*** 0.004 0.019*** 0.004 
Gatherings Limited to 10 -0.015*** 0.006 -0.021*** 0.007 -0.014** 0.007 -0.000 0.006 
No Gatherings Over 100 -0.013** 0.006 -0.015** 0.007 0.005 0.007 0.011* 0.006 
No Gatherings Limit>100 -0.018*** 0.007 -0.025*** 0.007 -0.008 0.007 -0.003 0.007 
Risk Level 1 Closed 0.008 0.006 0.004 0.007 0.006 0.005 0.011** 0.005 
Risk Level 2 Closed 0.007** 0.003 0.006* 0.003 0.005 0.004 -0.014*** 0.003 
Risk Level 3 Closed 0.001 0.003 0.005 0.003 -0.003 0.003 -0.002 0.003 
Risk Level 4 Closed -0.010*** 0.003 -0.009*** 0.003 -0.003 0.003 0.000 0.003 
Re-openings Reversed 0.028*** 0.007 0.035*** 0.008 0.041*** 0.010 -0.004 0.007 
Constant -0.141*** 0.042 -0.012 0.044 0.176*** 0.047 0.250*** 0.047 
Observations 24,952  24,952  24,950  24,950  
Adjusted R-squared 0.108  0.093  0.084  0.080  
Controls YES  YES  YES  YES  
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Table 5.  Policy interventions and t-week-ahead weekly fatality growth in less populous counties. 
This table shows results of regressions in which we regress x-week-ahead weekly death growth rates Growth(t+x) on policy dummies.  As in 
Table 3, we also control for current and lagged cumulative deaths per 10,000 population in the county; lagged one-week fatality growth 
rates; the interaction between current per capita deaths and the lagged one-week growth rates; time controls; and demographics controls.  
These controls are estimated but not reported in the table.  The specification is identical to that in Table 3 except we remove the 5 most 
populous counties in each state.  All standard errors (in parentheses) are clustered at the county level. *** denotes significance at the 1% 
level; ** denotes significance at the 5% level; * denotes significance at the 10% level. 
 (1) (2) (3) (4) 
VARIABLES Growtht+1 S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 
Stay at Home -0.004 0.005 0.001 0.006 0.001 0.006 -0.012** 0.005 
State of Emergency 0.019* 0.010 0.022* 0.012 0.020 0.013 0.023* 0.013 
Nursing Accept Pos. -0.001 0.003 0.000 0.003 0.003 0.004 0.001 0.003 
No Nursing Visits 0.017*** 0.003 0.013*** 0.003 0.003 0.003 0.003 0.003 
Schools Closed -0.018 0.017 -0.017 0.019 -0.003 0.017 0.016 0.016 
Employees Masks 0.009** 0.004 0.009** 0.004 -0.015*** 0.004 -0.017*** 0.004 
Masks Recommended 0.002 0.006 -0.001 0.006 -0.009 0.007 -0.003 0.006 
Mandatory Masks -0.006** 0.003 -0.010*** 0.003 -0.013*** 0.003 -0.012*** 0.003 
Beaches or Parks Closed -0.009 0.006 -0.016*** 0.006 -0.014** 0.006 -0.011* 0.006 
No Elective Procedures 0.031*** 0.010 0.015 0.009 -0.013* 0.008 0.005 0.007 
Restaurants Closed 0.004 0.005 0.001 0.005 -0.009 0.006 -0.011** 0.005 
Bars Closed 0.015*** 0.003 0.010*** 0.003 0.008** 0.004 -0.008** 0.004 
Gyms Closed -0.006* 0.004 -0.012*** 0.004 -0.013*** 0.004 -0.010** 0.004 
Spas Closed 0.009** 0.004 0.013*** 0.004 0.019*** 0.004 0.022*** 0.005 
Gatherings Limited to 10 -0.014** 0.007 -0.017** 0.007 -0.009 0.007 0.006 0.007 
No Gatherings Over 100 -0.013* 0.007 -0.012 0.007 0.011 0.008 0.017** 0.007 
No Gatherings Limit>100 -0.018** 0.007 -0.023*** 0.008 -0.003 0.008 0.002 0.008 
Risk Level 1 Closed 0.014* 0.008 0.010 0.009 0.009 0.006 0.011* 0.006 
Risk Level 2 Closed 0.008** 0.004 0.006 0.004 0.005 0.004 -0.016*** 0.004 
Risk Level 3 Closed -0.002 0.003 0.002 0.003 -0.006* 0.004 -0.005 0.004 
Risk Level 4 Closed -0.009*** 0.003 -0.009** 0.003 -0.001 0.004 0.002 0.004 
Re-openings Reversed 0.027*** 0.008 0.035*** 0.008 0.043*** 0.011 -0.006 0.007 
Constant -0.183*** 0.049 -0.043 0.050 0.133*** 0.050 0.206*** 0.051 
Observations 21,347  21,347  21,347  21,347  
Adjusted R-squared 0.100  0.087  0.082  0.077  
Control YES  YES  YES  YES  
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Table 6.  Policy variation across the state border:  Interventions and t-week-ahead weekly fatality growth (100 Miles) 
This table shows results of regressions in which we regress x-week-ahead weekly death growth rates Growth(t+x) on policy dummies and 
county demographic variables.  The specification is identical to that in Tables 4 and 5 we include in the sample only those counties that are 
within 100 miles of another county in a different state and with which they do not share a border (“nearby county”) and we add the nearby 
county policies to the specification.  Nearby county policies are estimated but not reported in the table.    All standard errors (in 
parentheses) are clustered at the county level. *** denotes significance at the 1% level; ** denotes significance at the 5% level; * denotes 
significance at the 10% level. 
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 (1) (2) (3) (4) 
VARIABLES Growtht+1 S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 
Stay at Home -0.017* 0.009 -0.014 0.009 -0.023*** 0.009 -0.029*** 0.008 
State of Emergency 0.017* 0.010 0.022** 0.011 0.028** 0.011 0.032*** 0.012 
Nursing Accept Pos. -0.006 0.005 -0.006 0.005 -0.006 0.005 -0.009* 0.005 
No Nursing Visits 0.012** 0.005 0.005 0.005 -0.008 0.005 -0.013** 0.005 
Schools Closed -0.011 0.026 0.026 0.016 0.030** 0.012 0.015 0.010 
Employees Masks 0.011* 0.006 0.014** 0.007 0.003 0.008 -0.005 0.008 
Masks Recommended -0.016* 0.010 -0.016 0.010 -0.001 0.009 -0.008 0.010 
Mandatory Masks -0.010** 0.005 -0.014*** 0.005 -0.013** 0.005 -0.014*** 0.005 
Beaches or Parks Closed -0.019*** 0.007 -0.025*** 0.007 -0.020*** 0.007 -0.019*** 0.007 
No Elective Procedures 0.027 0.021 0.033 0.025 0.011 0.011 0.019* 0.011 
Restaurants Closed 0.007 0.008 0.007 0.009 -0.005 0.007 -0.014** 0.007 
Bars Closed 0.015*** 0.006 0.012** 0.006 0.010* 0.006 -0.007 0.006 
Gyms Closed -0.003 0.005 -0.009 0.006 -0.006 0.006 -0.001 0.006 
Spas Closed 0.005 0.006 0.005 0.007 0.010 0.007 0.010 0.007 
Gatherings Limited to 10 -0.027** 0.012 -0.030** 0.013 -0.027** 0.012 -0.012 0.012 
No Gatherings Over 100 -0.032*** 0.012 -0.035*** 0.013 -0.021* 0.012 0.001 0.012 
No Gatherings Limit>100 -0.038*** 0.013 -0.045*** 0.015 -0.032** 0.013 -0.024* 0.013 
Risk Level 1 Closed -0.003 0.012 -0.007 0.015 0.001 0.012 0.016* 0.009 
Risk Level 2 Closed 0.016** 0.006 0.014** 0.007 0.009 0.007 -0.012* 0.006 
Risk Level 3 Closed -0.009* 0.005 -0.002 0.005 -0.006 0.006 0.001 0.006 
Risk Level 4 Closed -0.003 0.005 -0.004 0.006 -0.001 0.006 0.006 0.006 
Re-openings Reversed 0.015 0.012 0.022 0.014 0.058*** 0.020 0.055*** 0.015 
Constant -0.094 0.096 -0.251** 0.102 -0.141 0.107 -0.083 0.119 
Observations 9,220  9,220  9,220  9,220  
Adjusted R-squared 0.087  0.075  0.073  0.078  
Control YES  YES  YES  YES  
Border County Policies YES  YES  YES  YES  
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APPENDIX TABLES 
Appendix Table A.5 summarizes the findings in Tables 4 through 6 of the main text. Appendix Tables A.2 through 
A.5 are identical to Tables 3 through 6 of the main text except we replace the weekly growth rate variable with the 
first difference in deaths per capita.  We also remove the weekly lagged levels of deaths per capita and the 
interactions of growth with deaths per capita as controls variables.   
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Table A.1  Summary of Coefficients from Tables 4, 5 and 6 (4- and 6- Week Horizons) 

The “-” and “+”  indicate negative and positive estimated coefficients for the 4- and 6- week horizons 
(respectively)where at least one of the coefficients is statistically significant.  * indicates a change in significance 
or sign as the horizon goes from shorter (1- to 2- weeks) to longer.  The “Overall” column includes an icon if 
at least two tables have the same icon and the third table does not have a countervailing icon. For example, 
Employee Masks have a −* in the “Overall” columns since two tables have a −* and the third does not have 
+. The Overall column is blank for No Nursing Visits since only one table has a −*.  

 Table 4 Table 5 Table 6 Overall 
Stay at Home −* −* − −* 
State of Emergency + + + + 

Nursing Accept Pos.   −*  
No Nursing Visits   −*  

Schools Closed   +*  
Employees Masks −* −*  −* 

Masks Recommended  −*   

Mandatory Masks − − − − 

Beaches or Parks Closed − − − − 
No Elective Procedures −* −* +*  

Restaurants Closed −* −* −* −* 
Bars Closed   +  

Gyms Closed − −  − 
Spas Closed + +  + 

Gatherings Limited to 10 −  − − 

No Gatherings Over 100 +* +* −  

No Gatherings Limit>100   −  
Risk Level 1 Closed +* + +* +* 

Risk Level 2 Closed −* −* −* −* 
Risk Level 3 Closed  −*   

Risk Level 4 Closed     
Re-openings Reversed + + +* + 
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Table A.2 
This table shows results of regressions in which we regress one-week-ahead change in deaths per capita rates on: 
current cumulative deaths per 10,000 population in the county (Deaths Per Capita); lagged changes in deaths per 
capita, and time controls.  Growth(t-x) denotes the x-week lagged weekly change in deaths per 10,000 population in 
deaths.  Time Since First Covid Case is the number of days since the first reported case of Covid-19 in a county and t is 
the number of days since March 1, 2020.  The demographic variables are defined in Table 2.  Each observation is a 
county-week.  All standard errors (in parentheses) are clustered at the county level. *** denotes significance at the 
1% level; ** denotes significance at the 5% level; * denotes significance at the 10% level. 

(1) (2) (3) (4) 
VARIABLES Growtht+1  S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 

Deaths Per Capita -0.0045*** 0.0014 -0.0067*** 0.0016 -0.0081*** 0.0018 -0.0080*** 0.0017
Growtht-1 0.3015*** 0.0204 0.2710*** 0.0152 0.1456*** 0.0132 0.0707*** 0.0128 
Growtht-2 0.1972*** 0.0155 0.1129*** 0.0138 0.0522*** 0.0102 0.0215* 0.0111 
Growtht-3 0.0586*** 0.0141 0.0417** 0.0183 0.0222 0.0141 0.0568* 0.0344 
Growtht-4 0.0072 0.0105 -0.0014 0.0096 -0.0129 0.0130 -0.0061 0.0129 
Growtht-5 -0.0049 0.0095 -0.0037 0.0121 0.0590 0.0437 -0.0146 0.0091 
Growtht-6 -0.0041 0.0128 0.0011 0.0093 -0.0127 0.0172 0.0141 0.0097 
Days Since First Case 0.0212*** 0.0039 0.0220*** 0.0059 0.0263*** 0.0057 0.0161** 0.0074 
Days Since March 1 -0.0036 0.0095 -0.0221* 0.0125 -0.0224* 0.0130 0.0106 0.0146 
Avg Temperature 0.0027*** 0.0004 0.0044*** 0.0005 0.0060*** 0.0005 0.0069*** 0.0005 
HotHumid Weekday 0.0541*** 0.0100 0.0802*** 0.0118 0.0952*** 0.0126 0.0773*** 0.0137 
HotHumid Weekend -0.0054 0.0080 0.0067 0.0086 0.0166* 0.0094 0.0151 0.0105 
Cold Weekdays 0.0170* 0.0094 -0.0007 0.0106 -0.0278** 0.0117 -0.0654*** 0.0114
Cold Weekend -0.0107* 0.0064 -0.0301*** 0.0062 -0.0420*** 0.0072 -0.0476*** 0.0070
Age 65+ 0.0010* 0.0005 0.0010 0.0007 0.0020** 0.0009 0.0022** 0.0010 
Age 85+ -0.0030 0.0039 -0.0030 0.0051 -0.0089 0.0061 -0.0093 0.0067 
Asian -0.0007 0.0008 -0.0008 0.0011 -0.0004 0.0011 -0.0005 0.0010 
Black 0.0036*** 0.0003 0.0044*** 0.0003 0.0056*** 0.0004 0.0058*** 0.0004 
Hispanic 0.0018*** 0.0003 0.0023*** 0.0004 0.0031*** 0.0005 0.0038*** 0.0006 
Native Americans 0.0011* 0.0006 0.0015** 0.0008 0.0022** 0.0010 0.0026** 0.0011 
Other 0.0012 0.0012 0.0013 0.0014 0.0011 0.0018 -0.0001 0.0020 
Per Capita Income 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 
Population Density 0.0001*** 0.0000 0.0001*** 0.0000 0.0000*** 0.0000 0.0000 0.0000 
Diabetes 0.0020*** 0.0006 0.0024*** 0.0007 0.0032*** 0.0009 0.0038*** 0.0011 
Obesity -0.0000 0.0004 -0.0001 0.0006 -0.0001 0.0007 -0.0004 0.0008 
Smokers 0.0016** 0.0008 0.0021** 0.0010 0.0029** 0.0013 0.0036*** 0.0013 
Housing Density -0.0001*** 0.0000 -0.0001*** 0.0000 -0.0001*** 0.0000 -0.0000 0.0000 
Nursing Home Pop. 0.0257*** 0.0052 0.0344*** 0.0068 0.0522*** 0.0092 0.0664*** 0.0105 
Constant -0.1629*** 0.0437 -0.1032* 0.0554 -0.1405** 0.0653 -0.2423*** 0.0688
Observations 64,348 64,348 64,348 64,348 
Adjusted R-squared 0.2391 0.1713 0.1015 0.0743 
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Table A.3.  Policy interventions and t-week-ahead weekly fatality growth 
This table shows results of regressions in which we regress one-week-ahead change in deaths 10,000 population on policy variables defined 
in Table 1.  As in Table A.2, we also include controls for: current cumulative deaths per 10,000 population in the county (Deaths Per Capita); 
lagged changes in deaths per capita, time controls, and demographics controls.  These controls are estimated but not reported in the table.  
Each observation is a county-week.  All standard errors (in parentheses) are clustered at the county level. *** denotes significance at the 1% 
level; ** denotes significance at the 5% level; * denotes significance at the 10% level.  
 
 (1) (2) (3) (4) 
VARIABLES Growtht+1 S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 
Stay at Home 0.031*** 0.006 0.043*** 0.007 0.050*** 0.009 0.031*** 0.008 
State of Emergency 0.019* 0.011 0.016 0.014 0.031* 0.016 0.062*** 0.018 
Nursing Accept Pos. 0.032*** 0.007 0.033*** 0.008 0.037*** 0.009 0.036*** 0.009 
No Nursing Visits 0.012*** 0.004 0.005 0.006 -0.001 0.008 0.015** 0.007 
Schools Closed -0.017* 0.009 -0.022* 0.012 -0.044* 0.025 -0.035 0.025 
Employees Masks 0.003 0.005 0.006 0.006 -0.015** 0.007 -0.013* 0.008 
Masks Recommended -0.011* 0.006 -0.013* 0.007 -0.014 0.008 -0.009 0.008 
Mandatory Masks -0.001 0.005 -0.005 0.006 -0.021*** 0.007 -0.030*** 0.007 
Beaches or Parks Closed -0.023*** 0.006 -0.025*** 0.008 -0.012 0.009 -0.001 0.009 
No Elective Procedures 0.030*** 0.007 0.043*** 0.009 0.032*** 0.010 0.032*** 0.009 
Restaurants Closed -0.021*** 0.008 -0.024** 0.010 -0.017* 0.009 -0.014 0.009 
Bars Closed 0.015*** 0.005 0.012** 0.006 0.006 0.008 -0.024*** 0.009 
Gyms Closed -0.006 0.006 -0.019*** 0.007 -0.033*** 0.008 -0.033*** 0.008 
Spas Closed -0.012** 0.005 -0.010 0.006 -0.023*** 0.008 -0.009 0.008 
Gatherings Limited to 10 -0.003 0.007 -0.001 0.009 -0.017 0.012 -0.028* 0.015 
No Gatherings Over 100 0.009 0.007 0.028*** 0.010 0.059*** 0.013 0.046*** 0.016 
No Gatherings Limit>100 0.012 0.010 0.015 0.014 0.017 0.016 -0.006 0.020 
Risk Level 1 Closed 0.045*** 0.007 0.039*** 0.009 0.044*** 0.009 0.047*** 0.008 
Risk Level 2 Closed 0.018*** 0.006 0.015** 0.007 0.011 0.007 -0.012 0.008 
Risk Level 3 Closed 0.001 0.005 0.006 0.006 -0.008 0.007 -0.018** 0.009 
Risk Level 4 Closed -0.033*** 0.005 -0.032*** 0.006 -0.032*** 0.008 -0.032*** 0.009 
Re-openings Reversed 0.070*** 0.014 0.098*** 0.018 0.156*** 0.022 0.064*** 0.022 
Constant -0.270*** 0.055 -0.154** 0.069 -0.086 0.081 -0.163** 0.081 
Observations 64,348  64,348  64,348  64,348  
Adjusted R-squared 0.243  0.177  0.111  0.083  
Control YES  YES  YES  YES  
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Table A.4.  Policy interventions and t-week-ahead weekly fatality growth in less populous counties. 
This table shows results of regressions in which we regress one-week-ahead change in deaths 10,000 population on policy variables defined 
in Table 1.  The specification is identical to that in Table A.3 except we remove the 5 most populous counties in each state.  All standard 
errors (in parentheses) are clustered at the county level. *** denotes significance at the 1% level; ** denotes significance at the 5% level; * 
denotes significance at the 10% level. 
 
 (1) (2) (3) (4) 
VARIABLES Growtht+1 S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 
Stay at Home 0.025*** 0.006 0.035*** 0.008 0.040*** 0.009 0.025*** 0.009 
State of Emergency 0.020 0.012 0.016 0.017 0.030 0.019 0.064*** 0.021 
Nursing Accept Pos. 0.020*** 0.007 0.019** 0.008 0.029*** 0.010 0.033*** 0.010 
No Nursing Visits 0.013*** 0.005 0.005 0.007 -0.001 0.008 0.017** 0.008 
Schools Closed -0.019* 0.011 -0.024* 0.014 -0.050* 0.029 -0.040 0.029 
Employees Masks 0.004 0.005 0.009 0.006 -0.014* 0.008 -0.014* 0.008 
Masks Recommended -0.016*** 0.006 -0.013* 0.008 -0.011 0.009 -0.006 0.009 
Mandatory Masks 0.001 0.005 -0.003 0.006 -0.020*** 0.008 -0.030*** 0.008 
Beaches or Parks Closed -0.027*** 0.007 -0.026*** 0.009 -0.013 0.010 -0.002 0.009 
No Elective Procedures 0.034*** 0.008 0.051*** 0.010 0.041*** 0.010 0.040*** 0.009 
Restaurants Closed -0.009 0.008 -0.006 0.010 -0.003 0.010 -0.003 0.010 
Bars Closed 0.016*** 0.005 0.013* 0.007 0.008 0.009 -0.024** 0.010 
Gyms Closed -0.005 0.006 -0.015** 0.007 -0.028*** 0.009 -0.029*** 0.009 
Spas Closed -0.013** 0.006 -0.012* 0.007 -0.023*** 0.008 -0.010 0.009 
Gatherings Limited to 10 -0.005 0.008 -0.003 0.010 -0.018 0.013 -0.030* 0.016 
No Gatherings Over 100 0.008 0.008 0.027*** 0.010 0.060*** 0.014 0.048*** 0.017 
No Gatherings Limit>100 0.011 0.011 0.017 0.015 0.020 0.017 -0.005 0.021 
Risk Level 1 Closed 0.040*** 0.008 0.033*** 0.009 0.042*** 0.010 0.045*** 0.009 
Risk Level 2 Closed 0.022*** 0.007 0.020*** 0.008 0.014* 0.008 -0.009 0.009 
Risk Level 3 Closed -0.001 0.005 0.004 0.006 -0.012 0.008 -0.020** 0.009 
Risk Level 4 Closed -0.033*** 0.005 -0.034*** 0.007 -0.033*** 0.008 -0.032*** 0.010 
Re-openings Reversed 0.071*** 0.015 0.096*** 0.019 0.154*** 0.024 0.061*** 0.023 
Constant -0.303*** 0.060 -0.206*** 0.075 -0.150* 0.089 -0.222** 0.090 
Observations 58,749  58,749  58,749  58,749  
Adjusted R-squared 0.219  0.161  0.108  0.083  
Control YES  YES  YES  YES  
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Table A.5.  Policy variation across the state border:  Interventions and t-week-ahead weekly fatality growth (100 miles) 
This table shows results of regressions in which we regress one-week-ahead change in deaths 10,000 population on policy variables defined 
in Table 1.  The specification is identical to that in Tables A.3 and A.4 except we include in the sample only those counties that are within 
100 miles of another county in a different state and with which they do not share a border (“nearby county”) and we add the nearby county 
policies to the specification.  Nearby county policies are estimated but not reported in the table.  All standard errors (in parentheses) are 
clustered at the county level. *** denotes significance at the 1% level; ** denotes significance at the 5% level; * denotes significance at the 
10% level. 
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 (1) (2) (3) (4) 
VARIABLES Growtht+1 S.E. Growtht+2 S.E. Growtht+4 S.E. Growtht+6 S.E. 
Stay at Home 0.026*** 0.010 0.037*** 0.012 0.031** 0.012 0.012 0.012 
State of Emergency 0.008 0.014 0.001 0.020 0.015 0.023 0.050* 0.026 
Nursing Accept Pos. 0.029*** 0.010 0.028** 0.013 0.031* 0.017 0.020 0.017 
No Nursing Visits 0.023*** 0.009 0.021 0.013 0.018 0.014 0.025* 0.014 
Schools Closed -0.078 0.048 -0.017 0.049 0.006 0.053 -0.001 0.050 
Employees Masks -0.011 0.008 -0.009 0.010 -0.029** 0.013 -0.025* 0.014 
Masks Recommended -0.031*** 0.010 -0.037*** 0.013 -0.046*** 0.017 -0.026 0.016 
Mandatory Masks -0.011 0.009 -0.016 0.011 -0.025** 0.013 -0.035** 0.014 
Beaches or Parks Closed -0.048*** 0.012 -0.053*** 0.015 -0.028 0.017 -0.015 0.017 
No Elective Procedures 0.011 0.013 0.030* 0.016 0.030** 0.015 0.024 0.017 
Restaurants Closed -0.013 0.014 -0.000 0.018 -0.006 0.015 -0.017 0.015 
Bars Closed 0.023** 0.011 0.015 0.014 0.016 0.017 -0.007 0.018 
Gyms Closed -0.011 0.010 -0.019* 0.011 -0.015 0.014 -0.013 0.014 
Spas Closed -0.019* 0.010 -0.011 0.012 -0.016 0.014 0.007 0.016 
Gatherings Limited to 10 -0.010 0.012 -0.008 0.017 -0.015 0.023 -0.030 0.027 
No Gatherings Over 100 0.005 0.013 0.022 0.017 0.043* 0.024 0.044 0.029 
No Gatherings Limit>100 -0.004 0.016 -0.008 0.023 0.002 0.031 -0.017 0.035 
Risk Level 1 Closed 0.015 0.015 0.002 0.018 -0.008 0.017 0.017 0.015 
Risk Level 2 Closed 0.035*** 0.013 0.035** 0.015 0.041** 0.016 0.013 0.017 
Risk Level 3 Closed -0.018** 0.008 -0.017* 0.010 -0.031** 0.013 -0.033** 0.015 
Risk Level 4 Closed -0.014* 0.008 -0.004 0.011 -0.004 0.013 -0.001 0.015 
Re-openings Reversed 0.008 0.027 0.004 0.035 0.038 0.046 0.052 0.046 
Constant -0.297*** 0.083 -0.386*** 0.102 -0.467*** 0.126 -0.330** 0.144 
Observations 22,736  22,736  22,736  22,736  
Adj. R-Squared 0.266  0.184  0.103  0.082  
Controls YES  YES  YES  YES  
Border County Policies YES  YES  YES  YES  
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this paper distinguishes the economic effects of voluntary responses 
to Covid-19 from those attributable to government lockdown measures. 
We compare municipalities that experienced large Covid-19 outbreaks 
with municipalities that had few or no cases, and find that the scale of 
the outbreak in a municipality has a strong negative effect on physical 
transactions by consumers, including for sectors that were allowed 
to stay open during the lockdown. We show that these responses are 
correlated with the intensity of the local outbreak rather than provoked 
by general perceptions of the outbreak. Our findings imply that the 
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1 Introduction

The outbreak of Covid-19 has disrupted the Dutch economy. Countries around the globe, including

the Netherlands, implemented strict public health measures to respond to the outbreak. These

measures range from social distancing to complete lockdown, invariably constraining economic

activities with serious ramifications. However, it is not clear to what extent the drop in economic

activity during the lockdown was attributable to these restrictive policies or to the response function

of costumers. When people are either infected or afraid of getting infected by the virus, they may

choose to voluntarily stay at home. Understanding the different effect that the two factors have

on economic activity is key for policy making. Quantifying the extent to which the economic

fallout was driven by fear or by lockdown measures should help policy makers to make better

decisions in terms of dealing with a second Covid-19 wave. Using transaction data with geolocation

tags for 299 municipalities in the Netherlands, this paper examines the impact of the resonpse

function of consumers on economic activity. Our empirical strategy separates the effects of voluntary

distancing from those of lockdown measures by comparing municipalities that have seen large Covid-

19 outbreaks with municipalities that had few to no Covid-19 cases.

On 12 March, the Dutch government announced an “intelligent lockdown”. Effectively, the

next day, all events (concerts, sports) and all meetings with more than 100 people were forbidden.

Bars, restaurants and other public places or venues where people gather had to close. The tim-

ing and severity of the measures were generally comparable to most of northern Europe (such as

Germany, the Netherlands and Norway), but less restrictive than in southern Europe, where the

virus spread more rapidly (such as Italy, France and Spain). Figure 3 shows the overall government

response index for the Netherlands, measured by stringency, over time.1. It also shows the change in

consumption year on year and the amount of new hospitalized Covid-19 cases. Part of the lockdown

measures were relaxed on 11 May. The measures were eased further on 1 June, as the economy

“reopened” (see the list of measures in Figure 1).
1This government response index proxies the strictness of the lockdown policy over time by country. See:

https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
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Table 1: Phased relief of the lockdown restrictions in the Netherlands

11 May 2020
Partial relaxation of restrictions

Outdoor sports for people aged 19 or older allowed
Most close-contact roles, such as hairdressers and physiotherapists, were allowed to reopen

Primary schools reopened

01 June 2020
Reopening of economy

Secondary education started up
Hospitality venues, cinemas and theaters open with 1.5 metre social distancing and no more than 100 people

People were allowed to meet again
Public transport returns to normal timetable (only essential travel)

01 July 2020
Smart restart

All indoor and outdoor sports permitted
No limit for number of visitors to events; reservations and pre-entry health checks are mandatory

Non-essential use of public transport allowed
All close-contact roles back to work

The Dutch government’s strategy of a nationwide lockdown presented an advantage for our

empirical estimation strategy: While the lockdown policy was implemented nationwide on 12 March,

both the incidence of the illness and its timing have varied substantially across the provinces.

Therefore, while the lockdown measures induced homogeneous expenditure dynamics across the

Netherlands, spatial heterogeneity remains because the Covid-19 virus may have had different

effects in different municipalities across the country. In this study we single-out the effect of the

local magnitude of the Covid-19 pandemic on private consumption. We find that the amount of new

hospitalized Covid-19 cases in a municipality has a strong negative and statistically significant effect

on volume of physical transactions by consumers. In other words, municipalities in the Netherlands

that have seen a large Covid-19 outbreak have struggled more in economic terms than municipalities

that seen few or no Covid-19 cases. This effect cannot be explained by lockdown measures, because

in the Netherlands the lockdown was imposed for all municipalities on the same date and with the

same stringency. Our findings imply that people adapt their physical spending behavior, on top of

the imposed lockdown measures. What are the underlying reasons for people to spend less pysically

during an virus outbreak? It could be fear of getting the virus, or it could be due to the fact that a

considerable part of the population gets sick, or is afraid of having the virus (while showing little or

no symptoms) and don’t want to go outside to prevent spreading. Another possible reasons is that

the local virus outbreak adds to the negative sentiment, or reminds people that tough economic
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times are about to come and therefore they increase their precautionary savings at the costs of

spending. Another theory is that people already anticipate lockdown measures.

We find that Covid-19 is strongly negatively related to the frequency of supermarket visits

by municipality, indicating that people are more afraid to go outside when there is larger virus

outbreak in their local area. Groceries are necessity goods and we don’t see a decline in total

spending on groceries, only a decline in the amount of visits – which implies that people spend

more every time they visit a supermarket. Also, consumers living in badly affected areas order

more groceries online, most likely to prevent having to go outside the house to buy groceries in

person. Digging further into this notion of fear, we investigate whether it is “rational” fear that

people feel because of the intensity of the local outbreak, or whether it is “irrational” fear more

related to the “perception” of how big the outbreak is, rather than the real local numbers. We

look at how consumers respond to outbreaks in their province, compared to their local outbreaks,

and test the relationship with supermarket visits. By performing panel regressions, we find that

supermarket visits are not correlated to the virus outbreak on a province level, but only on a local

level, from which we draw the conclusion that it is mainly rational fear driving consumer behavior.

The remainder of this paper is organized as follows. In section 2, we discuss relevant theory

and earlier empirical evidence from other countries. Section 3 describes our transaction data for

the Dutch municipalities and section 4 deals with the model and methods that we use in this paper.

In section 5 we discuss the results. Section 6 concludes the study.
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2 Literature review

Our work builds on and contributes to a rapidly evolving literature on measuring the economic

impacts of Covid-19 (see e.g. Brodeur et al. (2020) [9]). Our paper combines two strands of

research: (i) literature that uses high-frequency transaction data to measure the economic impact

of the Covid-19 outbreak, and (ii) literature that focuses directly on the impact of lockdown policies.

Recent papers use high-frequency transaction data, analogous to the data we assemble here,

to analyze aggregate consumer spending (e.g., Sobolevsky et al. 2017 [26], Carvalho et al. 2020

[11], Baker et al. 2020 [7], Baker et al. 2020 [? ], Chen, Qian, and Wen 2020 [13], Andersen et

al. 2020 [4], Hacioglu, Känzig and Surico, 2020 [20]). These papers identify a number of important

findings, such as: i) there are concentrated impacts on spending in certain industries (e.g. food and

accommodation); ii) some social distancing is a result of voluntary choices rather than legislation

and iii) there has been a severe drop in consumption caused the pandemic.

Carvalho et al. (2020) [12] find that by the end of March 2020, the effects of the lockdown on

expenditure growth was very similar across regions, irrespective of the number of confirmed cases.

Using panel data, they confirm that neither GDP per capita nor the daily evolution of the regional

incidence of the illness correlate robustly with the daily regional expenditure growth rate. They

do, however, find a heterogeneity at a more granular level of disaggregation. When looking at the

Madrid region in detail, Carvalho et al. (2020) [12] find that the fall of expenditure induced by the

lockdown is larger in local areas within the region where the pandemic has caused more distress.

Chetty et al. (2020) [14] examine the effect of executive lockdown orders on changing consumer

spending in the US. Many states enacted stay-at-home orders and shutdowns of businesses in an

effort to limit the spread of Covid-19 infections and later reopened their economies by removing

these restrictions. They find that spending fell sharply in most states before formal state closures.

Moreover, states’ reopenings had little immediate impact on economic activity. They conclude

that health concerns are the core driver of reductions in spending, rather than government-imposed

restrictions. Chetty et al. (2020) [14] use US state-level data, which contain large heterogeneity

across and within states in the precise form that the lockdown and the reopening took. They

64
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 6

0-
10

5



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

therefore argue that their estimates should be viewed as a broad assessment of the average impact

of typical reopening efforts on aggregate economic activity and the authors defer from a more

detailed analysis of how different types of reopenings affect different sectors.

Goolsbee and Syverson (2020) [18] examine to what extent the reduction in economic activity

was due to government restrictions or to people’s voluntary decision to stay at home. They perform

a detailed analysis of customer visits on a county level with the use of cellular phone record data. By

comparing consumer behavior within the same commuting zones but across counties with different

government restrictions, they find that lockdown orders account for only a modest share of the

decline in economic activity. They argue that although overall consumer traffic fell by 60%, legal

restrictions explain a decline of only 7%. Our study differs from that of Goolsbee and Syverson

(2020) [18] in that we use actual spending data instead of personal mobility data. What is more,

Goolsbee and Syverson (2020) [18] implicitly assume that the number of visits corresponds to the

amount of economic activity. Our data show that although people may visit stores less often during

the Covid-19 crisis, they spend more time during every visit (see Figure 1). This implies that travel

to stores may decline rapidly, but spending does not decline at the same rate. Similar to Goolsbee

and Syverson (2020) [18], Gupta et al. (2020) [19] study smart-device data that proxy mobility

patterns. They find large declines in mobility in all states since the start of the pandemic, even

those without major mitigation mandates. This indicates a substantial share of the fall in mobility

was not induced by strong lockdown mandates such as stay-at-home orders. Their findings show

that state level emergency declarations account for about 55% of the decline between the first week

of March and the second week in April, with the remaining 45% of the decline attributable to

secular trends that they interpret as the private (residual to policy) response to the pandemic.

Chen, Qian and Wen 2020 [13] find a similar result to that of Goolsbee and Syverson (2020)

[18] for China. They study the drop in card and QR scanner transactions through UnionPay.

They also find that the effect on consumption is stronger in cities that have had more Covid-19

cases. More specifically, they argue that in the 20 cities that received the highest inflow of Wuhan

residents (the epicentre of the Covid-19 outbreak), consumption decreased by 12% more than in

other cities in their sample. For cities reporting zero cases (as of late March), the decrease in
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Figure 1: Average amount per transaction in euros spent with debit cards in the Netherlands, 7-days rolling average

offline consumption was 13% less than for cities with positive Covid-19 cases in the same time

period. They find that a doubling of the number of infected cases at the city-level was associated

with a 2.8% greater decrease in offline consumption. In addition, they find that fears regarding

local hospital capacity and the first local Covid-19 related death drive consumption down further.

Chen, Qian and Wen 2020 [13] conclude that management of the public health crisis is crucial for

reinvigorating the economy. As fear of the virus spreads, (physical) consumption decreases. This

hypothesis is supported by a recent study by Altig et al. [2], who constructed a newspaper- and

Twitter-based sentiment measure that is closely aligned with the perceptions of households. The

sentiment measure peaked during the Covid-19 outbreak as news and social media were becoming

more negative in tone.

Other papers study the effects of Covid-19 and the imposition of lockdown on different

aspects of the economy. Aum, Lee and Shin [5] perform a regional analysis of the effect of the

Covid-19 outbreak on unemployment in Korea. Korea did not implement a lockdown, like many

Western countries, but instead relied on testing and contact tracing. They find that a one per

thousand increase in infections caused a 2 to 3% drop in local employment. Non-causal estimates of

this coefficient from the US and UK, which implemented large-scale lockdowns, range from 5 to 6%

, suggesting that at most half of the job losses in the US and UK can be attributed to lockdowns.

The authors conclude that the primary culprit in the Covid-19 recession is Covid-19 itself, rather

than lockdowns, and so the lifting of lockdowns around the world may lead to only modest recoveries

unless infection rates also fall. Hiroyasu and Todo (2020) [21] quantifies the economic effect of a

possible lockdown in Tokyo, Japan. Applying an agent-based model they find that when Tokyo is
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locked down for a month, the indirect effect on other regions would be twice as large as the direct

effect on Tokyo, leading to a total production loss of 5.3% of Japan’s annual GDP.

Our research is most related to the study by Chen, Qian and Wen (2020) [13]. We do,

however, examine different geographical levels, as Chen, Qian and Wen 2020 [13] focus specifically

on cities, whereas we consider municipalities. Also, China has had a more heterogeneous lockdown

policy across different cities, because some where forced into full quarantine (such as Wuhan)

whereas other cities faced milder lockdowns. Also the imposition dates of the lockdowns differ

between cities in China. The lockdown policy in the Netherlands, which was consistent among

regions in terms of stringency and imposition date, offers an empirical advantage for distinguishing

the effect of Covid-19 from that of the lockdown policy.
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3 Data

We use unique transaction data from ABN AMRO cardholders, the Stringency Index (which mea-

sures the strictness of lockdown measures) provided by the Blavatnik School of Government and the

amount of hospitalized Covid-19 cases provided by the Dutch National Institute for Public Health

and the Environment (RIVM). In the following section we describe each dataset in more detail. We

show how we transform the raw transaction data and explain how we acquire geolocation data on

a municipality level.

Transaction data

We use transaction data from ABN AMRO cardholders. ABN AMRO is the third biggest bank in

the Netherlands and has approximately 18% of the total market share in the country [29]). As a

consumer bank, ABN AMRO has around 3.1 million unique account holders. This covers around

22% of the total adult (18 +) population. ABN AMRO is a broad retail bank present in all parts of

the country and catering to all types of customers. Our data are therefore largely representative of

the adult population of The Netherlands in terms of gender, age, geograhpical representation and

income (see Figure 2). Collectively, ABN AMRO account holders spend over 65 million euros on a

daily basis, with an average transaction size of 23 euro. On average, over the sample period, our

dataset comprises 2,745,651 physical pin transactions a day and around 344,753 online transactions

a day.

Figure 2: Amount of ABN AMRO clients in different provinces of the Netherlands
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We acquire Point of Sale (PoS) data from pin terminals documenting every transaction. The

data for each transaction include a timestamp, the amount in euros, the corresponding account

number, the counter party description and the counterparty account number. We have used a

labeling function based on keywords in the transaction description to identify the category the

transaction belongs to.2

Our transaction data only incorporate accounts held by individuals and households. We

exclude corporate accounts (SMEs) by excluding transactions backed by a debit card issued to a

corporation as a “company card”. The purpose of this is to ensure that we make a correct analysis

of domestic consumption that is not biased by corporate expenditure. 3 We include spending by

credit cards in the total spending, but were not able to identity credit card expenditures by category

due to privacy issues. 4

Stringency index

We make use of the stringency index for the Netherlands based on the Oxford Covid-19 government

response tracker. This tracker collects information on several different common policy responses

that governments have taken to respond to the pandemic, using 17 indicators such as school closures

and travel restrictions. The data from the 17 indicators are aggregated into a set of four common

indices, reporting a number between 1 and 100 to reflect the level of government action. Figure 3

depicts the stringency index for the Netherlands5.

Covid-19 Data

We report the number of new hospitalized Covid-19 cases each day, for each municipality, using pub-

licly available data from the National Institute for Public Health and the Environment, 6. National
2Note that our dataset does not include transactions made by foreign (non-Dutch) tourist in the Netherlands.

The total economic contribution from foreign tourists in the Netherlands is relatively small; 1,7% of GDP
3Note that this is a drawback of the Carvalho et al. (2020) [12] data. The study cannot distinguish the identity

of the buyer in each transaction and therefore the data represent a mixture of final consumption expenditure by
households and corporate firms’ intermediate input purchases.

4In the Netherlands credit cards are not widely used as a payment option. This is confirmed by Jonker et al.
(2017) [23], who argue that debit cards are the dominant payment method in the Netherlands. Moreover, the number
of local Covid-19 cases should not meaningfully affect the ratio between debit and credit card usage compared to
other parts of the country, and therefore the omission of credit card data should not bias our analysis.

5https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
6https://www.rivm.nl/
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Figure 3: Year on year transactions, new Covid-19 hospitalized cases and the proxy of the lockdown measured by
the stringency index in the Netherlands (stringency scaled * 8)

Institute for Public Health and the Environment provides the cumulative number of hospitalzed

Covid-19 cases on a daily basis by municipality. For the amount of hospitalized cases we report

two daily series by municipality: a seven-day moving average of new daily totals and a seven-day

moving average of the cumulative total to the given date. Figure 4 shows the aggregate cumulative

and new amounts of Covid-19 hospitalized cases in the Netherlands. Figure 3 shows the year on

year change in transactions, the stringency index and the new Covid-19 hospitalized cases. From

the plot it is seen that the initial spike in new Covid-19 cases corresponds with a severe drop in

transactions. Moreover, as new Covid-19 cases fall, the average spending increases again.

Figure 4: Cumulative and new amounts of hospitalized Covid-19 cases in the Netherlands
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3.1 Data transformations

We analyze year on year growth rates of the aggregate amount of spending by municipality on a

particular date. In order to control for seasonality trends in expenditure we proceed as follows:

We pair every day following 2 January, 2020 with its equivalent day in the equivalent week of the

previous year:

∆Expenditurei =
Expenditureit − Expenditurei t−365

Expenditurei t−365
(1)

where Expenditureit is total transactions× average amount in euros on day t for municipality i.

In addition to adjusting for seasonal patterns, we also manually adjust for calendar effects. These

are events and holidays related to the calendar that usually have an irregularly recurring pattern.

We compared specific holidays with the same holiday in the previous year, despite the fact that it

may have fallen on a different week- or weekend day. Moreover, we deleted data for 29 February

2020 because this date only occurs in a leap year, as a additional day. The data depict large periodic

fluctuations across days. We address such fluctuations through aggregation, e.g. reporting 7-day

moving averages to smooth daily fluctuations.

3.2 Geolocation

We use transaction-weighted density-based clustering to predict POS geolocations (see Appendix

A).

For every account-holder we have the zipcode of their registered home address. These zip-

codes are merged with an external dataset featuring all Dutch zipcodes and their latitudes and

longitudes7 in order to obtain geolocations (expressed as latitude and longitude). Customers’ home

locations often have a clear relationship to payment point locations, with most payment points being

situated in a dense cluster around consumer home location points. The purpose is thus to identify

one cluster in these points and to classify other transactions as outliers. Then using only the main

cluster points, we proceed by determining the payment point location. The final implementation
7http://geonames.org
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consists of several steps, of which clustering is the first, followed by determining the location and

confidence using weighted transactions and finally correcting low-confidence predictions. The full

methodology is described in Appendix A. This methodology offers the advantage of predicting the

correct province with 95% accuracy, the correct municipality with 86% accuracy and the correct

city with 67% accuracy.

For every municipality we calculate the average expenditure by

∑T
i expenditure

T

where T is the amount of days in our dataset. In order the ensure that we have adequate coverage

of transactions within every municipality (i), we delete the lowest 5 percentiles of municipalities

based on the ABN AMRO clients to total inhabitants ratio. We also delete municipalities for which

we have incomplete data, which leaves us with a dataset of 299 municipalities out of 355. For the

online iDEAL (sepa) transactions, we locate transactions at the home address of the ABN AMRO

client, which is part of the meta data that is provided for every ABN AMRO account-holder.

3.3 Descriptive analysis

Figure 5 shows a comparative bubble chart. The vertical axis shows the average year on year

drop in transactions between March 14 and April 16 and the horizontal axis shows the logarithm

of cumulative hospitalized Covid-19 cases up to April 16. The size of the bubble indicates the

population size of the municipality. The trend-line shows a negative correlation between cumulative

Covid-19 cases and growth in transactions. It also shows that in general larger municipalities (in

terms of population size) have faced larger Covid-19 outbreaks and experienced a larger drop in

transactions.

Figure 7 shows the average year on year change in total expenditure. Figure 7 and figure 8

show average spending on offline and online groceries, respectively. From the graphs it is seen that

both categories show increased spending from the middle of March onwards. In particular, online

grocery shopping saw a large jump, at the end of April, at the peak, people spend around four
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Figure 5: Comparative bubble chart. On the vertical axis, the average year on year drop in transactions between
March 14 and April 16 and on the horizontal axis, the logarithm of cumulative Covid-19 cases up to April 16. The
size of the bubble indicates the population size of the municipality.

times as much on online groceries as a year before. However, as figure 8 shows, as the Covid-19

crisis starts the wane during May and June, the total increase in online grocery shopping also starts

to fall. Figure 9 shows the year on year changes in total consumption, offline supermarket con-

sumption and online supermarket consumption in one plot. This figure clearly shows that whereas

overall consumption dropped significantly after mid-March, supermarket and online supermarket

expenditure show an inverse trend and performed remarkably well.

Figure 6: Average year on year change in total expenditure, 7-days rolling average

Figure 10 shows the sharp drop in expenditure in sectors that were forced to close during

the nationwide lockdown (see Table 2 for a list of spending categories in “closed” sectors). Figure

10 also shows the stringency index for the Netherlands. It is striking to see that with every step

the government took to lift the lockdown measures (proxied by the change in the stringency index)
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Figure 7: Average year on year change in supermarket expenditure, 7-days rolling average

Figure 8: Average year on year change in online grocery expenditure, 7-days rolling average

the total transactions in closed sectors increases. Figure 10 shows that the total consumption is

very closely correlated with consumption in the sectors that were still open during the lockdown

measures (correlation of 98%). Indeed, as the lockdown in the Netherlands was relatively mild,

the sum of the sectors that had to close represented only a small proportion of total consumer

expenditure. This strengthens our view that solely looking at the economic impact of the lockdown

measures is not sufficient in order to asses the economic impact of the epidemic.

Figure 11 shows the year on year change in transactions between March 13 and June 1

(the end of the nationwide lockdown) by region. Blue indicates an increase in transactions and

red indicates a decrease in transactions. Figure 12 shows a geographical map of the cumulative

amount of hospitalized Covid-19 cases on June 1. Dark red indicates a large number of Covid-19

cases and light red indicates few Covid-19 cases. Municipalities that are coloured white have seen

zero Covid-19 cases. Comparing the two maps 11 and 12 reveals that municipalities that have

seen larger Covid-19 outbreaks, mostly located in the centre and south of the Netherlands, also

show a larger drop in pysical pin transactions (PoS). Figure 13 and figure 14 plot the year on year
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Figure 9: Year on year change in different expenditure types, 7-days rolling average

Figure 10: Year on year change in transactions for total consumption, consumption in sectors that were forced to
close during the lockdown and sectors that could remain open. Stringency (inverse) is a proxy of the lockdown.

physical pin transactions, the inverse of new Covid-19 hospitalized cases and the stringency index,

for two municipalities with a relatively small population size; Veendam and Bernheze. Veendam

had almost no Covid-19 cases, and although the pin transaction data show an initial spike just

before the imposition of the lockdown and a small drop afterwards, it recovers almost immediately

to normal levels of expenditure. This is contrary to the municipality of Bernheze, where the drop

in pin transactions is very pronounced (50% at is lowest level), and moves alongside the number of

new confirmed Covid-19 cases. This same conclusion holds if we compare two big cities; Amsterdam

and Groningen (see Figure 15 and Figure 16). The total pysical pin transactions dropped by 50%
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Table 2: Categories of consumer spending that were forced to close during the nationwide lockdown in the Netherlands

Closed sectors during the
Covid-19 crisis
Restaurants
Wellness
Casinos
Cinemas
Concert halls
Museums
Theme parks
Bars
Dining
Fastfood
Hairdressers
Solariums
Spas
Other entertainment

in Amsterdam, whereas in Groningen transactions bottomed out at around 35% below prior year’s

level. Notice that for Amsterdam the pin transactions had not returned to positive levels at the

end of the lockdown.

Figure 11: Map of the Netherlands showing the change in transactions (year on year) per municipality between March
13 and June 1 (the end of the nationwide lockdown). Blue indicates an increase in transactions and red indicates a
decrease in transactions
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Figure 12: Map of the Netherlands showing the cumulative Covid-19 cases per municipality at June 1. Dark red
indicates a large number of Covid-19 cases and light red indicates few Covid-19 cases. Municipalities that are coloured
white have seen zero Covid-19 cases.

Figure 13: Year on year transactions, new hospitalized Covid-19 cases and the proxy of the lockdown measured by
the stringency index for Veendam
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Figure 14: Year on year change in transactions, new hospitalized Covid-19 cases and the proxy of the lockdown
measured by the stringency index for Bernheze

Figure 15: Year on year transactions, new hospitalized Covid-19 cases and the proxy of the lockdown measured by
the stringency index for Amsterdam

Figure 16: Year on year transactions, new hospitalized Covid-19 cases and the proxy of the lockdown measured by
the stringency index for Groningen
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4 Model and research design

Throughout this paper, we use the following terms:

• The dependent variable is denoted Yit for municipality i at time t.

• The target variable of interest is denoted Xit for municipality i at time t.

• Control variables are denoted Xi and Xt for the sets of control variables (Xi1, xi2, . . . , Xin)

and (Xt1, Xt2, . . . , xtn), which are time-invariant and entity-invariant, respectively 8.

.

To measure whether the severity of the Covid-19 outbreak at the local (municipality) level

has a significant impact on transactions, we use a fixed effects (FE) panel regression. FE estimation

is performed by time demeaning the data. Demeaning deals with unobservable factors because it

takes out any component that is constant over time and entity. By assumption, this would be the

entire effect of the unobservable variables (see Appendix B for an investigation into what sort of

entity fixed effects we are capturing in the regression). We use the following equation:

Yit = αi + γt + β1Xit + εit, (2)

where Yit is the observation for the ith cross-section unit at time t for i = (1, 2, . . . , N) and t =

(1, 2, . . . , T ). αi denotes unobserved characteristics for each cross-sectional unit that don’t vary

over time; a m× 1 vector of unobserved common effects. γt are unobserved characteristics for each

time unit t that don’t vary over entity; hence a k × 1 vector of unobserved common effects. Xit

is a 1 × n (include constants) of observed independent variables, including our variable of interest,

new hospitalized Covid-19 cases. εit are the individual-specific (idiosyncratic) errors assumed to be

distributed independently of Xit and αi. By including fixed effects αi and γt, we are controlling
8These variables control for factors that could potentially impact Yit and/or Xit.
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for the average differences across municipalities in any unobservable predictors, which allows us to

eliminate the omitted variable bias.9

In general, however, the unobserved factors αi could be correlated with Xit. Pesaran (2006)

[25] shows that by including the cross-sectional averages in the regression the differential effects of

unobserved common factors are eliminated. This approach is favoured above the principal com-

ponents approach brought forward by Coakley, Fuertes and Smith (2002) [15] because we want to

avoid inconsistent results in the situation that the unobserved factors and the included regressors

are correlated. Moreover, the approach by Pesaran [25] allows us to use ordinary least squares

(OLS) when we specify an auxiliary regression where the observed regressors are augmented by

cross-sectional (weighted) averages of the dependent variable (Yit) and observable variables Xit

and possibly other control variables Xi and Xt (see also Kapetanios and Pesaran, 2005 [24]). We

therefore run the regression in two stages:

First stage regressions:

Yit = β1µ
Y
t + β2µ

X
t + eyitXit = β1µ

Y
t + β2µ

X
t + exit (3)

where µY
it and µX

it are the cross-sectional averages of Yit and Xit respectively over time t. eyit and

exit capture the residuals of equation 3.

Second stage regression:

eyit = exit + wit, (4)
9The random effects (RE) model is more appropriate when the entities in the sample can be thought of as having

been randomly selected from the population. A RE model allows all unobserved effects to be relegated to the error
term by specifying the model as

Yit = β1Xit + vit

where vit = ωit + εit. A critical assumption of the RE model is that the unobserved individual effect (ωi) isn’t
correlated with the independent variable(s). For the research question at hand, we cannot eliminate the possibility
that there are unobserved factors that are correlated with Xit. Moreover, although εit satisfies the classical linear
regression model (CLRM) assumptions, the inclusion of ωi in the composite error vit = ωi + εit results in a CLRM
assumption violation. If you relegate the individual effects (ωi) to the error term, you create a positive serial
correlation in the composite error. As a result, a RE estimation requires feasible generalized least squares rather
than ordinary least squares (OLS) to appropriately eliminate serial correlation in the error term and to produce the
correct standard errors. Therefore, we prefer the FE specification.
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Under the assumptions explained in Pesaran, 2006 [25], for any fixed m in αi these residuals

provide consistent estimates of εit in the multifactor model (2) and could be used as “observed data”

to obtain estimates of the factors αi. The factor estimates can then be used directly as (generated)

regressors in regression equation 4. Effectively, in the second stage we try to explain the variance

of Yit with the variance of Xit, thereby eliminating all the other fixed effects.

To further investigate the effects of our selection of control variables, we also run a Panel

OLS model including only time fixed effects and control variables that vary among municipalities

(but not over time):

Yit = γt + β1Xit + εt, (5)

where Xit = Xit + Xi and Xi is a set of control variables (x1, x2, . . . , xn), e.g. n × 1 vector of

observed common effects. Notice that this is a less strict specification compared to equation (2)

because we cannot account for entity fixed effects.

Moreover, to the test the importance of the lockdown measures on physical spending, we

run a FE model that includes entity fixed effects and control variables that vary over time (but not

over municipality):

Yit = αi + β1Xit + εt, (6)

where Xit = Xit + Xt and Xt is a set of control variables (x1, x2, . . . , xv), e.g. v × 1 vector of

observed common effects. As this specification does not include time fixed effects, this is also a less

strict specification than equation (2).
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5 Results

Table 3 column (1) shows the regression results for the fixed effects panel regression of equation

(2). The dependent variable (Yit) is the year on year change in total volume of transactions by

municipality i for time t. The key explanatory variable is the new amount of hospitalized Covid-

19 cases (Xit) in municipality i for time t. The regression also includes both municipality and

time fixed effects. We cluster standard errors at the municipality level (see Appendix B for an

investigation of what the entity fixed effects in this regression are potentially capturing). We find

a strong statistically significant negative coefficient on the explanatory variable (Xit). The results

show that on average, each additional hospitalized Covid-19 case reduces year on year transactions

by -2.79%. Given that in the Netherlands the stringency and timing of the lockdown were identical

for all municipalities, the lockdown effect in the regression is captured by time fixed effects.10

Table 3: Dependent Variable: Percentage change in transactions year on year

Regressor Column 1 Column 2 Column 3

Covid-19 cases −1.2094∗∗∗ −2.796∗∗∗ −2.8521∗∗∗

(0.0413) (0.0470) (0.0470)
Stringency −0.0473∗∗∗ −0.0217∗∗∗

(0.0010) (0.0019)
AEX −0.0011

(0.0011)
EURIBOR −20.402∗∗∗

(0.7977)

N 299 299 299
T 386 386 386
FE Entity and Time Entity Entity
R2 0.0074 0.0598 0.0654

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Table 3 column (2) shows the results including the stringency index as a control variable

(X1t), which is a proxy of the strictness of the lockdown measure over time (see equation 6). This

index is constant over municipality because the Netherlands faced a nationwide lockdown. The panel

regression also includes municipality fixed effects, but no time fixed effects because the stringency
10For all our regression, the value of R2 is relatively low. This is contrary to findings of Chen, Qian and Wen (2020)

[13] and Goolsbee and Syverson (2020) [18], who report a relative large R2. This is mainly because of differences in
specifications. Both of those studies use dummy variables to single out specific subgroups of panel data, and therefore
they measure the effects between two different groups over time. In contrast, we look at the fit of all municipalities
(299) over time. Moreover, they transform the data into logged values, whereas we prefer to use a linear model and
to keep the amount of transformations to the data as minimal as possible.
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variable is constant over municipality but differs over time. Both variables are significant; however,

the coefficient on the number of new Covid-19 cases is substantially larger than the coefficient

on the stringency index. This suggest that if the lockdown policy becomes one unit more strict

on a scale of 0–100, transactions will drop by 0.05%. The beta coefficient of Xit suggests that

one additional Covid-19 case will cause transactions to drop by 2.79%. These regression results

show that economic activity is reduced by both Covid-19 itself as well as the government lockdown

restrictions.

Table 3 column (3) shows the results including the stringency index and two other high-

frequency macro variables that are constant over municipality but differ over time (Xt in equation

6). The AEX Index is the Dutch stock market index, which proxies investors sentiment. EURIBOR

stands for the Euro Interbank Offered Rate, the average rate that European banks issue loans to

other banks. These variables proxy the growth of the economy and the level of inflation. The

inclusion of both high-frequency macro variables into the fixed effects panel regression has little

effect on the results. Table 3, column (3) shows that the coefficients on target variable, the number

of new hospitalized Covid-19 cases (Xit), the stringency index and the EURIBOR are statistically

significant. Moreover, the inclusion of the two macro variables reduces some of the explanatory

power of the stringency index, which reduces by more than half from -0.05 to -0.021. The coefficient

on the AEX Index is not statistically significant. This is not surprising given that financial markets

have performed remarkable well during the Covid-19 crisis. After a short dip in the beginning of

March, the stock index recovered rapidly.

Table 4 shows the results of the two-stage regression (see equation (4)). This specification

allows us to eliminate the differential effects of unobserved common factors (see section 4). The

result is significant at the 1% level. The interpretation of the beta coefficient is not straightforward

because it is the beta coefficient of the residual of the original regression. The sign of the coefficient is

as anticipated; the number of hospitalized Covid-19 (Xit) cases has a negative effect on year on year

average transactions. If we include time-variant control variables (Xt) in the first stage regression

(equation 3) and estimate (Xit) in the second stage, the variable is still statistically significant

and the beta coefficient does not change. This suggests that the set of control variables Xt has no
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correlation with the variable of interest (Xit). Moreover, if we add these control variables to the final

regression (equation (4)) we find that all control variables are not statistically significant, whereas

Xit remains highly significant, which implies that their variance does not have any explanatory

power for the variance of Yit.

Table 4: Dependent Variable: Residuals for percentage change in transactions year on year

Regressor Column 1

Residual Covid-19 cases −1.6004∗∗∗

(0.0499)

N 299
T 386
FE NO
R2 0.0089

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

5.1 Time lags

As we make use of high-frequency daily data, we also investigate the sensitivity of time lags (inter-

temporal shifting). Figure 17 shows the beta coefficient on the explanatory variable (Xit), the new

amount of hospitalized Covid-19 cases, shifted over time. We use the second-stage regression (the

regression of the residuals) to show the evolution of the beta coefficient. The horizontal axis t

indicates the time in days, the vertical axis shows the beta coefficient on (Xit). The figure shows

that the beta coefficient has the highest negative explanatory power when t = 0. The beta coefficient

becomes smaller as t shifts over time, and this is unequally distributed between t+ and t−. This

makes intuitive sense, as for instance the use of t+15 would try to explain the drop in transaction

data of t−15 days previously based on the hospitalized Covid-19 cases at t, where a causative

relationship would not seem possible. Moreover, as only few patients infected with covid-19 patient

are actually hospitalized (our explanatory variable Xit) the local spread may have already taken off

the moment people are actually admitted to the hospital. Figure 18 shows the p-value of (Xit) in

the second-stage residual regression. The horizontal axis t indicates the time in days. This figure

shows that the explanatory variable (Xit) becomes non-significant when the time is shifted towards

t−45. This makes sense as the amount of Covid-19 cases was zero for all municipalities before the
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first Covid-19 case was confirmed on 27 February 2020. In general, these results show that our

variable of interest is robust to shifts in time.

Figure 17: The development of the beta coefficient of the explanatory variable (Xit), the new amount of hospitalized
Covid-19 cases, shifted over time. We use the second-stage regression (the regression of the residuals) to show the
evolution of the beta coefficient. The horizontal axis t indicates the time in days and the vertical axis shows the beta
coefficient of (Xit).

Figure 18: The development of the p-value of the explanatory variable (Xit), the new amount of hospitalized Covid-
19 cases, shifted over time. We use the second-stage regression (the regression of the residuals) to show the evolution
of the beta coefficient. The horizontal axis t indicates the time in days and the vertical axis shows the p-value of the
explanatory variable (Xit).

5.2 The effect of the lockdown

One may argue that the difference between municipalities may not be the result of the number

of local Covid-19 cases, but rather the result of “disobedience” or the lack of “enforcement” of the

lockdown rules. In our research we take the assumption that the lockdown measures—as they were

implemented nationwide—are similar across municipalities. While this should be true theoretically,

in practice some municipalities may be stricter in following the national government rules than

others. For example, Amsterdam might have been much more strict in terms of checking whether
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people actually obey the rules compared to, for example, a small municipality in the North. Figure

19 shows that the variance in closed sectors between big cities is very small and largely constant

over time. We test this further by regressing the stringency index on the total transactions in

closed sectors. Under this category we take all sectors that were subject to restrictions and were

either forced to fully close or continue with very limited capacity, for instance, restaurants that

were permitted only to provide takeaway goods (see Table 2 for a list of consumer categories that

we include in the subset of closed sectors). As expected (see Table 5, column (1)) the stringency

level is an extremely good predictor of the drop in transactions in the closed sector, with an R2

of 0.4511. Table 5 column (2) shows the same regression but including the Covid-19 variable

(Xit). For completeness, we include the residual regressions in Table 7, which includes stringency

in the first-stage regression of equation (3), and also show a statistically significant result for the

coefficient on hospitalized Covid-19 cases in equation (4). It is interesting to see that the variable

is still significant at the 1% confidence level, which indicates that the small differences between

municipalities in supermarket visits are the result of the severity of the local Covid-19 outbreak.

Table 6 validates this conclusion. Here, we regress the Covid-19 variable on the variance between

municipalities in transactions in the closed sectors. Again the coefficient on the Covid-19 variable

is statistically significant, albeit at the 5% level. Intuitively, these results make sense. People are

less likely to follow lockdown rules if they don’t see the benefit or purpose of these rules. Similarly,

local municipalities may be less strict in enforcing the national rules if they have few or no Covid-19

cases in their community. This also tells us that even for the sectors that may feel their loss in

revenues is fully caused by the lockdown measures, it does also matter how severely their local

community has been hit by the virus. The effect is actually quite strong: With every additional

hospitalised Covid-19 case in the municipality, closed sectors see their pin transactions drop (year

on year) by 3.2%. If the lockdown measures had been made tougher, for example during April to

the level that Italy faced at the time (a stringency level of 93.5 out of 100), this would have resulted

in an additional 10% decrease in pin transactions (year on year) in the closed sectors.
11Note that this panel regression only includes entity effects because stringency is constant for each entity i over

time.
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Table 5: Dependent Variable: Percentage change in closed sectors year on year

Regressor Column 1 Column 2

Stringency −0.7836∗∗∗ −0.7662∗∗∗

(0.0025) (0.0026)
Covid-19 cases −3.2599∗∗∗

(0.1160)

N 299 299
T 386 386
FE Entity Entity
R2 0.4585 0.4622

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Figure 19: Year on year change in transactions in sectors that were forced to close during the lockdown in four large
cities. Stringency is a proxy of the lockdown.

Table 6: Dependent Variable: Variance between municipalities in percentage change in transactions in closed sectors
year on year

Regressor Column 1

Covid-19 cases −0.2525∗∗

(0.1038)

N 299
T 386
FE Entity and Time
R2 0.001

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

5.3 The effect of the unwillingsness to go outside

Our results show a strong negative sensitivity of consumption to within-municipality changes in the

outbreak’s severity. The reason why people start to spend less when the virus outbreak surges is
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Table 7: Dependent Variable: Residuals for percentage change in closed sectors year on year

Regressor Column 1

Residual Covid-19 cases −1.2147∗∗∗

(0.1317)

N 299
T 386
FE NO
R2 0.0007

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

hard to tell: it could be fear of getting the virus (I), or due to the fact that a considerable part of

the population gets sick (II). Alternatively, some may be afraid of having the virus (while showing

little or no symptoms) and don’t want to go outside to prevent spreading (III). Another possible

reasons is that the local virus outbreak adds to the negative sentiment, or reminds people that

tough economic times are about to come and therefore they increase their precautionary savings at

the expense of spending (IV). We define two reasons:

Reason 1: I, II and III can be summarised by: the unwillingness to go outside

Reason 2: IV can be summarised by: the unwillingness to spend

Reason 2, the unwillingness to spend, is not unique to the Covid-19 epidemic, as during a

crisis or recession precautionary savings normally go up and spending goes down as people anticipate

negative income or welfare shocks. Therefore this particular behavioral aspect may not be specific

for the Covid-19 crisis. Reason 1, the unwillingness to go outside, is a Covid-19 specific effect.

To investigate Reason 1, the unwillingness to go outside, is a reasonable assumption, we

look at the frequency of visits in supermarkets. Given that supermarkets are generally crowded

places and a potential source of Covid-19 contamination, we hypothesize that consumers would

want to avoid these places more if they live in a municipality that experiences a larger Covid-19

outbreak. We choose supermarket visits specifically because they are not impacted by the lockdown

measures, because supermarkets, convenience stores and other “vital” food retailers were allowed

to stay open. Moreover, supermarkets are likely to be situated close to costumers, generally within
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the same municipality, which minimizes any spatial effects that may occur. CBS data show that,

on average, there is a supermarket around 1 kilometre away from every Dutch household.

Aggregate data show that spending in supermarkets was not negatively impacted by the

Covid-19 crisis. Figure 7 shows that despite the initial spike in expenditure on groceries, spending

in this category remained high throughout the lockdown period. From March 13 until the beginning

of July, the expenditure in this category increased, on average, by 25% compared to the previous

year. This is partly explained by the substitution effect, as consumers spend less on restaurants,

bars and catering at work. However, the frequency with which consumers visited supermarkets did

decline and hence, on average, consumers spent more during each visit. Figure 20 shows that the

average amount spent in supermarkets (in euros) was substantially higher throughout the Covid-19

crisis.12 Before the Covid-19 crisis, consumers spent around 18.5 euros at every supermarket visit,

and this number increased to around 22.5 euros during the Covid-19 crisis.

Figure 20: Average amount in euros per transaction spent with debit cards in supermarkets in the Netherlands,
7-days rolling average

In Table 8 we investigate whether Covid-19 had a statistically significant impact on the

number of visits to supermarkets. Similar to Table 3, we perform a panel regression with fixed effects

(see equations (2), (5) and (6) and a two-stage panel regression with the residuals (see equation

(4)). The fixed effects regressions in Table 8 show that the amount of new hospitalized Covid-19

cases has a strong and statistically significant negative effect on the number of supermarket visits.

This result shows that every additional hospitalized Covid-19 case reduces year on year supermarket

visits by -1.09%, on average. This beta coefficient becomes slightly larger if we add other control
12This also holds for online grocery shopping. Figure 21 shows that the average amount people spent on online

groceries increased from around 50 euros to an average of 67 euros in the period form mid-March until July.
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Figure 21: Average amount in euros per order spent on online groceries in the Netherlands, 7-days rolling average

variables and eliminate time effects. Table 8 shows that adding control variables does not change

the significance nor the sign of the coefficient on the Covid-19 variable Xit. Also, if we regress

the two-stage residuals regression (see Table 9) the results do not change. This finding indicates

that whereas total spending in supermarkets was not negatively effected by the Covid-19 outbreak,

people living in municipalities that have seen a bigger spread of the virus did visit supermarkets

less often. These results suggest that the day-to-day change in the within-municipality Covid-19

intensity affects daily supermarket visits, beyond the effect of physical constrains imposed by the

government’s lockdown measures. On the basis of these results, we can reasonably argue that people

living in badly affected areas were more afraid of going outside than people that live in areas that

were little affected by the virus. Therefore, Reason 1, the unwillingness to go outside, seems to

be reasonable explanation of why people curtail their pysical spending.

Table 8: Dependent Variable: Percentage change in supermarket visits year on year

Regressor Column 1 Column 2 Column 3

Covid-19 cases −1.087∗∗∗ −1.4899∗∗∗ −1.6376∗∗∗

(0.1179) (0.1133) (0.1135)
Stringency −0.0912∗∗∗ −0.1237∗∗∗

(0.0025) (0.0047)
AEX −0.0150∗∗∗

(0.0026)
EURIBOR −36.220∗∗∗

(1.9265)

N 299 299 299
T 386 386 386
FE Entity and Time Entity Entity
R2 0.0007 0.0115 0.0153

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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Table 9: Dependent Variable: Residuals for percentage change in supermarket visits year on year

Regressor Column 1

Residual Covid-19 cases −1.3375∗∗∗

(0.1553)

N 299
T 386
FE NO
R2 0.0006

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

We further examine Reason 1 by looking at the online ordering of groceries. Aside from

people going to supermarkets less often, buying more at each visit (as Figure 20 shows), they could

also choose to fully self-isolate by ordering groceries online. We hypothesise that if people are

afraid to go outside because they live in an area that has seen a large virus outbreak, they will

be more inclined to order groceries online and get them delivered to their home address. Whereas

online ordering of groceries was a relatively small market in the Netherlands13 before the Covid-19

outbreak, the country has seen a enormous increase during the epidemic crisis. Figures 8 shows the

increase in online grocery shopping during the crisis, which on average more than doubled compared

to the period before the crisis.

In Table 10, column (1) we regress the measure of Covid-19 (Xit) on the year on year change

of the volume14 in online grocery shopping (Yit) for every municipality (see equation (2)). We find a

strong statistically significant effect of the Covid-19 variable (Xit). The coefficient is positive, which

supports our hypothesis that people living in areas that see larger Covid-19 outbreaks order more

online in order to avoid going outside. Table 10, columns (2) and (3), show the regression results

from equation (6), including the control variables Xt (stringency, AEX and EURIBOR). Again,

these variables seem to capture some of the fixed effects that change over time but stay constant

over municipality. Table 11 shows the regression results with the residuals (equation (4)). Again,

the coefficient on Covid-19 is statistically significant and positively correlated with the dependent

variable online grocery expenditure. These results further strengthen our view that Reason 1, is
13Exact figures are not available for the Netherlands, but on the basis of survey data it is es-

timated that online grocery orders amount to around 5% of the total expenditure on groceries, see
https://insights.abnamro.nl/2020/04/waar-halen-we-ons-eten-in-de-anderhalve-meter-samenleving/

14volume is measured as the amount of times that people ordered online
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important in people’s decision to change their behavior and switch from offline to online grocery

shopping.

Table 10: Dependent Variable: Percentage change in online groceries year on year

Regressor Column 1 Column 2 Column 3

Covid-19 cases 5.0367∗∗∗ −5.5437∗∗∗ −3.1878∗∗∗

(0.8726) (0.8345) (0.8340)
Stringency 2.0882∗∗∗ 2.2304∗∗∗

(0.0185) (0.0346)
AEX 0.4589∗∗∗

(0.0192)
EURIBOR 240.54∗∗∗

(14.152)

N 299 299 299
T 386 386 386
FE Entity and Time Entity Entity
R2 0.0003 0.1024 0.1107

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Table 11: Dependent Variable: Residuals for percentage change in online grocery volume year on year

Regressor Column 1

Residual Covid-19 cases 16.175∗∗∗

(1.1305)

N 299
T 386
FE NO
R2 0.0018

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

5.4 Do people stay inside for a reason?

One can wonder how “rational” it is for people to stay inside. Research has shown that people are

very much influenced by the media (Akerlof and Shiller, 2010 [16]; Baker et al., 2014 [6]; Beaudry

and Portier, 2004 [8]; Soroka, 2006 [27]; Tetlock, 2007 [28]). So the fear of going outside may not

necessarily be caused by the absolute size of the local outbreak, but rather by the “perception” of

the magnitude of the outbreak. People living in the province of Brabant, which was known as the

“epicentre” of the Netherlands’ outbreak, may simply change their behavior because they feel the

virus to be present, whereas some municipality in Brabant had very little to no Covid-19 cases. Did
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these people that live in in heavy effected provinces, but in a municipalities that saw little to no

Covid-19 cases, also stayed inside?

In order to disentangle these two effects, we use an identification strategy that considers

the amount of Covid-19 cases in the province (denoted by p) where municipality i is located. The

Netherlands consists of 12 provinces. We include a variable that distinguishes the Covid-19 outbreak

in municipality i from the cross-sectional average over the province (Xpt), weighed by population

size (expressed as a figure for hospitalized cases per 1000 people). We do this specifically for the

regression on supermarket visits, because these should not be impacted by the amount of Covid-19

cases on a province level. Other transactions, such as spending on clothing, books or hardware could

potentially be affected by the scale of the virus outbreak at the province level because some of these

shops are not available within a close distance, causing people to travel to different municipalities

(that may have seen different levels of Covid-19 cases). In the latter case, staying inside may actually

be “rational” behavior, despite a low number of Covid-19 cases in their own municipality cases. As

previously noted, the average travel distance for supermarkets is small, which eliminates potential

spatial issues. Table 12 shows the results of the fixed effects regression. Whereas the Covid-19

variable is still significant at the 5% level, the variable that measures the difference to the amount

of cases on the province level is not statistically significant. We also perform the two-stage residual

regression. In the first-stage (equation (3)) we perform three regressions, on Yit, X1
it and X2

it, with

Covid-19 cases by municipality denoted by X1
it and the Covid-19 outbreak in municipality i minus

the cross-sectional average for the province (Xpt) denoted by X2
it. In equation (4) we perform

the regression eyit = ex1it + ex2it + wit. Table 13 shows the results and again, the Covid-19 cases by

municipality is the only statistically significant variable.

From the regression in Table 12 we can conclude that it is not the average level of the Covid-

19 outbreak in the province that make people change their physical consumer behavior, but rather

the amount of Covid-19 cases in close proximity to them. Therefore, Reason 1, the unwillingness

to go outside, may actually be provoked by “rational” behavior. Although further research is needed

to look deeper into how people experience anxiety due to virus outbreaks and how this may result
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Table 12: Dependent Variable: Percentage change in supermarket visits year on year

Regressor Column 1

Covid-19 cases −39.272∗∗

(16.108)
Province Covid-19 cases minus municipality Covid-19 cases −21.218

(17.433)

N 299
T 386
FE Entity and time
R2 0.0001

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

Table 13: Dependent Variable: Residuals for percentage change in supermarket visits year on year

Regressor Column 1

Covid-19 cases −74.345∗∗∗

(21.345)
Province Covid-19 cases minus municipality Covid-19 cases −37.192

(23.146)

N 299
T 386
FE NO
R2 0.0002

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1

in changing physical spending behavior, our results show that people’s spending behavior may be

driven by the developments of the Covid-19 virus on their local community.
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6 Conclusion and discussion

From our regression results described in section , we find that the amount of new hospitalized Covid-

19 cases in a municipality has a strong and statistically significant negative effect on the change in

physical transactions by consumers. In other words, municipalities that have seen a large Covid-19

outbreak have struggled more in economic terms than municipalities that seen few or no Covid-19

cases. This finding holds even for sectors that were subject to restrictions due to the lockdown

measures. We find that spending on necessities, proxied by supermarket expenditure, were barely

hit by the Covid-19 crisis. However, the number of supermarket visits was reduced, especially in

those municipalities that saw a large Covid-19 spread. This suggests that people living in badly

affected areas altered their economic behavior differently to people living in little affected areas.

This finding was further confirmed by the evidence that people were ordering more groceries online

if their area was badly affected. Moreover, we find that it is not the perception of the outbreak that

results into people changing their behavior, but rather the real magnitude of the local outbreak.

Therefore, we conclude that the only path to full economic recovery in the long run is to diminish

the effect of fear and restore consumer confidence by addressing the virus spread itself.

Our research has several policy implications. Our findings show that to in order to minimize

the economic impact of the Covid-19 pandemic, governments should balance the negative economic

effects of lockdown measures with the negative effects and the behavioral reaction function of

consumers to the virus itself. Measures that effectively contain the virus, but have little direct

negative economic impact (such as as social distancing and contact tracing) may therefore be the

most effective from an economic point of view.15 Many other authors have focused on researching

the effectiveness of different policies on containing the virus (see, for example, Fang, Yiting and

Marshare (2020) [25]; Hou et al. (2020) [22] and Alvarez, Argente and Lippi (2020) [3]).

Our research also shows that consumption in sectors that faced restrictions during the na-

tionwide lockdown differs in accordance with the magnitude of the local virus outbreak. Therefore,

local lockdowns may prove to be more effective than nationwide lockdowns, because people tend to
15Aum, Lee and Shin (2020) [5] provide a good overview of the economic effect of intensive testing and contact

tracing in South Korea.
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be more strict in following the rules and/or local enforcement is tougher in areas where there is a

severe local outbreak.

Our research could potentially also have implications for the distribution of national funds

to local governments. Our research indicates that some municipalities have been hit substantially

harder by the drop in transactions than others, which could be used as an argument to reallocate

budgets according to the extent to which a municipality has been hit by the Covid-19 crisis.

Measuring physical transactions is not a perfect substitute for economic activity. The drop in

physical transactions can be partly offset by an increase in online transactions. Also, our regression

results (section 6) show that the incidence of Covid-19 has a large positive correlation with online

grocery spending. Further research could investigate to what extent online consumption substitutes

the reduction in offline consumption. Also relevant is this respect is the reallocation from spending

at local businesses to online retail businesses. The local community does not necessarily profit from

an increase in online consumption at the expense of offline consumption, because many of the online

retailers may not be located within the same municipality.

Moreover, it would be interesting to further research the impact of loss of income on consumer

expenditure. In section 5.3 we found that Reason 1, the unwillingness to go outside, is a credible

reason for people to spend less when they live in highly affected areas. This is confirmed by Cajner

et al. (2020) [10] and Ganong, Noel and Vavra (2020) [17], who found that spending fell in the early

stages of the pandemic primarily because of health concerns rather than a loss of current or expected

income. They argue that income losses were relatively modest because relatively few high-income

individuals lost their jobs and lower-income households who experienced job losses had their loss

in income offset by unemployment benefits. This also holds for the Netherlands, where Covid-19

crisis measures provided financial support to around 2.9 million workers (out of a labour force of

about 9 million). 16 However, Reason 2, the unwillingness to spend, may become more relevant

as the time passes. When companies lose costumers and revenue, they may be forced to cut costs,

including labour costs. Municipalities that have seen larger virus outbreaks may also experience a

higher increase in local unemployment. Such a negative income shock could further deteriorate the
16https://www.tweedekamer.nl/debat_en_vergadering/plenaire_vergaderingen/details?date=24-06-2020
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economic situation at the local level. Further research into the dynamics of the labour market and

consumer spending at the local level in relation to the Covid-19 outbreak is needed the understand

its full economic impact.

Also, in relation to our findings in section 5.3 and section 5.4, it would be interesting to

further look into the reaction function of consumers to the virus. Behavior toward the virus is not

static. We have seen that before the lockdown was eased, consumer spending in many categories

had already started to recover. People’s perception towards the virus may change throughout

time. Some may get used to the situation while others may experience more distress as the virus

lingers on. Especially relevant is this respect is the interaction between the reaction of consumers

to the virus outbreak and the reaction of the government. Strict (local) government measures may

diminish fear, as people may feel the government is in control and are more confident about a

positive outcome. On the other hand, government interventions may actually reinforce the effect

of fear. People may interpret the strictness of the lockdown measures as a signalling function of

how bad it is. After the second-wave has passed, researchers may be able to form a more definite

answer on how people react to the Covid-19 virus outbreak.
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Appendices

A Appendix

To determine geolocations for physical pin transactions we use an unsupervised model. Given that
we want to determine dense clusters and classify all other points as outliers, a density-based method
is the most suitable approach. As the dataset is rather large and clustering will need to happen for
many sets of points, a less computationally expensive algorithm is preferred, and hence DBSCAN
was selected as the clustering algorithm for this problem.

Parameter selection The DBSCAN clustering algorithm requires two main parameters to
be set. The first, ε, is the maximum distance that two points can be from each other whilst still
belonging to the same cluster. The second, min_samples, is the minimum number of samples
required for a group of points to become a cluster in the final results. As there are many varieties
of payment points in the data, there is no ’one size fits all’ approach. The goal with the setting
of these parameters is to find the optimal (most dense whilst including the most samples) cluster
for a set of home locations associated with a payment point, in order to be able to remove points
which are outliers or do not improve the location prediction. The initial parameters are set at very
ambitious levels based on the label of the payment point and the total amount of samples there
are. When no cluster is found, the parameters are widened until either a cluster has been found or
the parameter limit has been reached, and thus, hypothetically, no dense enough cluster exists in
the samples to make a good prediction for the payment point.

Transaction weighting The distance between a customer’s home and the payment point
can differ according to the time of the day, month of the year and total amount spent. Therefore
we introduce heuristic transaction weighting, also called transaction-weighted dynamic-parameter
DBSCAN (TWDP-DBSCAN). These heuristics determine the weight of a transaction, which can
vary between 0 and 2. This weight is used to determine how strongly the transaction influences the
final predicted location of the payment point. The final location (after clustering) is calculated as
follows (for latitude and longitude separately):

location =

∑N
i=1 locationi ∗ weighti∑N

i=1 weighti

where N is the amount of samples after clustering. Although this is based on analysis of a smaller
sample, Van der Cruijsen (2018) [30] suggests that payment behaviors tend to be consistent across
different groups of people and thus this sample is assumed to generalize well to the full dataset.

After the implementation the transaction-weighted dynamic-parameter DBSCAN (TWDP-
DBSCAN), it was found that certain labels (categories) of payment points, such as hotels, did not
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Figure 22: Transaction-weighted dynamic-parameter DBSCAN

perform well. This can be explained by the fact that consumers usually stay in hotels far from their
home address. In order to account for the harder-to-predict categories, payment point matching
was introduced, where each prediction was assigned a confidence based on the heuristics of the
category, number of samples and cluster size. Payment points were then matched according to the
following routine:

1. Partition the transactions by customer

2. Sort the transactions by transaction date and time

3. For each transaction, calculate the time delta between it and the customer’s previous trans-
action

4. If this time delta is smaller than the threshold level, add the previous payment point with its
predicted location and confidence as a ’match’

99
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 6

0-
10

5



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Finally, the lower confidence payment point locations are recalculated based on their own
location and the locations of the matched payment points using an algorithm that takes into account
the confidence of all predictions, and the time delta of all the matches.

Implementation details The TWDP-DBSCAN algorithm is implemented as a class in
PySpark for parallel processing and it implements two public methods, preprocess and predict. Af-
ter performing pre-processing, a column with the transaction weights is added and matches are
calculated. Then TWDP-DBSCAN is executed for the first location prediction and if selected, the
location is recalculated based on the matches. Next the locations are returned or city, municipal-
ity and province columns are added and returned. Finally, the predicted geolocations are coded
to the respective cities/municipalities/provinces using the reverse geocoder library17, which takes
latitude/longitude pairs and returns the nearest respective town/city.

The GeoNames18 dataset was used for zipcode geolocation mapping. Although Ahlers (2013)
[1] has determined that GeoNames is not perfect, and certainly has limitations regarding shortening
of latitudes/longitudes and imperfections in the data, this is the main widely accessible resource
able to map almost all of the Dutch zipcodes to a geolocation.

Validation The testing results displayed in Table 15 and Table 16 are on a transaction level
and not on a payment point level. This is done for the reason that payment points with very few
transactions are less relevant in the final result, as the number and value of transactions are what
drive the correctness of the measures of consumption.

Year Transactions Payment Points Customers Label Source

2015 64M 54,700 2.7M Ground-truth dataset
2020 393M 1.88M 3.24M Description (fuzzy city matching)

Table 14: The two test sets used for evaluation

Table 14 describes the test sets that were used for the final testing, the size of the datasets
and how the label (location) was obtained. As there is no training with unsupervised learning
(clustering), there is no need to split the dataset into training and testing samples, and the full
dataset can be used for final tests. Also, both test sets went through the same pre-processing
function where payment points with less than 10 or more than 50,000 transactions were removed
and transactions with a value under 0.5 euros or over 5,000 euros were removed. This is done to
remove non-significant transactions and outliers.

Model MHE CA PA Run-time

Baseline 4,213 m 34.88% 85.05% 4 mins
TWDP-DBSCAN 981 m 71.03% 91.71% 39 mins
TWDP-DBSCAN with matching 981 m 71.03% 91.71% 94 mins

Table 15: Results on 2015 test set (N=64,000,000)
17https://pypi.org/project/reverse_geocoder/
18http://geonames.org
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The results on the 2015 test data can be found in Table 15. In this table, MHE represents
the Mean Haversine Error, CA is the City Accuracy and PA is the Province Accuracy. Also, the
run-time of each model is included. The algorithm was run with all transactions, but only the
results for the smaller subset reported in Table 14 are reported as these are the only payment
points which have an available ground-truth location.

Model MHE CA PA Run-time

Baseline N.A.* 33.66% 85.0% 8 mins
TWDP-DBSCAN N.A.* 67.63% 94.56% 30 mins
TWDP-DBSCAN with matching N.A.* 67.61% 94.55% 104 mins

Table 16: Results on 2020 test set (N=393,000,000)

*Not Available because the test set only contains cities, not exact locations. Cities are as large as
220km2, and so would yield a very imprecise estimate.

As the method has been developed primarily with exploratory data analysis on the 2015
dataset (as specific geolocations of payment points were available here), a good method of valida-
tion is to test the method on more recent data without changing the implementation or heuristics.
The results, for the first five months of transactions of 2020, are presented in Table 16. On this
much larger, diverse and high-quality sample, it is found that the baseline and TWDP-DBSCAN
(with or without matching) results are similar to the 2015 results. This shows that the method
is built in a robust way and generalizes well over time, as the samples are 5 years apart and no
modifications to the method have been made prior to testing.

Limitations The validation data used are from 2015 and only represent a limited sub-
sample of all payment points. They thus only contain small numbers of observations for certain
labels and areas. This means that the validation set is biased towards certain labels and areas
in the Netherlands. Nothing can be done about this limitation, except for manually creating
more validation data. For this reason, 2020 transaction data has also been used, where the exact
geolocation is not known but the city can be extracted from the transaction description.

B Appendix

Using a fixed effects model allows us to control for all time-invariant characteristics of an entity.
As these factors do not change over time, the fixed effects absorb this variation.19 To investigate
whether the above mentioned factors may impact the data on changes in transaction levels, we run

19The fixed effects specification accounts for differences in municipalities that cannot be explained by the control
variables. Statistically, time-invariant characteristics are perfectly collinear with the dummy, so their effect cannot
be estimated in the model. These differences between municipalities could reveal idiosyncrasies that are hard to
capture using additional regressors varying at the municipality level
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the panel OLS model specified in equation (5), allowing time-invariant variables to be included (Xi).
Table 17 shows the results. In the regression we include several variables that measure the average
proximity of various public services. Proximity figures measure the average distance in kilometres
of all citizens in a municipality to a given public service. We have included the proximity to a
general practitioner (GP), hospital, supermarket, restaurant, cultural building (museums, theaters
and cinemas) and public transport hub. Table 17 shows that target variable (Xit) is strong and
statistically significant. From the control variables, the average distance to a GP is the only variable
that is not statistically significant. However, the beta coefficients on the other variables do differ
substantially. Table 17 indicates that in particular, the proximity to a restaurant and supermarket
explain our dependent variable. This is probably because these two variables best capture the “big
city” effect. In general, big cities have seen larger outbreaks of the Covid-19 virus and consumers
have withheld spending in these places because they are generally crowded and a potential source
of contamination. Moreover, the proximity of restaurants may partly capture the lockdown effect,
because restaurants were not allowed to let costumers in, but only to serve take-away orders.

Table 17: Dependent Variable: Percentage change in transactions year on year

Regressor Column 1

Covid-19 cases −1.3986∗∗∗

(0.0463)
Proximity to GP −0.1127

(0.1343)
Proximity to hospital 0.5934∗∗∗

(0.0058)
Proximity to supermarket −1.3413∗∗∗

(0.1467)
Proximity to restaurant −2.8558∗∗∗

(0.1270)
Proximity to culture −0.0215∗∗∗

(0.0077)
Proximity to public transport hub −0.1582∗∗∗

(0.0057)

N 299
T 386
FE Time
R2 0.1521

(Standard errors in parentheses)
∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1
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Are COVID-19 fatalities large when a federal government does not impose 
containment policies and instead allow states to implement their own 
policies? We answer this question by developing a stochastic extension of 
a SIRD epidemiological model for a country composed of multiple states. 
Our model allows for interstate mobility. We consider three policies: 
mask mandates, stay-at-home orders, and interstate travel bans. We fit 
our model to daily U.S. state-level COVID-19 death counts and exploit 
our estimates to produce various policy counterfactuals. While the 
restrictions imposed by some states inhibited a significant number of 
virus deaths, we find that more than two-thirds of U.S. COVID-19 deaths 
could have been prevented by late September 2020 had the federal 
government imposed federal mandates as early as some of the earliest 
states did. Our results highlight the need for early actions by a federal 
government for the successful containment of a pandemic.
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1 Introduction

COVID-19 is a rampant disease that has affected the world population to an unprecedented

scale. This experience has pushed state and federal governments to implement drastic regulatory

policies to contain the spread of the disease. In many countries, such as the United States, state

governments can independently implement policies while other states or the federal government

do not impose any restrictions. This begets the questions: how effective are policies implemented

at a local level? And what could be gained from unified containment policies at the federal level?

We answer these questions by developing an extension of the standard SIRD model of

Kermack et al. (1927) that allows for travel and commuting across states within a country.1 In

our model, the government of a state can impose three types of regulations. It can impose a

mask mandate that shrinks the transmission rate in the state. It can impose a stay-at-home order

that shrinks the transmission rate in the state as well as the inflow of out-of-state commuters

and travelers. Or it can also issue a travel ban that shrinks the inflow of out-of-state travelers.

The federal government can force all states to implement the same policies or allow states

to decide individually what policies to implement, if any at all. We assume that a coronavirus

infection takes on average 14 days to resolve and that the fatality rate of the disease is 0.6%.2 To

incorporate uncertainty about the contagiousness of COVID-19, we assume that the transmission

rates in individual states vary randomly over time and are not directly observable. They fluctuate

around a natural mean rate but can be substantially higher or lower at times. We fit our model

to data on state-level COVID-19 fatalities from the United States between February 12 and

September 30, 2020. We then run counterfactual experiments using the estimated model under

the assumption that states implemented policies different than the ones they adopted in reality.

We measure the effectiveness of the different policies by looking at the difference between the

observed and counterfactual numbers of virus deaths on September 30. All of our results are

replicable by using our codes that are available on Github.

Our results show that a lack of unified policies at the federal level results in significantly

elevated virus deaths nationally. We estimate that more than 136,000 deaths could have been

prevented by September 30, 2020 – over two-thirds of all death cases recorded in the U.S. by

1We are inspired by mean-field models that are commonly used in the financial economics literature to model
credit risk contagion across financial institutions; see Cvitanic et al. (2012), Giesecke et al. (2015), Giesecke et al.
(2020), and others.

2These assumptions are consistent with Fernández-Villaverde and Jones (2020), Perez-Saez et al. (2020), and
Stringhini et al. (2020), and are benchmarked against alternatives in a sensitivity study.
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that date – if the federal government had imposed federal policies that mirrored those of the

earliest and strictest states. Our results also show that containment policies implemented by

individual states are effective. We find that the U.S. would have recorded more than 1,000,000

additional virus deaths if states had not implemented any containment policies at all.

Our study suggests that a large number of COVID-19 deaths could have been prevented if

the federal government had imposed stay-at-home orders or mask mandates that followed the

leads taken by the different states. We estimate that more than 110,000 deaths could have been

prevented if the federal government had imposed a federal stay-at-home order that had gone

into effect on March 20, 2020, corresponding to the start of the stay-at-home order in California.

Imposing a federal mask mandate as early as Connecticut did on April 17, 2020, would have

prevented more than 96,000 deaths. Considering that shutting down the national economy with

a federal stay-at-home order carries significant economic costs, which we do not consider in this

paper, a federal mask mandate would likely be preferred over a federal stay-at-home order. Our

counterfactuals suggest that between 96,000 and 183,000 virus deaths could have been prevented

if the federal government had enacted a federal mask mandate sometime between March 17 and

April 17, 2020, on top of the stay-at-home and travel ban policies adopted by the different states.

An early federal mask mandate would have contributed to slowing down the transmission of the

virus early in the Spring of 2020, when we estimate the reproduction numbers to have been

the highest.3 While it is questionable whether an early mask mandate would have been realistic

or whether there existed political or even scientific consensus for enacting such a policy, what

our results indicate is that early action by the federal government that complemented the steps

taken by state governments could have resulted in significantly less virus deaths.4 These results

provide an important policy lesson for future waves of the pandemic by highlighting that early

action by a federal regulator when the reproduction rates are high is key to prevent virus deaths.

We find that interstate travel bans do not accomplish significant virus death prevention,

mostly for two reasons. First, travel bans are often imposed once a regulator becomes aware of

3By matching death counts only, we estimate that the effective reproduction numbers of the virus in the
different states during the Spring of 2020 must have been up to two-times higher than prevailing estimates that
are based on infection cases, which are likely under-measured due to the large number of undetected infections
and asymptomatic individuals. Since our estimates depend on our modeling and parametric assumptions, we
carry out several experiments that assess how sensitive our findings are to our assumed parameter values. These
experiments corroborate our findings.

4During the month of March, the WHO recommended masks be reserved to medical staff and discouraged
a widespread use to the general public (see WHO interim guidance of April 6, 2020). As noted by Feng et al.
(2020), the rationale underlying the discouragement of mask use was to preserve the limited supplies of masks in
countries were the health-care system and ICU use was under pressure.
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the virus, at which point the virus has already penetrated and spread in the states. The first

travel ban in the U.S. went into effect in Hawaii on March 17, 2020. Our counterfactuals indicate

that only around 5,100 U.S. virus deaths could have been avoided if the federal regulator had

imposed a nationwide ban of interstate travel on the same day as Hawaii and maintained it

through September 30. In contrast, we find that close to 6,000 deaths could have been prevented

if the nationwide interstate travel ban had begun by the start of our sample on February 12.

Such an early ban of interstate travel is unrealistic given that the severity of the virus was not

perceived to be as serious at that point of time as to justify such a drastic policy.

Second, interstate mobility scatters virus cases across state lines and this may slow down the

spread of the virus within a country. In our model, states that are net importers of individuals

record higher numbers of infections than they would in the absence of interstate movement while

states that are net exporters of individuals record lower number of infections. When interstate

mobility is restricted, infected population that would otherwise disperse out-of-state is forced

to stay in-state. The higher concentration of infected population in some states can result in

accelerated virus transmission in those states and worse death outcomes at the federal level. Our

counterfactuals suggest that this is only a minor effect, nonetheless. For example, we find that

only around 860 of the more than 110,000 virus deaths that could have been prevented with

a federal stay-at-home order on March 20 are explained by the fact that interstate commuting

and traveling are discouraged when individuals are required to stay at home.

Our results suggest that policies that restrict cross-border mobility accomplish little in

preventing COVID-19 deaths unless they are imposed so early and for so long that they prevent

the virus from initially taking hold in a population. To the extent that our results can be

extrapolated to a global setting with multiple countries, they suggest that the late banning of

international travel may be an ineffective tool in combating COVID-19.

Finally, we focus on individual states and find that the states that imposed some of the

strictest containment policies were able to reduce the spread of the disease. Our counterfactuals

suggest that New York would have only recorded 17% fewer death cases if all states had imposed

strict containment policies, while California would have recorded close to 200,000 additional

deaths if the state government had not imposed any containment policies at all. These results

suggest that strict-policy states, such as New York and California, were protected by their

policies even when other states implemented weaker policies. On other end of the spectrum, we

find that states that adopted weak or no containment policies could have prevented a significant
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number of COVID-19 deaths by adopting stricter policies. Our results suggest that over 29,000

deaths could have been prevented if Florida and Texas had adopted strict containment policies.

We also find that the four states that adopted no containment policies in our sample—Iowa,

Nebraska, South Dakota, and Utah—could have prevented more than 70% of their death cases

by adopting early mask mandates.

Our results hinge on modeling choices and assumed parameter values. To understand how

sensitive our findings are to our choices, we carry out several sensitivity analyses that assume

alternative parametric values and provide a reasonable set of bounds for our results. We find, for

example, that the number of preventable deaths is higher if we assume that it takes less times

for a virus infection to resolve; i.e., if the virus is less severe. This is because, if a virus infection

is less severe, there must have been many more infections early on in the sample to match the

observed death data. Therefore, early action by the federal regulator would have been even more

impactful. The sensitivity analyses highlight a key benefit of our approach. By relying on death

counts only, we allow our methodology to infer how many infections there must have been to

justify the death data. This enables us to make data-driven inferences on how many infections

and ultimate deaths could have been prevented through regulatory actions.

Our contributions are methodological and normative. On the methodological front, we de-

velop a novel model for infectious disease transmission within a country composed of multiple

states. Our model incorporates the effects of interstate traveling and commuting, as well as

uncertain transmission rates.5 It also allows for independent regulatory policies across states.6

Our methodology delivers daily estimates of the transmission rates and effective reproduction

numbers (R0); these objects are jointly estimated for 51 U.S. states based solely on death cases.7

On the normative side, we show that early actions by a federal government that complement

state-level policies result in significantly reduced virus deaths during a pandemic.8 Our results

hint that more than 135,000 COVID-19 deaths could have been prevented if the federal govern-

5Stochastic SIR models of COVID-19 have recently been used by Fernández-Villaverde and Jones (2020) and
Hong et al. (2020). Deterministic mean-field models of infection rates have been considered by Read and Keeling
(2003), Youssef and Scoglio (2011), Zhang et al. (2015), and others.

6Brady et al. (2020) study an SIR model with spatial interaction of susceptible and infected people across
neighboring states and allow for independent social distancing policies across states. This model, however, does
not account for interstate travel. It also does not account for the effects of mask mandates.

7For single-state models, a related methodology is discussed in Gouriéroux and Jasiak (2020) and implemented
in Arroyo Marioli et al. (2020), Hasan et al. (2020), and Hasan and Nasution (2020) using infections data.
Fernández-Villaverde and Jones (2020) develop an alternative filtering-based methodology to obtain time-varying
estimates of the R0 using death counts only but it requires extensive smoothing of the data.

8Studying the economic impact of state-level stay-at-home orders, Rothert (2020) document that externalities
arise if the federal government does not coordinate policies across states.

110
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

06
-1

56



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

ment in the United States had followed the lead of some of the states that took early actions

to contain the virus.9 We also show that early mask mandates are highly effective, while travel

restrictions create distortions at the state level and have small benefits at the federal level.10

While the results of this paper are compelling, it is important to keep in mind several

caveats that confound our findings. First, we do not consider that changes in federal policies

may have resulted in different strategies implemented in the states and different reactions by

the U.S. population. This is difficult to control in counterfactual experiments. Second, we do

not consider whether federal mask, stay-at-home, or travel ban policies are feasible from a legal

point of view. The legality of some of these policies is beyond the scope of our paper. Finally, our

results about the number of preventable deaths are based on a hindsight approach that assumes

that some information about the effect of different regulatory policies may have already been

known at the beginning of the pandemic. Looking forward to future pandemics, or even future

waves of the current COVID-19 pandemic, our results highlight the benefits of early actions by

federal and state regulators.

2 Model description

We briefly describe our model here and provide a detailed model formulation in Appendix A. We

assume that a unit of time is one day and that a country is composed of several states. We model

the number of people in each state that are (i) susceptible to the virus (i.e., have never been

infected), (ii) infected by the virus, (iii) recovered from the virus (and immune to subsequent

infections), and (iv) deceased due to the virus.11 Our model explicitly takes into account the

impact of different containment policies on the transmission of the disease. We consider three

different types of containment policies: mask mandates, travel bans, and stay-at-home orders.

Our model also accounts for the effects of traveling and commuting across state lines.

Each state is endowed with a certain number of inhabitants. On any given day in a given

state, the number of people that are contaminated by an infected person is assumed to be

9Redlener et al. (2020) establish a similar number of preventable deaths through a comparison of international
policy responses. As Shefrin (2020) argues, however, cultural and ideological differences may have prevented the
U.S. government from adopting international policies. We show that a large number of COVID-19 deaths could
have been prevented by following policies that were already implemented domestically in the states.

10Our results are consistent with the findings of Eikenberry et al. (2020), Ngonghala et al. (2020), and Stutt
et al. (2020), who highlight the benefits of a federal mask mandate in single-state models. Other studies that
consider the impact of different federal containment policies include Alfaro et al. (2020), Alvarez et al. (2020),
Ferguson et al. (2020), Flaxman et al. (2020), and Fowler et al. (2020), among others.

11Our assumption on immunity post-infection is merely a simplification given that current evidence on re-
infections from COVID-19 is thin and mixed, see, e.g., Iwasaki (2020).
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a random draw from a Poisson distribution whose rate is the product of the policy-adjusted

transmission rate in the state and the fraction of the state’s population that is susceptible to

the virus. If a person is infected on any given day, that person either dies, recovers, or continues

to be infected in the next day with certain probabilities. We assume that it takes on average

14 days for an infection to resolve and that the fatality rate by the end of this time period is

0.6%. All in one, on aggregate in a state, the net number of new infections in a day is Poisson

distributed with rate equal to the product of the policy-adjusted transmission rate, the ratio of

susceptible population, and the number of infected inhabitants of the state, after subtracting

the number of infected individuals that recover or die from the disease.

We assume that the transmission rates in the different states are unobservable and evolve

stochastically from day to day. They are positively correlated across states and time.

We account for interstate commuting and traveling as follows. Each day, an inhabitant of

a state can commute to another state, travel to another state, or remain in the home state

with given probabilities. Inhabitants that stay in their home states contribute to the disease

transmission in their home states. Commuters travel during parts of the day and return to their

home states at the end of a day. They contribute to the transmission of the disease in their

home states and the visited states. Travelers spend several days in the visited state. They only

contribute to the transmission of the disease in the state they visit.

The transmission rates in each state, as well as the travel and commuting probabilities

across states, are adjusted to reflect the containment policies adopted by the different states.

The effects of the different policies are modeled by shrinking the transmission rates or the inflows

of travelers and commuters when the policies are active. We assume that a mask mandate in a

given state shrinks the transmission rate in that state by 42% but does not affect the inflow or

outflow of travelers and commuters.12 A travel ban in a given state shrinks the inflow of travelers

by 90%, but does not affect the transmission rate or the inflow of commuters in that state.13

Finally, a stay-at-home order shrinks both the transmission rate and the inflow of commuters

and travelers in that state by 36%.14 Appendix E considers variations of these parameters and

12We justify this value as follows. Based on the estimates of Fischer et al. (2020), we assume that a typical mask
worn in the U.S. filters out particles by a median value of 85%. We assume that only half of the population wears
masks as suggested by data from the Institute of Health Metrics and Evaluation, justifying a reduction factor of
approximately 42%.

13We estimate the 90% impact of travel bans as the reduction factor in the average number of daily trips of more
than 100 miles that were taken in the U.S. between March 15 and April 30, 2020, compared to 2019. We assume
that travel bans do not reduce the inflow of commuters into a state because travel bans were often accompanied
by exemptions for commuters.

14We estimate the impact of stay-at-home orders on transmission rates as the reduction factor in the average
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measures the sensitivity of our results to our assumptions.

We use mobility, travel, and state-level policy data from the United States to calibrate most

of the parameters of our model. We develop a filtering-based maximum likelihood methodology

to estimate some of the parameters governing the transmission rates of the different states. We

rely on daily state-level death counts from The COVID Tracking Project since they are the

least likely to be contaminated with substantial measurement issues (compared to the number

of infections, for instance).15 The sample period is February 12 through September 30, 2020.

Appendix B provides details of the approach we take to fit our model to the data.

Figure 5 in Appendix B shows the death counts in the data as well as the posterior mean

of the death counts in our model. The figure shows that our model performs well at matching

state-level and aggregate death counts. We show in Appendix B that our model implies that,

in order to match the levels of fatalities we observed over the sample period in U.S. states, the

effective R0 of the disease in the different states must have been substantially higher than 1

through April 2020 for the majority of the states. We also show that the R0 grew larger than

1 in several states over the summer. Our estimates suggest that the number of infections in

the different states required to match the history of COVID-19 fatalities in the U.S. must have

been substantially higher than recorded in the data. Unreported model outcomes show that the

estimated number of infected individuals in mid March was about 50-times larger than data

records show, while it was about 5-time as large as in the data by late September. Our results

imply that many infected people remained undiagnosed and contributed to the spread of the

disease early in the sample.

3 Results

We run counterfactual experiments in our model to study the effectiveness of the different con-

tainment policies. The underlying assumption of our counterfactuals is that states deviate from

the policies they enacted in reality by imposing stricter or looser restrictions in a hypothetical

world. We ask: what would have happened to the death count of a state if it had enacted a

number of daily trips of less than 10 miles taken in 2019 versus those taken between March 15 and April 30, 2020,
which is the period in which most stay-at-home orders were active in the United States. Because stay-at-home
orders were often accompanied by lockdowns which closed out office buildings, we assume that stay-at-home orders
also reduce the inflow of commuters into a state. Finally, because stay-at-home orders were also associated with
closed out tourist attractions, we also assume that stay-at-home orders reduce the inflow of travelers into a state.

15The fact that our estimation approach relies on death counts data only, as in Flaxman et al. (2020), is an
advantage over standard approaches to estimate time-varying reproduction numbers (e.g. Bettencourt and Ribeiro
(2008), Cori et al. (2013), Thompson et al. (2019)), as these approaches necessitate data on infection cases.
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stricter containment policy than it actually did? What would have happened if it had adopted

a policy that it did not enact in reality? And how would these deviations have impacted the

aggregate death count in the U.S. by the end of our sample? We answer these questions for mask

mandates, stay-at-home orders, and travel ban policies.

We assume that a state adopts a loose policy if it does not impose that policy at all over

our sample period. In contrast, we assume that a state adopts a strict policy if it adopts that

policy as early as the earliest state adopted the policy in the data, and keeps the policy active

until the last state in our sample shuts off that policy. Our strict policy scenario therefore avoids

forward-looking biases. Any regulator could have adopted a strict policy scenario in real life by

moving along with the first state that adopted a policy and ending the policy as soon as no

other state had the policy in place.16 The strict scenarios for the different policies are:

• Stay-at-Home: Start on March 20, 2020 (the day when California activated its stay-at-

home mandate) and keep it active through September 30, 2020 (the last day in our sample

in which the stay-at-home order was still active in California).

• Travel ban: Start on March 17, 2020 (the day the first interstate travel ban in the U.S.

went into effect in Hawaii) and keep it active through September 30, 2020 (the last day in

our sample in which an interstate travel ban was still active in Alaska).

• Mask mandate: Start on April 17, 2020 (the day the first mask mandate in the U.S.

went into effect in Connecticut) and keep it active through September 30, 2020 (the last

day in our sample in which several states had mask mandates in place).

We consider two variations of our counterfactual experiments. One in which only one state

at a time deviates from its actual policies at a time, and another one in which all states take on

the same policy jointly at the same time. With the first set of experiments we seek to answer

how impactful deviations at the state level would have been. The second set of counterfactuals

studies how impactful federally mandated polices would have been. To evaluate the effectiveness

of the different policies, we compare the number of deaths at the state and federal levels in

the different counterfactual experiments to the baseline levels in the data. Appendix C provides

details of our approach to computing counterfactual results.

Table 1 shows the results of the counterfactual experiments in which we assume that all

states deviate jointly. Figure 1 breaks down the number of deaths that could have been prevented

16The legality of such federal mandates are outside of the scope of this paper.
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Counterfactual assumption
Federal mandate active on: Deaths in excess

Stay-at-home Mask Travel ban of baseline

Strict stay-at-home orders, mask mandates, and 3/20 4/17 3/17 -136,514
travel bans for all states. [-162,029; -105,168]
Strict stay-at-home orders in all states, and all other 3/20 -110,129
state-level policies remain as in the data. [-136,201; -78,960]
Strict mask mandates in all states, and all other state-level 4/17 -96,515
policies remain as in the data. [-116,362; -67,520]
Strict travel bans in all states, and all other state-level 3/17 -5,148
policies remain as in the data. [-5,435; -2,557]

No stay-at-home order, mask mandate, or travel ban +1,012,053
in any state. [+379,784; +1,600,955]
No stay-at-home order in any state, but all other +657,949
policies remain as in the data. [+253,519; +1,483,567]
No mask mandate in any states, but all other +439,193
policies remain as in the data. [+78,136; +1,290,944]
No travel ban in any states, but all other +2,286
policies remain as in the data. [+1,061; +2,433]

Mask mandate in all states on March 20, 2020, while no 3/20 -78,136
state adopts any state-level policies. [-188,723; 181,526]

Strict travel bans in all states by February 12, 2020, while 2/12 -5,986
all other state-level policies remain as in the data. [-6,265; -2,983]

Table 1: Results of the counterfactual experiments in which we assume that all states jointly deviate from their enacted policies and adopt either strict or loose versions of the
policies instead. The reported values are excess deaths relative to the number of U.S. deaths recorded in our data on September 30, 2020. In the counterfactuals, we compute
the trajectories of death counts per state under the alternative policy scenarios that are consistent with the susceptible, infected, recovered, and dead populations as well as the
transmission rates filtered from the observed data. The values in brackets give confidence bounds based on a sensitivity analysis of the estimates of the impact of the different
policies on transmission rates and traveler and commuter inflow. The lower bounds assume that any policy that deviates from what it was in the data is half as impactful, while
the upper bound assumes that any policy that deviates is twice as impactful. Table 2 in Appendix E provides the parameter values used for the sensitivity analyses. In the
sensitivity analysis, we proceed in a similar way as for the counterfactuals and first compute posterior means of the state-level transmission rates that would explain the observed
death counts under the assumption of alternative effectiveness for the different policies. We then compute the number of death that would have been observed if the policies had
changed while keeping the recomputed trajectories of the transmission rates fixed.
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(c) All states impose strict or loose mask mandates.
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(d) All states impose strict or loose interstate travel bans.

Figure 1: State-by-state breakdown of excess deaths relative to the baseline in the different counterfactual scenarios in which all states jointly deviate from their implemented
policies. The excess death values are measured as proportions of the death cases in the data for each state. Policies are divided into stay-at-home order (b), mask mandates (c),
travel bans (d), and all three policies together (a). Counterfactual policies are divided into a strict scenario in which all states implement a policy as long as at least one state
decides to do so, and a loose scenario in which no state implements a particular policy. Counterfactual death counts are computed through the methodology detailed in Appendix
C.
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(b) A state imposes a strict or loose stay-at-home order.
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(c) A state imposes a strict or loose mask mandate.
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(d) A state imposes a strict or loose interstate travel ban.

Figure 2: State-by-state breakdown of excess deaths relative to the baseline in the data in the different counterfactual scenarios in which states deviate individually from their
implemented policies. Policies are divided into stay-at-home order (b), mask mandates (c), travel bans (d), and all three policies together (a). Counterfactual policies are divided
into a strict scenario in which a particular state implements a policy as long as at least one state decides to do so, and a loose scenario in which a state does not implement a
particular policy. Counterfactual death counts are computed through the methodology detailed in Appendix C.
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through federal mandates by states and displays these in proportion to the number of death in

the data of the individual states. Figure 2 shows the number of deaths that could have been

prevented in the different states if individual states had deviated from their implemented policies

while all other states kept their policies untouched. The time series of cumulative virus deaths in

the different counterfactual scenarios are given in Figure 8 of Appendix C. We carry out several

robustness checks that re-evaluate the number of preventable deaths in the different scenarios

under alternative assumptions of the impact of the different policies on transmission rates and

traveler and commuter flows, as well as the fatality rate of the disease and the number of days

it takes for an infection to resolve. The results of these sensitivity analyses are summarized in

Table 1 and further elaborated in Appendix E. The additional sensitivity analyses are consistent

with our main conclusions and provide validity for our results.

3.1 Federal mandates

Table 1 suggests that 136,514 virus deaths could have been prevented if the U.S. government

had mandated federal containment policies as early as the earliest state did and maintained the

policies for as long as the strictest states did. Our results indicate that 110,129 deaths could

have been prevented had the federal government moved along with California and mandated

a federal stay-at-home order on March 20, 2020 that remained active throughout our sample.

The results also indicate that 96,515 deaths could have been prevented if the federal government

had issued a federal mask mandate as early as Connecticut did on April 17, 2020, and kept the

mandate active through September 30. In contrast, we find that only 5,148 deaths could have

been prevented had the federal government banned all interstate travel by March 17, 2020 – the

day in which Hawaii banned inbound interstate travel.

Figure 1 hints that strict federal mandates could have been highly effective at preventing

death in states that adopted weak containment policies. Over 95% of all death cases in Arkansas,

Florida, Iowa, South Carolina, and Texas – corresponding to close to 35,000 fatalities – could

have been prevented if the federal government had imposed strict stay-at-home orders, mask

mandates, and interstate travel bans. These states adopted some of the weakest containment

policies during our sample period.

Although Table 1 suggests the biggest reduction of fatalities could be achieved through a

federal stay-at-home mandate, this comes at the cost of shutting down the national economy. The

potential substantial economic costs inherent to that policy cast doubt on whether the federal
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Figure 3: Number of deaths that could have been prevented through an early federal mask mandate. The x-axis indicates
the date in which we assume a federal mask mandate had gone into effect, while the y-axis gives the number of deaths
that could have been prevented had a federal mask mandate gone into effect on that date. We assume that state-level
stay-at-home and travel ban policies remain as in the data, and that a federal mask mandate supersedes the state-level
mask policies.

government would have been persuaded to carry out such a drastic step. Instead, imposing a

federal mask mandate could have been a cost-effective option. We ask: how many deaths could

have been prevented if the federal government had imposed an early federal mask mandate

sometime between March 17 and April 17 that complemented the stay-at-home and interstate

travel policies that were in effect in the different states? We run an additional counterfactual

experiment to answer this question; Figure 3 summarizes our findings.

Our results indicate that between 96,515 and 182,710 deaths could have been prevented if

a federal mask mandate that complemented the state-level stay-at-home and travel ban policies

went into effect sometime between mid March and mid April. What drives our findings is that

an early federal mask mandate could have provided a significant boost in reducing the potential

for infections. As Figure 6 in Appendix B shows, the effective reproduction number (R0) of the

virus was substantially high – much higher than 1 – in all states through April 2020 even while

stay-at-home orders were in place in the different states. By imposing an early mask mandate,

the federal regulator could have contributed to drastically reducing the infection potential in

all states early in the sample. This would have contributed to slowing down new infections
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over time even while some state-level policies were relaxed. Indeed, Table 1 shows that, in a

counterfactual world in which a federal mask mandate had gone into effect on March 20 while

no state-level policies had been enacted, only 78,136 virus deaths would have been prevented.

This result suggests that the key step for the federal regulator would have been to issue an early

federal mask mandate that complemented, but did not replace, the state-level stay-at-home and

travel ban policies that were enacted over time.

The number of deaths that could have been prevented with early federal policies depends

on our assumptions on how fatal COVID-19 is and how long it takes for an infection to resolve.

We run sensitivity analyses in Appendix E to verify that our results are robust to different

calibrations. The results of Appendix E are generally consistent with Table 1 and Figures 1

through 3. They also highlight an important benefit of our methodology. Appendix E establishes

that the number of preventable deaths is higher if we assume that it takes only 10 days for an

infection to resolve.17 We find that this is the case because, in order to match the number of

deaths observed in the data if the virus were less severe, the methodology infers that there must

have been many more infected individuals early in the sample so that early federal action would

have been even more impactful. We obtain these results because we rely only on death counts

to make our inferences and allow the methodology to estimate how many infections there must

have been to match the data. This highlights a fundamental benefit of of our approach relative

to alternative approaches that rely on infection cases, which may be under-counted in the data

due to the large number of asymptomatic cases or undetected infections,

Looking forward to future waves of the COVID-19 pandemic, our results suggest that early

actions by the federal government when the reproduction numbers are high could have a great

impact on preventing virus deaths.

3.2 State mandates

Our counterfactual experiments indicate that the actions taken by individual states benefited

both the states that implemented the policies and the U.S. as a nation. We find that the U.S.

would have been much worse off if no state had adopted any containment policies. In a hypothet-

ical scenario in which no state had imposed any policies, Table 1 indicates that the U.S. would

have observed 1,012,053 additional deaths due to COVID-19. Our results show that states that

17We find that the fatality rate has little impact on the number of preventable deaths, and instead mostly
affects the number of deaths that would have been observed if no state adopted any policy.
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implemented strict containment policies were able to contain the spread of the disease. Figure 1

shows that a state like New York, which had one of the longest running stay-at-home and mask

mandates, would have experienced only 17% fewer death cases if all states had imposed all three

strict policies simultaneously. Figure 2 also shows that a state like California, which imposed

the strictest stay-at-home policy in the country, would have recorded around 200,000 additional

COVID-19 deaths, or 13-times its end-of-September toll, if it had not imposed any containment

policies at all. These results suggest that the measures adopted by individual states to contain

the disease were highly effective and shielded states from inaction from other states.

Figure 2 also shows that states that imposed weak containment policies could have pre-

vented a substantial number of COVID-19 fatalities by imposing stricter policies. Two states

in particular stand out: Florida and Texas. These states could have prevented 13,846 deaths

(95% of all death cases in Florida) and 15,250 (97% of all death cases in Texas), respectively,

if they had implemented strict versions of the containment policies we consider in this paper.

While it may be unrealistic to have expected most states to enact strict stay-at-home orders

and interstate travel bans because these policies carry heavy economic burdens, mask mandates

could have been enacted without concerns about economic consequences. We find that Texas

could have prevented 81% of its COVID-19 fatalities, while Florida could have prevented 83%

of its COVID-19 fatalities, if the states had enforced mask mandates as early as Connecticut

did on April 17, 2020. Even some states that otherwise had strict policies in place suffered from

not adopting a mask mandate early enough. Our counterfactuals suggest that California, whose

mask mandate went into effect on June 19, could have prevented 10,736 virus deaths if it had

adopted a mask mandate as early as Connecticut did on April 17.

We find that the four states that implemented no containment policies at all during our

sample period—Iowa, Nebraska, South Dakota, and Utah – could have benefited if they had

implemented mask mandates by April 17 without forcing stay-at-home orders or interstate travel

bans. Figure 2 suggests that strict mask mandates could have prevented as many COVID-19

deaths as -1,011 in Iowa (75% of all COVID-19 deaths in the state), 347 in Nebraska (70%), 177

in South Dakota (75%), and 350 in Utah (75%). These results corroborate our findings on the

effectiveness of mask mandates for preventing COVID-19 transmission and deaths, both at the

federal and the state levels.
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3.3 Interstate mobility

The results of Table 1 and Figures 1 and 2 suggest that interstate travel bans are not very

effective in preventing COVID-19 deaths. We find that there are two reasons driving the low

impact of interstate travel bans.

First, interstate travel bans were often imposed late, only once the state regulator became

aware of the virus and the virus had already taken hold in the state’s population. Table 1 shows

that only 5,148 deaths could have been prevented in the U.S. if all interstate travel had been

banned by March 17, 2020. At that point, however, Figure 7 in Appendix B shows that most

states must have already had several infected individuals so that the virus was already spreading

in the states. Banning interstate travel at that point would not have prevented the spread of

the virus. It may have been different, however, if interstate travel bans were enacted earlier.

Early enough that they prevented the virus from entering certain states. We run an additional

counterfactual in which we ask how many virus deaths could have been prevented if the federal

regulator banned all interstate travel on the first day of our sample, namely February 12. The

results, summarized in Table 1, show that an additional 838 deaths could have been prevented

with such an early interstate travel ban. This result indicates that travel bans are more effective

if they are implemented early on.

Second, some externalities arise when individuals can move across state lines and these

externalities reduce the effectiveness of travel bans. In our model, interstate travel allows for

the transfer of infected population across states. Consider South Carolina, for example. On an

average day, our estimates suggest that 96,242 South Carolinians travel or commute out-of-

state while 83,572 out-of-state residents travel or commute into South Carolina. As a result,

South Carolina is a net exporter of individuals in our model. Now, Figure 1 suggests that South

Carolina would have recorded 4% more virus death cases if all interstate travel had been banned

on March 17. Why is this the case? We find that this is driven by the fact that, when population

is not allowed to cross state borders, infected individuals are forced to stay within the home

state. The higher concentration of infected population in those state leads to an accelerated

spread of the disease and therefore also to higher infections and death cases. This is showcased

in Figure 9 of Appendix D, in which we plot the estimated cumulative number of infections

in South Carolina both under the baseline and in the counterfactual in which a strict federal

interstate travel ban is imposed.

Consider Wyoming, on the other hand. Wyoming is a net importer of travelers and com-
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muters, receiving on an average day a net inflow of around 8,750 out-of-state individuals. Figure 1

indicates that Wyoming would have recorded 43% fewer death cases if a federal ban of interstate

travel had gone into effect on March 17. Figure 9 of Appendix D suggests a similar mechanism

in this case. Without a travel ban, Wyoming received infected population from other states

and this resulted in a higher number of infections in the state. If the federal government had

imposed a strict interstate travel ban, then the out-of-state infected population would not have

easily reached Wyoming. This would have resulted in a lower number of in-state infections and

ultimate virus deaths.

All in one, our experiments indicate that interstate travel makes it possible that states that

are net importers of travelers record higher numbers of death cases than they would in the

absence of travel, while states that are net exporters of travelers record lower number of virus

fatalities. Policies that restrict interstate mobility do not resolve this externality because they

only redistribute infection cases among states. Our results also suggest that late restrictions of

interstate mobility can be counterproductive because they allow for the virus to spread in an

accelerated fashion in some states rather than allowing for a balanced distribution of the virus

across states. However, we find this is only a minor adverse consequence of policies that restrict

interstate mobility. We find that interstate travel bans account only for a couple of thousand

preventable deaths in our counterfactual analyses. In additional unreported experiments, we also

find only 861 additional virus deaths could have been prevented through a strict federal stay-at-

home order on March 20, 2020, if interstate traveling and commuting were not discouraged by

the order. Putting everything together, our study shows that the ban of interstate travel can be

an effective tool to prevent the spread of a virus if the ban is enacted early enough to prevent

the virus from taking hold in a population.

4 Conclusion

We show that more than two-thirds of all COVID-19 death cases is the U.S. were preventable

had the federal government followed the leads of several states that took early actions to contain

the virus. Our results indicate that, in the absence of a unified federal approach, the policies

enacted in individual states were effective and resulted in reduced virus fatalities. This benefited

both the individual states and the U.S. as a whole. As a lesson for future waves of the COVID-19

pandemic, as well as future pandemics, our results highlight the need for decisive and impactful
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early actions by a federal regulator to complement actions taken by state regulators, especially

at times when the reproduction numbers are substantially large.

— Appendix —

A Model

A.1 Single-state model

We first introduce a single-state model to provide an overview of the assumptions underlying

the stochastic evolution of the COVID-19 disease. This provides a basis that we extend in the

following section to account for a network of N states.

A.1.1 From micro assumptions to aggregate dynamic equations

Consider individual j that was infected on date t − 1 (i.e., j ∈ {1, . . . , It−1}). We assume

that the number of people infected by this individual between dates t − 1 and t follows a

Poisson distribution: ij,t ∼ i.i.d.P
(
St−1

N βt−1

)
. Using the fact that a sum of Poisson-distributed

variables is Poisson, the total number of people infected between dates t − 1 and t is it ∼

i.i.d.P
(
St−1

N It−1βt−1

)
.

If j is infected on date t, then the probability that she dies between dates t and t + 1 is δ

(i.i.d. Bernoulli) and, if she does not die, the probability she recovers between dates t and t+ 1

is γ/(1− δ). (In such a way that the probability she recovers if γ.)

The cumulated number of dead people on date t (Dt) is given by Dt = Dt−1 + dt, where dt

is the number of deaths taking place on date t. Under the assumptions stated above, dt follows

a binomial distribution: dt ∼ B(It−1, δ). Moreover, the number of people who recover between

dates t− 1 and t is rt ∼ B
(
It−1 − dt, γ

1−δ

)
.

We have St = St−1 − it, It = It−1 + it − dt − rt, and Rt = Rt−1 + rt, where St and Rt

respectively denote the number of susceptible and recovered persons as of date t. (It is easily

checked that St + It +Rt +Dt = St−1 + It−1 +Rt−1 +Dt−1.)
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A.1.2 Transmission rate dynamics

The transmission rate βt is assumed to follow a non-negative square root process whose Euler

discretization reads:

βt = Et−1(βt) + σ
√

∆tEt−1(βt)εβ,t, (1)

where εβ,t ∼ N (0, 1) and Et−1(βt) = βt−1 + κ(β − βt−1).

A.1.3 State-space model

Let us now write the state-space representation of the model in a context where only Dt is

observed. The vector of latent variables is [βt, St, It, Rt]
′.

The measurement equation is ∆Dt = δIt−1 + εD,t. The transition equations are:


St

It

Rt

βt

 =


1 0 0 0

0 1− δ − γ 0 0

0 γ 1 0

0 0 0 1− κ




St−1

It−1

Rt−1

βt−1

+


−St−1

N βt−1It−1

+St−1

N βt−1It−1

0

κβ

+


εS,t

εI,t

εR,t

σ
√
βt−1∆tεβ,t

 (2)

with εβ,t ∼ i.i.d.N (0, 1) and


εD,t

εS,t

εI,t

εR,t

 =


dt − δIt−1

−it + St−1

N It−1βt−1

it − dt − rt − St−1

N It−1βt−1 + (δ + γ)It−1

rt − γIt−1

 .
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Appendix F shows that Vart−1 ([εD,t, εS,t, εI,t, εR,t, εβ,t]) is equal to

It−1



δ(1− δ) 0 −δ(1− δ − γ) −δγ 0

0 St−1

N βt−1 −St−1

N βt−1 0 0

−δ(1− δ − γ) −St−1

N βt−1
St−1

N βt−1 + ν −γ(1− γ − δ) 0

−δγ 0 −γ(1− γ − δ) γ − γ2 0

0 0 0 0 1


, (3)

where ν = (1−δ−γ)2δ+γ(1−δ−γ)
1−δ .

A.2 Multi-state model

We now consider a N -state model. Inhabitants may travel across states for commuting or other

reasons – we refer to the latter as “traveling.” In terms of notations, superscript j refers to a

given state. Variables without superscripts denote N -dimensional vectors. We denote by p =

[p1, . . . , pN ]′ the vector of the state population sizes. St, It, Rt and Dt are N -dimensional vectors

gathering the number of susceptible, infected, recovered, and deceased people in each state.

A.2.1 Policy restrictions

The transmission rates βj,t and the flow probabilities are impacted by the containment policies

implemented in the different states. We consider three containment policies: mask mandates,

stay-at-home orders, and travel bans. The effect of each policy is captured through the binary

variables θjt,M , θjt,S and θjt,T , respectively valued in {θlowM , 1}, {θlowS , 1}, and {θlowT , 1}. The param-

eters θlowM , θlowS , and θlowT are strictly lower than one; they reflect the effects of the containment

policies. More precisely:

• The transmission rate βj,t is reduced when mask mandates or stay-at-home policies are

implemented. Formally, it is of the form β0
j,tθ

j
t,Mθ

j
t,S , where β0

j,t is an exogenous transmis-

sion rate following the dynamics depicted by (1). Given that the θ variables are equal to

one when the policies are not in place, it follows that β0
j,t coincides with the effective trans-

mission rate (βj,t) when mask mandates and stay-at-home policies are not implemented.

• The probability that a given inhabitant of State j commutes to State k, that is wcomj,k,t, is of

the form wcomj,k θkS,t. Similarly, the travel probability is given by wtravj,k,t = wtravj,k θkS,tθ
k
T,t. These
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probabilities are therefore lower when (i) stay-at-home orders are in place or (ii) when

travel bans are enforced in the visited state.

A.2.2 Traveler flows

The variables Flowj
trav,S,t, Flowj

trav,I,t, and Flowj
trav,R,t are net travel inflows of susceptible,

infected, and recovered populations, respectively.

We denote by wk,jtrav,t the average fractions of the date-t population of State k that travels

to State j; ej is the jth column of the N ×N identity matrix; 1 is a N × 1 vector of ones; wj,•trav,t

and w•,jtrav,t respectively denote the jth row vector and column vector of Wtrav,t. Consistent with

the assumptions made in A.2.1, we have:

Wtrav,t = τtravWtrav d(θT,t) d(θS,t). (4)

Here, τtrav measures the average number of days that a traveler spends in the visited states.

Using the Poisson approximation of the binomial distribution, we consider that the number of

outward travelers is drawn from Poisson distributions. For example, the number of susceptible

individuals traveling from State k to State j between dates t and t+ 1 is:

Flowk,j
trav,S,t ∼ i.i.d.P(wk,jtrav,tS

k
t ). (5)

This implies in particular that the net number of inhabitants traveling into State j between

dates t and t+ 1 (denoted by Flowj
trav,S,t) is such that:

φjtrav,S,t := E(Flowj
trav,S,t|St) =

∑
k 6=j

wk,jtrav,tS
k
t

−
∑
j 6=k

wj,ktrav,t

Sjt

=
(
w•,jtrav,t − (wj,•trav,t1)ej

)′
St.

Using the convention wj,jtrav,t = 0, it follows that the N -dimensional vector φtrav,S,t is given by

φtrav,S,t = Ωtrav,tSt, where

Ωtrav,t = W ′trav,t − d(Wtrav,t1). (6)

By the same token, and with obvious notations for φtrav,I,t and φtrav,R,t: φtrav,I,t = Ωtrav,tIt and

φtrav,R,t = Ωtrav,tRt.
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A.2.3 Commuter flows

Interstate commuters are people who spend a fraction τ of each day in another state. Con-

sider the infected inhabitants of State k working in State j. They contaminate less people in

State k because they spend less time in that state. But they may also contaminate people in

State j because they spend some time in that state while commuting. We respectively denote

by Flowj←
com,S,t, Flowj←

com,I,t, and Flowj←
com,R,t the commuting inflows of susceptible, infected and

recovered people in State j. Outflows are given by Flowj→
com,S,t, Flowj→

com,I,t and Flowj→
com,R,t.

Let us denote by Wcom,t the “commute” matrix; that is, the matrix whose component (i, j),

denoted by wi,jcom,t, is the fraction of the date-t population of State k that commutes to State j.

On date t, the number of susceptible people commuting from State k to State j is:

Flowk,j
com,S,t ∼ i.i.d.P(wk,jcom,tS

k
t ). (7)

This implies in particular, with obvious vectorial notations, that:

φ←com,S,t := E(Flow←com,S,t|St) = W ′com,tSt, (8)

with (consistently with the assumptions made in A.2.1):

Wcom,t = Wcom d(θS,t). (9)

where Wcom is the commute matrix that would prevail under no containment policies.

By the same token:

φ→com,S,t := E(Flow→com,S,t|St) = d(Wcom,t1)St. (10)

All in all, if we denote by Flowcom,S,t the vector of time-weighted commuters net inflows,

we have:

E(Flowcom,S,t|St) = Ωcom,tSt, (11)

with

Ωcom,t = τcomW
′
com,t − τcomd(Wcom,t1). (12)
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A.2.4 Transmission rate dynamics

Each state j features an autonomous β0
j,t process (see A.2.1). These variables, gathered in vector

β0
t , follow non-negative square-root processes whose dynamics is approximated by:

β0
j,t ≈ β0

j,t−1 + κ(β − β0
j,t−1)∆t+ σ

√
∆tβ0

j,t−1ε
j
t ,

with εt ∼ i.i.d.N (0,Σ), where the diagonal elements of Σ are ones and the extra-diagonal entries

are set to ρ.

A.2.5 State-space model

The state-space model is characterized by

Et−1





Dt

St

It

Rt

β0
t




and Vart−1





Dt

St

It

Rt

β0
t




.

We have:

Et−1





Dt

St

It

Rt

β0
t




=



0

0

0

0

κβ1


+



Id 0 δId 0 0

0 Id 0 0 0

0 0 (1− δ − γ)Id 0 0

0 0 γId Id 0

0 0 0 0 (1− κ)Id





Dt−1

St−1

It−1

Rt−1

β0
t−1


+



0

−Id

+Id

0

0


(
θS,t−1 � θM,t−1 � β0

t−1 �
1

p
� ([Id + Ωt−1]It−1)� ([Id + Ωt−1]St−1)

)
, (13)

where Ωt−1 = Ωcom,t−1 + Ωtrav,t−1, where the latter two matrices are respectively defined in

equations (6) and (12). Notice that the state-space ends up being of size 5×N , where N is the
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γ 0.07 δ 0.0004 κ 0.001
[0.05, 0.1] [0.0003, 0.0007]

β 0.16 σ 0.05 ρ 0.49

θlowS 0.64 θlowT 0.10 θlowM 0.58
[0.32, 0.82] [0.05, 0.55] [0.29, 0.79]

τcom 0.36 τtrav 4.00

Table 2: Parameter values. The values in bracket give alternative parametrizations used for a sensitivity analysis of our
results in Appendix E.

number of states, so 255 in our application.

Appendix G details the computation of the conditional variance of [Dt, St, It, Rt, β
0
t ] (see

equation 28 in G.4).

The previous equations constitute the set of transition equations of the state-space. We

complete the formulation with the measurement equations being only the (seasonally adjusted)

time series of fatalities per day, for each state, which we denote by Dobs
t . We assume that the

number of deaths per day is measured nearly perfectly, such that:

Dobs
t = Dt + ηt, where ηt ∼ N (0, 0.0012Id) . (14)

Since the state-space is non-linear, we resort to the extended Kalman filter for estimation.

This requires the computation of the Jacobian matrix of Et−1[Dt, St, It, Rt, β
0
t ] with respect to

[Dt−1, St−1, It−1, Rt−1, β
0
t−1], which is closed-form and detailed in Appendix H. We then apply

a fixed-interval Rauch-Tung-Striebel smoother (backward filter) with the estimated trajectories

produced by the filter.

B Data & estimates

Our model features several parameters that we need to fix: The death rate δ, the recovery rate

γ, the parameters β, κ, σ, and ρ governing the dynamics of transmission rates in the states, the

effects θlowM , θlowS , and θlowT of the different containment policies, and the average traveling and

commuting flows across states. We proceed as follows to select parameter values. We summarize

our parameter estimates in Table 2.

We follow Fernández-Villaverde and Jones (2020), Perez-Saez et al. (2020), and Stringhini

et al. (2020) and assume that it takes on average 14 days for an infection to resolve. We assume

that after this period, an infected person either recovers and becomes immune, or dies with a
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probability of 0.6%. These assumptions imply that γ = 1
14 and δ = 0.06%

14 = 0.0004.

We estimate average interstate travel flows from travel and mobility data in the United

States. We collect data on interstate travels from the Traveler Analysis Framework published

by the Federal Highway Administration (https://www.fhwa.dot.gov/policyinformation/

analysisframework/01.cfm). We also collect data on state-level mobility and staying-at-home

from the Trips by Distance database of the Bureau of Transportation Statistics (https://www.

bts.gov/distribution-trips-distance-national-state-and-county-level). We combine

these two databases to compute the percentage of a state’s population that stays home before

and during the pandemic, as well as the percentage of a state’s population that traveled across

state boundaries before and during the pandemic. We use these data to determine the travel

matrix Wtrav of Appendix A.2.2. We illustrate the estimated interstate travel network in Figure

4(a). The size of a node is proportional to the percentage of a state’s population that travels

outwards and the width of a link is proportional to the percentage of a state’s population that

travel to the linked state. We assume that an average traveler spends 4 days on vacation. This

implies that τtrav = 4.

We measure commuting flows from the 2011-2015 5-Year ACS Commuting Flows table of the

U.S. Census (https://www.census.gov/data/tables/2015/demo/metro-micro/commuting-

flows-2015.html). We use these data to estimate the commuter matrix Wcom of Appendix

A.2.3. Figure 4(b) shows the implied commuting travel network. In this figure, however, the

size of a node is proportional to the logarithm of the percentage of a state’s population that

commutes outwards. We assume that out-of-state commuters spend 8 hours each business day

and no time during a weekend in the visited state. We also assume that commuters sleep 8 hours

a day and during that time infections are not possible. As a result, we set τtrav = 0.36 ≈ 8×5
16×7 .

We calibrate the parameters θlowM , θlowS , and θlowT to match mobility and mask usage data

from the United States. We collect data on when the different policies were active in the

different states from the National Academy for State Health Policy (https://www.nashp.

org/governors-prioritize-health-for-all/) and the Steptoe COVID-19 State Regulatory

Tracker (https://www.steptoe.com/en/news-publications/covid-19-state-regulatory-

tracker.html). Figure 6 showcases the time periods in which policies were active in the dif-

ferent states. We also collect data on average mask adoption across U.S. states from the Insti-

tute of Health Metrics and Evaluation (https://covid19.healthdata.org/united-states-

of-america). We assume that a stay-at-home policy is in place for the time period that covers
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(a) Interstate travel network. The size of a node is proportional to the
percentage of a state that commutes out-of-state.
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(b) Interstate commuting network. The size of a node is proportional to the
logarithm of the percentage of a state that commutes out-of-state.

Figure 4: Estimated interstate travel and commuting flows. For both networks, the width of a link is proportional to the percentage of a state’s travel or commuting that takes
place between the linked states.
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any order for staying at home, sheltering at home, or being safer at home issued by a state

governor. We neglect any stay-at-home advisories that are not strictly enforced by law officials.

We estimate θlowS = 0.64 as the reduction factor in the number of short trips taken during the

pandemic versus before the pandemic.18 We consider a travel ban to be active when a state

requires inbound travelers to self-quarantine for an extended period of time. Travel bans are

active in our model only if they apply for all states. That is, we neglect any travel ban that

only applies for travelers from selected states. We estimate θlowT = 0.10 as the reduction factor

in the number of long trips taken during the pandemic versus before the pandemic.19 Finally,

we assume that a mask mandate is active if a state requires the use of masks indoors in public

places. We do not consider mask mandates to be active if mask wearing is only recommended or

only required outdoors. We estimate θlowM = 0.58 by assuming that only half of the population

adopts mask usage (as suggested by the Institute of Health Metrics and Evaluation) and that an

average mask used in the U.S. reduces COVID-19 transmission by 85% (as suggested by Fischer

et al. (2020)).

We develop a quasi maximum likelihood methodology to estimate the parameters govern-

ing the dynamics of the transmission rates βj,t from daily data on state-level deaths in the

United States for the time period between February 12 through September 30, 2020. We remove

weekly seasonality patterns observed in COVID-19 fatality records using an STL approach. Our

methodology assumes that daily death counts at the state-level are measures with small mea-

surement errors. We take into account all state-level containment policies that were observed

over the sample period. We write a non-linear state-space representation of the model, gathering

Sjt , I
j
t , Rjt , D

j
t , and βj,t for all states simultaneously (255 variables). Filtering is easily performed

through the first order extended Kalman filter algorithm. While we could estimate the speed

of reversion κ with our methodology, we find that the data prefers to set κ arbitrarily close to

zero, implying an extremely high persistence for the βj,t. This results in numerical instabilities.

To avoid these issues, we fix κ = 0.001 so that the first-order autocorrelation of the βj,t is 0.999.

We then estimate the remaining parameters β, σ, and ρ using our quasi maximum likelihood

methodology. The estimates are provided in Table 2. We find that our parameter estimates are

18More precisely, for each state we evaluate the average number of daily trips of less than 10 miles taken in
2019 and compare that number to the average number of daily trips of less than 10 miles taken during the time
frame March 15 through April 30, 2020. We compute θlowS as the average reduction factor across states.

19We evaluate the average number of daily trips of more than 100 miles taken in 2019 and compare that number
to the average number of daily trips of more than 100 miles taken during the time frame March 15 through April
30, 2020. We compute θlowT as the average reduction factor across states.
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not very sensitive to alternative choices for the value of κ.

Figure 5 shows the data-implied death counts in each state as well as the smoothed model-

implied death counts. We see that our model performs well at fitting the state-level data. The

estimated measurement errors are fairly small. Figures 6 and 7 show the smoothed model-

implied effective R0 and cumulated infections for each state. The data pushes our model to

showcase high R0 in the different states.20 The highest R0 were observed in New Jersey, New

York, and Washington in February and March, reaching levels of more than 8.21 Indeed, we

find that the state-level R0 must have been substantially higher than 1 for most states through

April 2020. Several states, like Delaware, Hawaii, Idaho, Montana, Oklahoma, South Carolina,

Texas, and West Virginia, experienced significant upticks in their CoronavirusR0 in the summer.

There have also been upticks in the R0 in September in states like Arkansas, Florida, Kansas,

Michigan, Missouri, North Dakota, Rhode Island, South Dakota, and Virginia. Some states

have been successful at maintaining their R0 values consistently at or below 1. The list of states

that have accomplished this task include California, D. C., Illinois, Indiana, Maine, Maryland,

Massachusetts, Minnesota, New Hampshire, New Mexico, New York, Oregon, and Vermont.

Overall, our findings suggest that the virus spread drastically in the U.S. through the Fall of

2020. In fitting the data, our model estimates that the number of infections in the different states

must have been significantly higher than recorded in the data. These observations suggest that

there must have been many undiagnosed infections that facilitated the spread of the disease

throughout our sample period. Note that we never use infections data for the estimation or

calibration of our model parameters.

C Counterfactual experiments

This section details how our counterfactual experiments are conducted.

20The R0 of State j in our model is given by θjt,Mθ
j
t,Sβ

0
j,t/(δ + γ).

21Our estimates of the effective reproduction numbers are one-and-a-half to two-times larger than prevailing
estimates in Fernández-Villaverde and Jones (2020). We find that this is driven by a key difference in our models.
Fernández-Villaverde and Jones (2020) assume that, while it take two weeks for an infection to resolve, an infected
individual is only contagious for the first 5 days of an infection. We, instead, assume that an infected individual
is contagious during the whole infection period. We run several experiments in Appendix E in which we study
whether are results are sensitive to this assumption, and we find that this is not the case.
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Figure 5: Data and model-implied death counts across states. The model-implied death counts correspond to the number of fatalities that needed to have been recorded in our
model to match the total number of deaths in a state at the end of the sample period (i.e., the smoother). Estimation is performed through forward/backward extended Kalman
filtering, using the time series of death counts per state from February 12 to September 30, 2020. Our estimation methodology is detailed in Appendix B.
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Figure 6: Smoothed means of the model-implied effective R0 of COVID-19 in U.S. states. The shaded red areas denote 2-standard-deviation confidence bands. Estimation
is performed through forward/backward extended Kalman filtering, using the time series of death counts per state from February 12 to September 30, 2020. Our estimation
methodology is detailed in Appendix B. The R0 estimates correspond to the ratios of estimated β0

t multiplied by the policy dummies and divided by the sum of the daily fatality
and recovery rates (γ+δ). The figure also shows the periods of time in which the different containment policies were active. Green shaded areas correspond to active stay-at-home
policies, purple areas to active mask mandates, and yellow areas to active travel bans. Horizontal blue lines correspond the standard value of R0 = 1, below which the virus does
not reproduce itself indefinitely.
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Figure 7: Smoothed means of the model-implied cumulative number of COVID-19 infections in U.S. states. The figures also shows the number of infections that are recorded
in state-level data from JHU. We obtain the cumulative number of infections by summing all populations per states except the susceptible. Estimation is performed through
forward/backward extended Kalman filtering, using the time series of death counts per state from February 12 to September 30, 2020. Our estimation methodology is detailed
in Appendix B.

137
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

06
-1

56



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

C.1 Baseline scenario

The estimated dynamics constitutes our baseline scenario. All of our results are presented as a

difference with respect to this baseline scenario. We compare the outcomes in terms of fatalities.

C.2 “Strict” and “loose” counterfactuals

We consider two types of experiments, which we call strict and loose, respectively:

• In the strict scenario, we assume that the states start adopting the same policy as that

implemented by the earliest state during the sample period and relax it when the latest

state does so. The scenarios are as follows:

– Stay-at-Home: Start on March 20, 2020 (the day when California activated its stay-

at-home mandate) and keep it active through September 30, 2020 (the last day in

our sample in which the stay-at-home order was still active in California).

– Travel ban: Start on March 17, 2020 (the day the first interstate travel ban in the

U.S. went into effect in Hawaii) and keep it active through September 30, 2020 (the

last day in our sample in which an interstate travel ban was still active in Alaska).

– Mask mandate: Start on April 17, 2020 (the day the first mask mandate in the U.S.

went into effect in Connecticut) and keep it active through September 30, 2020 (the

last day in our sample in which several states had mask mandates in place).

• For the loose scenario, we assume that states do not implement a specific policy at all. We

then re-propagate the model with these counterfactual policies according to the method-

ology described below.

We conduct these two types of experiments one policy at a time, and one last time all together.

C.3 Joint and state-by-state counterfactuals

Our analysis is split into joint and state-by-state experiments. For the former, we assume that

the federal government imposes on all states the counterfactual policy (strict federal mandate),

i.e. to be as strict as the strictest or to do nothing (loose federal mandate). For the latter, we

take each state one at a time and assume that only this state follows the strict or loose scenario

and compute the counterfactual outcomes one state at a time.
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C.4 Computation of counterfactual scenarios

Recall that the model parameters and the latent variables (St, It, Rt and β0
t ) are estimated by

employing the extended Kalman filter. The observed variables are the numbers of deaths Dobs.
t ,

as well as the observed implemented policies θobs..

In order to derive our counterfactual outcomes, we also extend our filtering approach. The

broad idea is the following: We augment the state vector used at the estimation step – i.e.

Xt = [Dt, St, It, Rt, β
0
t ] – with a similar state vector for a fictitious country (fict.), with the

same number of states, where the counterfactual policies would be implemented. Critically, we

assume that the basic, standardized, shocks affecting the two countries are almost perfectly

correlated, implying in particular that the β0
t ’s are the same for the baseline and fictitious

countries.

Specifically, let us denote by X∗t the state vector corresponding to the fictitious country.

The transition equation of the augmented state-space model are:

 Xt

X∗t

 =

 E(Xt−1, θobs.)

E(X∗t−1, θfict.)

+

 V1/2(St−1, It−1, θobs.)εTrue,t

V1/2(S∗t−1, I
∗
t−1, θfict.)εfict.,t

 , (15)

where θobs. and θfict. contain the full trajectories of observed and fictitious policies, respectively;

where εTrue,t and εfict.,t denote differences of martingale sequence; and where V1/2(S, I, θ) is

such that
(
V1/2(S, I, θ)

)(
V1/2(S, I, θ)

)′
= V(S, I, θ), with the function V defined in (28). To

capture the idea that the two countries are affected by very similar standardized shocks, which

are the εTrue,t’s and the εfict.,t’s, we further assume that:

Vart

 εTrue,t

εfict.,t

 ≈
 Id Id

Id Id

 .
On top of the transition equation (15), the state-space model comprehends the following mea-

surement equation:

Dobs.
t = Dt, (16)

where Dobs.
t is the observed vector of numbers of deaths (in the “observed” country). By

construction, the filtered variables Xt resulting from this augmented state-space framework

are exactly equal the the ones of the regular state-space. Indeed, it produces the moment

E(Xt|Dobs
t , Dobs

t−1, . . . ), which is the same in both state-space models. However, X∗t will be differ-
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Figure 8: Time series of counterfactual death counts in which the federal government imposes strict joint mandates (left
axis), along with the number of states that adopted stay-at-home or mask mandates in the data (right axis). The black
solid line provides the death count obtained from the original data. The grey, red, and beige solid lines provide the time
series of deaths that would have been observed if the federal government had imposed strict stay-at-home, masks, and all
policies together on all states, respectively. The strict mandates start as early as the earliest state in the sample, that is
March 20, 2020 for stay-at-home, and April 17, 2020 for mask mandates. The red dashed line presents a counterfactual
scenario where masks are imposed as early as March 17, 2020. Green and purple-shaded areas provide the number of states
that implemented stay-at-home policies and mask mandates in the data, with respect to time. Their units are presented on
the right axis.

ent from Xt since the implemented policies are different, and their impacts are non-trivial since

they are non-linearly propagated in the state-space.

As a last step, we provide backward path estimates using the Bryson-Frazier smoother and

compare the paths of Dt and D∗t produced by the smoother. We used Bryson-Frazier rather than

Rauch-Tung-Striebel because the latter requires to invert the conditional variance-covariance

matrices of the transition equations, which are of size (9N × 9N). In our empirical application

(51 states), this results in matrices of size (459 × 459) that have to be inverted for each day

of data. This results in a large numerical instability. Instead, the Bryson-Frasier smoother only

requires the inversion of the variance-covariance matrix of the observables, that is of matrices of

size (N ×N). The time series dynamics of the federal counterfactuals are presented on Figure

8.
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D Infected populations in travel ban counterfactual

Figure 9 showcases the posterior (smoothed) mean of the cumulative number of infected individ-

uals in the baseline scenario for some select states. The figure also shows the smoothed mean of

the cumulative number of infected individuals in the counterfactual in which a federal interstate

travel ban goes into effect on March 17, 2020.

E Sensitivity analysis

We run several analyses to understand how sensitive our results are with respect to changes in

our parameter values. Table 1 shows confidence bands that are derived from re-estimating the

number of preventable deaths if the policy that deviated from the data was either twice or half

as impactful. What we mean in precise terms by this is that if, for example, we assume that a

counterfactual is carried out with respect to changes in a mask mandate, we would evaluate the

number of preventable deaths by assuming that θlowM is either half or twice as large as indicated

in Table 2. This sensitivity analysis provides confidence bands for our estimates of the number

of deaths that could have been prevented by adopting policies different than the ones that were

adopted in reality by considering that the policies may have a different impact on reducing

transmission rates and traveler and commuter inflows than what we assume in our study.

We also carry out additional sensitivity analyses with respect to two key parameters in our

model: the number of days that it takes for an infection to resolve, and the fatality rate of the

disease. Tables 3 through 6 repeat the experiments of Table 1 by assuming that it either takes

10 or 20 days for an infection to resolve, or that the fatality rate of the disease is 0.4% or 1%.

To obtain the results, we re-estimate the parameters β, σ, and ρ that would be necessary under

the new assumptions for the fatality rate or the number of days for infection resolution. The

sensitivity analyses are carried out one-by-one.

We find that adopting early federal containment policies would have been less impactful and

prevented less deaths if an infection took longer time to resolve. Vice versa, we find that early

federal action would have been more impactful if an infection took less time to resolve. This is

primarily because, if the disease were less severe than we assumed and it took less time to resolve

an infection, then the methodology estimates that there must have been many more infections

early on in the sample to match the number of deaths observed throughout the sample. That

means that early action would have been more impactful if the disease is less severe than we
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(a) South Carolina.
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Figure 9: Time series of estimated number of infected individuals in select states. The grey line marks the posterior
(smoothed) mean of the cumulative number of infections in the baseline. The red line denotes the posterior (smoothed)
mean of the cumulative number of infections in the counterfactual in which a federal interstate travel ban goes into effect
on March 17, 2020. Estimation is performed through forward/backward extended Kalman filtering, using the time series of
death counts per state from February 12 to September 30, 2020. Our estimation methodology is detailed in Appendix B.
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Counterfactual assumption (γ = 0.1)
Federal mandate active on: Deaths in excess

Stay-at-home Mask Travel ban of baseline

Strict stay-at-home orders, mask mandates, and 3/20 4/17 3/17 -145,158
travel bans for all states.
Strict stay-at-home orders in all states, and all other 3/20 -115,868
state-level policies remain as in the data.
Strict mask mandates in all states, and all other state-level 4/17 -109,675
policies remain as in the data.
Strict travel bans in all states, and all other state-level 3/17 -5,447
policies remain as in the data.

No stay-at-home order, mask mandate, or travel ban +1,055,371
in any state.
No stay-at-home order in any state, but all other +711,567
policies remain as in the data.
No mask mandate in any states, but all other +687,774
policies remain as in the data.
No travel ban in any states, but all other +2,501
policies remain as in the data.

Mask mandate in all states on March 20, 2020, and all other 3/20 -185,023
state-level policies remain as in the data.
Mask mandate in all states on March 20, 2020, while no 3/20 -39,228
state adopts any state-level policies.

Strict travel bans in all states by February 12, 2020, while 2/12 -6,063
all other state-level policies remain as in the data.

Table 3: Results of the counterfactual experiments in which we assume that all states jointly deviate from their enacted policies and adopt either strict or loose versions of the
policies instead. Here, we assume that it takes on average 10 days for an infection to resolve, while keeping the fatality rate of the disease fixed at 0.6%. The reported values
are excess deaths relative to the number of U.S. deaths recorded in our data on September 30, 2020. In the counterfactuals, we compute the trajectories of death counts per
state under the alternative policy scenarios that are consistent with the susceptible, infected, recovered, and dead populations as well as the transmission rates filtered from the
observed data. The values in brackets give confidence bounds based on a sensitivity analysis of the estimates of the impact of the different policies on transmission rates and
traveler and commuter inflow. The lower bounds assume that any policy that deviates from what it was in the data is half as impactful, while the upper bound assumes that any
policy that deviates is twice as impactful. Table 2 in Appendix E provides the parameter values used for the sensitivity analyses. In the sensitivity analysis, we proceed in a similar
way as for the counterfactuals and first compute posterior means of the state-level transmission rates that would explain the observed death counts under the assumption of
alternative effectiveness for the different policies. We then compute the number of death that would have been observed if the policies had changed while keeping the recomputed
trajectories of the transmission rates fixed.
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Counterfactual assumption (γ = 0.05)
Federal mandate active on: Deaths in excess

Stay-at-home Mask Travel ban of baseline

Strict stay-at-home orders, mask mandates, and 3/20 4/17 3/17 -126,471
travel bans for all states.
Strict stay-at-home orders in all states, and all other 3/20 -103,321
state-level policies remain as in the data.
Strict mask mandates in all states, and all other state-level 4/17 -81,338
policies remain as in the data.
Strict travel bans in all states, and all other state-level 3/17 -4,785
policies remain as in the data.

No stay-at-home order, mask mandate, or travel ban +910,918
in any state.
No stay-at-home order in any state, but all other +592,475
policies remain as in the data.
No mask mandate in any states, but all other +249,573
policies remain as in the data.
No travel ban in any states, but all other +2,052
policies remain as in the data.

Mask mandate in all states on March 20, 2020, and all other 3/20 -173,620
state-level policies remain as in the data.
Mask mandate in all states on March 20, 2020, while no 3/20 -97,146
state adopts any state-level policies.

Strict travel bans in all states by February 12, 2020, while 2/12 -5,385
all other state-level policies remain as in the data.

Table 4: Results of the counterfactual experiments in which we assume that all states jointly deviate from their enacted policies and adopt either strict or loose versions of the
policies instead. Here, we assume that it takes on average 20 days for an infection to resolve, while keeping the fatality rate of the disease fixed at 0.6%. The reported values
are excess deaths relative to the number of U.S. deaths recorded in our data on September 30, 2020. In the counterfactuals, we compute the trajectories of death counts per
state under the alternative policy scenarios that are consistent with the susceptible, infected, recovered, and dead populations as well as the transmission rates filtered from the
observed data. The values in brackets give confidence bounds based on a sensitivity analysis of the estimates of the impact of the different policies on transmission rates and
traveler and commuter inflow. The lower bounds assume that any policy that deviates from what it was in the data is half as impactful, while the upper bound assumes that any
policy that deviates is twice as impactful. Table 2 in Appendix E provides the parameter values used for the sensitivity analyses. In the sensitivity analysis, we proceed in a similar
way as for the counterfactuals and first compute posterior means of the state-level transmission rates that would explain the observed death counts under the assumption of
alternative effectiveness for the different policies. We then compute the number of death that would have been observed if the policies had changed while keeping the recomputed
trajectories of the transmission rates fixed.
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Counterfactual assumption (δ = 0.0003)
Federal mandate active on: Deaths in excess

Stay-at-home Mask Travel ban of baseline

Strict stay-at-home orders, mask mandates, and 3/20 4/17 3/17 -135,805
travel bans for all states.
Strict stay-at-home orders in all states, and all other 3/20 -109,118
state-level policies remain as in the data.
Strict mask mandates in all states, and all other state-level 4/17 -95,703
policies remain as in the data.
Strict travel bans in all states, and all other state-level 3/17 -5,965
policies remain as in the data.

No stay-at-home order, mask mandate, or travel ban +673,173
in any state.
No stay-at-home order in any state, but all other +463,490
policies remain as in the data.
No mask mandate in any states, but all other +338,903
policies remain as in the data.
No travel ban in any states, but all other +2,002
policies remain as in the data.

Mask mandate in all states on March 20, 2020, and all other 3/20 -178,419
state-level policies remain as in the data.
Mask mandate in all states on March 20, 2020, while no 3/20 -78,541
state adopts any state-level policies.

Strict travel bans in all states by February 12, 2020, while 2/12 -3,719
all other state-level policies remain as in the data.

Table 5: Results of the counterfactual experiments in which we assume that all states jointly deviate from their enacted policies and adopt either strict or loose versions of the
policies instead. Here, we assume that the fatality rate of the disease is 0.4% instead of 0.6%, and keep the number of days that it take for an infection to resolve at 14 days.
The reported values are excess deaths relative to the number of U.S. deaths recorded in our data on September 30, 2020. In the counterfactuals, we compute the trajectories
of death counts per state under the alternative policy scenarios that are consistent with the susceptible, infected, recovered, and dead populations as well as the transmission
rates filtered from the observed data. The values in brackets give confidence bounds based on a sensitivity analysis of the estimates of the impact of the different policies on
transmission rates and traveler and commuter inflow. The lower bounds assume that any policy that deviates from what it was in the data is half as impactful, while the upper
bound assumes that any policy that deviates is twice as impactful. Table 2 in Appendix E provides the parameter values used for the sensitivity analyses. In the sensitivity
analysis, we proceed in a similar way as for the counterfactuals and first compute posterior means of the state-level transmission rates that would explain the observed death
counts under the assumption of alternative effectiveness for the different policies. We then compute the number of death that would have been observed if the policies had
changed while keeping the recomputed trajectories of the transmission rates fixed.
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Counterfactual assumption (δ = 0.0007)
Federal mandate active on: Deaths in excess

Stay-at-home Mask Travel ban of baseline

Strict stay-at-home orders, mask mandates, and 3/20 4/17 3/17 -137,349
travel bans for all states.
Strict stay-at-home orders in all states, and all other 3/20 -111,536
state-level policies remain as in the data.
Strict mask mandates in all states, and all other state-level 4/17 -95,924
policies remain as in the data.
Strict travel bans in all states, and all other state-level 3/17 -5,152
policies remain as in the data.

No stay-at-home order, mask mandate, or travel ban +1,660,900
in any state.
No stay-at-home order in any state, but all other +1,009,853
policies remain as in the data.
No mask mandate in any states, but all other +572,851
policies remain as in the data.
No travel ban in any states, but all other +2,524
policies remain as in the data.

Mask mandate in all states on March 20, 2020, and all other 3/20 -180,651
state-level policies remain as in the data.
Mask mandate in all states on March 20, 2020, while no 3/20 -77,375
state adopts any state-level policies.

Strict travel bans in all states by February 12, 2020, while 2/12 -6,017
all other state-level policies remain as in the data.

Table 6: Results of the counterfactual experiments in which we assume that all states jointly deviate from their enacted policies and adopt either strict or loose versions of the
policies instead. Here, we assume that the fatality rate of the disease is 1% instead of 0.6%, and keep the number of days that it take for an infection to resolve at 14 days.
The reported values are excess deaths relative to the number of U.S. deaths recorded in our data on September 30, 2020. In the counterfactuals, we compute the trajectories
of death counts per state under the alternative policy scenarios that are consistent with the susceptible, infected, recovered, and dead populations as well as the transmission
rates filtered from the observed data. The values in brackets give confidence bounds based on a sensitivity analysis of the estimates of the impact of the different policies on
transmission rates and traveler and commuter inflow. The lower bounds assume that any policy that deviates from what it was in the data is half as impactful, while the upper
bound assumes that any policy that deviates is twice as impactful. Table 2 in Appendix E provides the parameter values used for the sensitivity analyses. In the sensitivity
analysis, we proceed in a similar way as for the counterfactuals and first compute posterior means of the state-level transmission rates that would explain the observed death
counts under the assumption of alternative effectiveness for the different policies. We then compute the number of death that would have been observed if the policies had
changed while keeping the recomputed trajectories of the transmission rates fixed.
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assumed. Note that this is always a conclusion based on matching the amount of death cases

that we observe in the data. If the disease were less severe and we still observed as many deaths

as in the data, then the only possible explanation is that there must have been more infections

early on in the sample. As a result, early action would have been the more impactful.

We find that the number of preventable deaths would not be much different if the virus

were less lethal. However, we find that the costs of inaction at the state level would be much

higher if the virus were more lethal. We find that close to 2,000,000 additional deaths would

have been observed if no state enacted any policy and if the lethality rate of the virus were 1%.

These observations further corroborate our findings of the success of the policies enacted by the

individual states to prevent COVID-19 deaths both at the state and federal levels.

F Conditional covariances for the single-state model

We have:

Et−1(rt + dt) = Et−1(dt + Et−1(rt|dt))− (γ + δ)It−1 (17)

Vart−1(rt + dt) = Vart−1(dt + Et−1(rt|dt)) + Et−1(Vart−1(dt + rt|dt))

= Vart−1

(
1− δ − γ

1− δ
dt

)
+ Et−1

(
(It−1 − dt)

γ(1− δ − γ)

(1− δ)2

)

=

(
1− δ − γ

1− δ

)2

It−1δ(1− δ) + Et−1

(
(It−1 − dt)

γ(1− δ − γ)

(1− δ)2

)
=

(1− δ − γ)2δ + γ(1− δ − γ)

1− δ︸ ︷︷ ︸
=:ν

It−1. (18)

Because dt + rt, on the one hand, and it, on the other hand, are independent conditional

on the information available on date t− 1, it follows that:

Et−1(∆It) =
St−1

N
It−1βt−1 − (γ + δ)It−1 (19)

Vart−1(∆It) =
St−1

N
It−1βt−1 + νIt−1. (20)

Remark: Let us introduce Zt ≡ ∆It−Et−1(∆It). By construction, Et−1(Zt) = 0. It can be

seen that Zt is the sum of It−1 i.i.d. random variables. Hence, if It−1 is large, we approximately

147
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

06
-1

56



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

have:

Zt ∼ N
(

0,
St−1

N
It−1βt−1 + νIt−1

)
,

conditional on the information available on t− 1. This is also true for it, rt and dt + rt. Because

the conditional variances of these variables are in It−1 (and not in I2
t−1), it follows that, when

It−1 is large, the deterministic version of the SIR model provides a good approximation of the

dynamics of (S, I,R,D) – at least up to potential stochastic variation of βt.

In the remaining of this appendix, we detail the computation of some of the covariances

appearing in equation (3)

Covt−1(εD,t, εR,t) = Covt−1(rt, dt) = Covt−1(Et−1(rt|dt), dt)

= Covt−1

(
(It−1 − dt)γ

1− δ
, dt

)
= − γ

1− δ
Vart−1(dt) = −γδIt−1.

Covt−1(εD,t, εI,t) = −Covt−1(dt, dt + rt) = − (Et−1(dt(dt + rt))− Et−1(dt)Et−1(dt + rt))

= −Vart−1(dt)− Covt−1(rt, dt)

= −δ(1− δ)It−1 + γδIt−1

= −δ(1− δ − γ)It−1.

Vart−1 (rt) = Vart−1(Et−1(rt|dt)) + Et−1(Vart−1(rt|dt))

= Vart−1

(
(It−1 − dt)γ

1− δ

)
+ Et−1

(
(It−1 − dt)

γ(1− δ − γ)

(1− δ)2

)
=

γ2δ

1− δ
It−1 +

γ(1− δ − γ)

1− δ
It−1 = (γ − γ2)It−1.

Covt−1(εR,t, εI,t) = −Covt−1(rt, dt + rt) = − (Et−1(rt(dt + rt))− Et−1(rt)Et−1(dt + rt))
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= −Vart−1(rt)− Covt−1(rt, dt)

= −(γ − γ2)It−1 + γδIt−1

= −γ(1− γ − δ)It−1.

G Conditional means and variances in the multi-state model

G.1 Conditional variance of commute and travel flows

Let us denote by Flowcom,I,t the vector whose ith component is the time-weighted net inflow of

infected commuters in state i. (Remember that τ is the fraction of time spent by commuters in

the state where they work.) We have:

Flowcom,I,t = τFlow←com,I,t−1 − τFlow→com,I,t−1.

Using equations (8) to (12), we have, in particular:

E(Flowcom,I,t|It) = τφ←com,I,t − τφ→com,I,t = Ωcom,tIt.

We also have

Cov(Flowcom,I,k,t,Flowcom,I,j,t|It) =

 −τ
2wk,jcom,tI

k
t − τ2wj,kcom,tI

j
t if j 6= k

τ2
(∑

k 6=j w
k,j
com,tI

k
t

)
+ τ2

(∑
j 6=k w

j,k
com,t

)
Ijt if j = k,

that is, in vectorial form:

Var(Flowcom,I,t|It) =

−τ2Wcom,t � (It1
′)− τ2W ′com,t � (1It

′) + d(τ2W ′com,tIt + τ2(Wcom,t1)� It),

which we denote by

Var(Flowcom,I,t|It) = C(Wcom,t, It, τ), (21)

where function C is defined by

C(W,Z, τ) = τ2
{
−W � (Z1′)−W ′ � (1Z ′) + d(W ′Z + (W1)� Z)

}
. (22)
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The same type of computation leads to

Var(Flowcom,S,t|St) = C(Wcom,t, St, τ) (23)

Var(Flowtrav,I,t|It) = C(Wtrav,t, It, 1) (24)

Var(Flowtrav,S,t|St) = C(Wtrav,t, St, 1). (25)

G.2 Conditional variance of new infections

For any pair of independent random vectors X and Y , we have

Var(X � Y ) = E(XX ′)� E(Y Y ′)− E(X)E(X)′ � E(Y )E(Y )′

= Var(X)� Var(Y ) + Var(X)� E(Y )E(Y )′ + Var(Y )� E(X)E(X)′.

Therefore:

Var
(

(It−1 + Flowcom,I,t−1 + Flowtrav,I,t−1)� (St−1 + Flowcom,S,t−1 + Flowtrav,S,t−1)
∣∣∣It−1, St−1

)
= Var

(
Flowcom,I,t−1 + Flowtrav,I,t−1

∣∣∣It−1

)
� Var

(
Flowcom,S,t−1 + Flowtrav,S,t−1

∣∣∣St−1

)
+

Var
(

Flowcom,I,t−1 + Flowtrav,I,t−1

∣∣∣It−1

)
�
(

(Id + Ωt−1)St−1S
′
t−1(Id + Ωt−1)′

)
+

Var
(

Flowcom,S,t−1 + Flowtrav,S,t−1

∣∣∣St−1

)
�
(

(Id + Ωt−1)It−1I
′
t−1(Id + Ωt−1)′

)
=

(
C(Wcom,t−1, It−1, τ) + C(Wtrav,t−1, It−1, 1)

)
�
(
C(Wcom,t−1, St−1, τ) + C(Wtrav,t−1, St−1, 1)

)
+(

C(Wcom,t−1, It−1, τ) + C(Wtrav,t−1, It−1, 1)
)
�
(

(Id + Ωt−1)St−1S
′
t−1(Id + Ωt−1)′

)
+(

C(Wcom,t−1, St−1, τ) + C(Wtrav,t−1, St−1, 1)
)
�
(

(Id + Ωt−1)It−1I
′
t−1(Id + Ωt−1)′

)
=: D(Wcom,t−1,Wtrav,t−1, St−1, It−1, τ,Ωt−1),

where Ωt−1 = Ωtrav,t−1 + Ωcom,t−1 and where

D(W1,W2, S, I, τ,Ω) =
(
C(W1, I, τ) + C(W2, I, 1)

)
�
(
C(W1, S, τ) + C(W2, S, 1)

)
+(

C(W1, I, τ) + C(W2, I, 1)
)
�
(

(Id + Ω)SS′(Id + Ω)′
)

+(
C(W1, S, τ) + C(W2, S, 1)

)
�
(

(Id + Ω)II ′(Id + Ω)′
)
, (26)
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function C being defined in (22).

G.3 Conditional variance of susceptibles

Let us use the notation:

I∗t = It + Flowcom,I,t + Flowtrav,I,t and S∗t = St + Flowcom,S,t + Flowtrav,S,t.

Using the law of total variance:

Vart−1 (St)

= Vart−1 (Et−1(St|It−1, St−1,Flowcom,I,t−1,Flowcom,S,t−1,Flowtrav,I,t−1,Flowtrav,S,t−1)) +

Et−1 (Vart−1(St|It−1, St−1,Flowcom,I,t−1,Flowcom,S,t−1,Flowtrav,I,t−1,Flowtrav,S,t−1))

= Vart−1

(
θβ,t−1 � βt−1 �

1

p
� I∗t−1 � S∗t−1

)
+ Et−1

(
d

(
θβ,t−1 � βt−1 �

1

p
� I∗t−1 � S∗t−1

))
=

[(
θβ,t−1 � βt−1 �

1

p

)(
θβ,t−1 � βt−1 �

1

p

)′]
�D(Wcom,t−1,Wtrav,t−1, St−1, It−1, τ,Ωt−1) +

d

(
θβ,t−1 � βt−1 �

1

p
� [(Id + Ωt−1)It−1]� [(Id + Ωt−1)St−1]

)
,

Let’s denote the previous conditional variance by Θt−1. We have:

Θt−1 = Vart−1 (St)

:=

[(
θβ,t−1 � βt−1 �

1

p

)(
θβ,t−1 � βt−1 �

1

p

)′]
�D(Wcom,t−1,Wtrav,t−1, St−1, It−1, τ,Ωt−1) +

d

(
θβ,t−1 � βt−1 �

1

p
� [(Id + Ωt−1)It−1]� [(Id + Ωt−1)St−1]

)
, (27)

where Ωt−1 = Ωcom,t−1 + Ωtrav,t−1 and function D is defined by (26).
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G.4 Conditional variance of the state vector

What precedes implies that:

V(St−1, It−1) := Vart−1





Dt

St

It

Rt

βt




= (28)



δ(1− δ)d(It−1) 0 −δ(1− δ − γ)d(It−1) −δγd(It−1) 0

0 Θt−1 −Θt−1 0 0

−δ(1− δ − γ)d(It−1) −Θt−1 Θt−1 + νd(It−1) −γ(1− γ − δ)d(It−1) 0

−δγd(It−1) 0 −γ(1− γ − δ)d(It−1) (γ − γ2)d(It−1) 0

0 0 0 0 Ωβ,t−1


,

with

Ωβ,t−1 = σ2∆td(
√
βt−1) · Σ · d(

√
βt−1),

and where Θt is defined by equations (27), and ν is defined in equation (18).

H Jacobian matrix for extended Kalman filter implementation

We hereby provide the formulas for the Jacobian computation in the extended Kalman filter

recursions. Denoting by J = ∂Et−1[Dt, St, It, Rt, β
0
t ]/∂[Dt−1, St−1, It−1, Rt−1, β

0
t−1], we have:

J =



Id 0 δId 0 0

0 Id 0 0 0

0 0 (1− δ − γ)Id 0 0

0 0 γId Id 0

0 0 0 0 (1− κ)Id


+
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

0

−Id

+Id

0

0


∂
(
θS,t−1 � θM,t−1 � β0

t−1 � 1
p � ([Id + Ωt−1]It−1)� ([Id + Ωt−1]St−1)

)
∂ [Dt−1, St−1, It−1, Rt−1, β0

t−1]
.(29)

The matrix of partial derivatives is given by:

∂
(
θS,t−1 � θM,t−1 � β0

t−1 � 1
p � ([Id + Ωt−1]It−1)� ([Id + Ωt−1]St−1)

)
∂ [Dt−1, St−1, It−1, Rt−1, β0

t−1]

=



0

(Id + Ωt−1)× d
(
θS,t−1 � θM,t−1 � β0

t−1 � 1
p � ([Id + Ωt−1]It−1)

)
(Id + Ωt−1)× d

(
θS,t−1 � θM,t−1 � β0

t−1 � 1
p � ([Id + Ωt−1]St−1)

)
0

d
(
θS,t−1 � θM,t−1 � 1

p � ([Id + Ωt−1]It−1)� ([Id + Ωt−1]St−1)
)



′

. (30)
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1 Introduction

COVID-19, a novel coronavirus (SARS-CoV-2) disease, has been spreading worldwide. To prevent its
spread, many cities, regions, and countries were or have been ‘locked down’, suppressing economic activ-
ities. On 18 April 2020, 158 countries out of 181 required closing temporarily or working from home for
some sectors in some or all cities. Although some countries later lifted their lockdowns, the number of
countries in a lockdown remained 95 on 30 July 2020 [1].

Closing workplaces shrinks the economic output of locked down regions. The negative economic effect
of a lockdown in one region may diffuse through supply chains, i.e., supplier-client relationships of firms,
to other regions that are not necessarily locked down. When a firm is closed by a lockdown strategy,
its client firms located anywhere should suffer decreased production because of the lack of supply of
intermediate goods and services. Suppliers of the closed firm should also see reduced production because
of a shortage of demand.

Many studies have empirically confirmed the propagation of economic shocks through supply chains,
particularly shocks originating from natural disasters [2, 3, 4, 5, 6, 7]. Some examine the diffusion of the
effect of lockdowns because of COVID-19 on production across regions and countries and estimate the
total effect using input–output (IO) linkages at the country-sector level [8, 9, 10, 11] and supply chains
at the firm level [12].

Several works focusing on natural disasters [5, 6] pay attention to how the network structure of
supply chains affects the propagation of shocks, finding that the scale-free property, non-substitutability
of suppliers, and loops are major drivers of such propagation. However, the role of the network structure
has not been fully examined in the context of the propagation of the lockdown effect. However, this issue
should be of great interest from the perspective of network science for the following two reasons.

First, the literature on network interventions has investigated what types of individuals or groups in
a network, such as those with high centrality, should be targeted to promote (prevent) the diffusion of
positive (negative) behaviours and outcomes [13, 14]. Similarly, we are interested in how the economic
effect of imposing and lifting a lockdown in one region, an example of a network intervention, diffuses
to other regions. Compared with existing works, this study is novel in many respects. For example, we
consider interventions in a network of firms and their economic outcomes, while previous studies focus on
the health behaviours and outcomes in human networks [15], with a few exceptions that examine economic
outcomes in human networks [16]. In addition, because a lockdown is usually imposed in a city, state, or
country, the scale of interventions is large. Those firms targeted by such interventions are exogenously
determined by geography, and thus we should assess the network characteristics of exogenously grouped
nodes rather than the endogenously connected ones identified by network centrality [13, 17] or community
detection algorithms [18].

Second, at any point amid the spread of COVID-19, some regions have imposed a lockdown, while oth-
ers have remained open. Therefore, when we evaluate the lockdown strategy of a region, the interactions
between the strategies of different regions need to be taken into account. In other words, the economic
effect of a lockdown in a region depends on whether other regions connected through supply chains are
similarly locked down. For example, Sweden did not impose a strict lockdown, unlike other European
countries. However, it still expects a 4.5% reduction in gross domestic product (GDP) in 2020, a decline
comparable to those in neighbouring countries that did lock down, possibly because of its close economic
ties with its neighbours [19]. Motivated by the Swedish experience, this study examines the network
structure between regions that is usually ignored in the literature on network interventions and discusses
the need for policy coordination among regions depending on their network characteristics. Some stud-
ies call for inter-regional and international policy coordination in the presence of spillover effects in the
context of health, environment, and macroeconomics [20, 21], but they do not explicitly incorporate the
network structure.

We conduct a simulation analysis applying actual supply-chain data of 1.6 million firms and experi-
ences of lockdowns in Japan to an agent-based model of production. Specifically, we analyse the network
characteristics of a prefecture in Japan that led to greater economic recovery by lifting its lockdown when
all other prefectures remained locked down. In addition, to further highlight the interactions between
regions, our simulation investigates how the characteristics of the supply-chain links between two prefec-
tures affect their economic recovery when they simultaneously lift their lockdowns. One novelty of our
study is to decompose supply-chain flows into potential and loop flow components and test the role of
upstreamness (potential) in supply chains and intra- and inter-prefectural loops in diffusion.
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2 Data

The data used in this study are taken from the Company Information Database and Company Linkage
Database collected by Tokyo Shoko Research (TSR), one of the largest credit research companies in Japan.
The former includes information about the attributes of each firm, including the location, industry, sales,
and number of employees, whereas the latter includes the major customers and suppliers of each firm.
Because of data availability, we use the data on firm attributes and supply chains in 2016. The number
of firms in the data is 1,668,567 and the number of supply-chain links is 5,943,073. Hence, our data
identify the major supply chains of most firms in Japan, although they lack information about supply-
chain links with foreign entities. Because the transaction value of each supply-chain tie is not available
in the data, we estimate sales from a supplier to each of its customers and consumers using the total
sales of the supplier and its customers and IO tables for Japan for 2015. In this estimation process, we
must drop firms without any sales information. Accordingly, the number of firms in our final analysis is
966,627 and the number of links is 3,544,343. Although firms in the TSR data are classified into 1,460
industries according to the Japanese Industrial Standard (JIS) classification, we simplify them into the
187 industries classified in the IO tables. Supplementary Information A provides the details of the data
construction process.

In the supply-chain data described above, the degree, or the number of links, of firms follows a power-
law distribution [5], as often found in the literature [22]. The average path length between firms, or the
number of steps between them through supply chains, is 4.8, indicating a small-world network. Using
the same dataset, previous studies [5, 23] find that 46–48% of firms are included in the giant strongly
connected component (GSCC), in which all firms are indirectly connected to each other through supply
chains. The large size of the GSCC clearly shows that the network has a significant number of cycles
unlike the common image of a layered or tree-like supply-chain structure.

3 Methods

3.1 Model

Agent-based models that incorporate the interactions of agents through networks have been widely used
in social science recently [24, 25, 26]. Following the literature, we employ the dynamic agent-based model
of Inoue and Todo [5, 6], an extension of the model of Hallegatte [27] that assumes supply chains at
the firm level. In the model, each firm utilises the inputs purchased from other firms to produce an
output and sells it to other firms and consumers. Firms in the same industry are assumed to produce
the same output. Supply chains are predetermined and do not change over time in the following two
respects. First, each firm utilises a firm-specific set of input varieties and does not change the input set
over time. Second, each firm is linked with fixed suppliers and customers and cannot be linked with any
new firm over time. Furthermore, we assume that each firm keeps inventories of each input at a level
randomly determined from the Poisson distribution. Following Inoue and Todo [5], in which parameter
values are calibrated from the case of the Great East Japan earthquake, we assume that firms aim to keep
inventories for 10 days of production on average (see Supplementary Information B.1 for the details).

When a restriction is imposed on the production of a firm, both the upstream and the downstream
of the firm is affected. On the one hand, the demand of the firm for the parts and components of its
suppliers immediately declines, and thus suppliers have to shrink their production. Because demand for
the products of suppliers’ suppliers also declines, the negative effect of the restriction propagates upstream.
On the other hand, the supply of products from the directly restricted firm to its customer firms declines.
Then, one way for customer firms to maintain the current level of production is to use their inventories
of inputs. Alternatively, customers can procure inputs from other suppliers in the same industry already
connected before the restriction if these suppliers have additional production capacity. If the inventories
and inputs from substitute suppliers are insufficient, customers have to shrink their production because
of a shortage of inputs. Accordingly, the effect of the restriction propagates downstream through supply
chains. Such downstream propagation is likely to be slower than upstream propagation because of the
inventory buffer and input substitution.
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3.2 Lockdowns in Japan

In Japan, lockdown strategies were implemented at the prefecture level under the state of emergency [28]
first declared on 7 April 2020 in seven prefectures with a large number of confirmed COVID-19 cases.
Because populated regions tended to be affected more and earlier, these seven prefectures were industrial
clusters in Japan, including Tokyo, Osaka, Fukuoka and their neighbouring prefectures. The target of
the state of emergency was expanded to all 47 prefectures on 16 April. The state of emergency was lifted
for 39 prefectures on 14 May and for an additional three on 21 May; it was lifted for the remaining five
prefectures on 25 May. Supplementary Information Figure A.3 summarises the timeline of the lockdowns
in different prefectures.

Although the national government declared a state of emergency, the extent to which the restrictions
were imposed was determined by each prefecture government. Therefore, the level of the lockdown in
each prefecture may have varied. Although all prefectures were in the state of emergency from April 16
to May 14, prefectures with a large number of confirmed COVID-19 cases, such as the seven prefectures
in which the state of emergency was first declared, requested more stringent restrictions than others.
The national or prefecture government can only request closing workplaces, staying at home, and social
distancing rather than require these actions through legal enforcement or punishment; however, strong
social pressure in Japan led people and businesses to voluntarily restrict their activities to a large extent.
As a result, production activities including those in sectors not officially restricted shrunk substantially
(Mainichi Newspaper, 27 May 2020).

3.3 Simulation procedure

Replication of the actual effect In our simulation analysis, we first confirm whether our model and
data can replicate the actual reduction in production caused by the lockdown of Japan during the state of
emergency. Because we cannot observe the extent to which each firm reduces its production capacity by
obeying governmental requests, the rate of reduction in production capacity for each sector assumed in
our simulation analysis depends on its characteristics. Specifically, the rate of reduction in a sector is the
product of the level of reduction determined by the degree of exposure to the virus given by [9] and the
share of workers who cannot work at home given by [8]. For example, in lifeline/essential sectors such as
the utilities, health, and transport sectors, the rate of reduction is assumed to be zero; in other words, the
production capacity in these sectors does not change on lockdown. In sectors in which it is assumed that
exposure to the virus is low (10%) and 47.5% of workers can work at home, such as the wholesale and
retail sectors, the rate of reduction is 5.25% (= 0.1× (1− 0.475)). Sectors with medium exposure (50%)
and a lower share of workers working at home (26.8%), such as the iron and other metal product sectors,
reduce production capacity by 35.2% (= 0.5 × (1 − 0.268)). See Supplementary Information Table B.1
for the rate of reduction of each sector.

After the lockdown in a prefecture is lifted, all the firms in that prefecture immediately return to
their pre-lockdown production capacity. Moreover, we assume that inventories do not decay over time:
inventories stocked before the lockdown can be fully utilised after the lockdown is lifted. The following
results are averaged over 30 Monte Carlo runs.

Interactions among regions After checking the accuracy of our simulation model, we examine how
changing the restriction level of the lockdown in a region affects production in another region. For this
purpose, we experiment with different sets of sector-specific rates of reduction in production capacity
by multiplying the benchmark rates of reduction defined above by a multiplier such as 0.4 or 0.8. For
example, when the benchmark rate of reduction in a sector is 35.2%, as in the case of the iron and other
metal product sectors, and the multiplier is 0.4, we alternatively assume a rate of reduction of 14.1%.

Moreover, we assume that the rates of reduction can vary among prefectures because each prefecture
can determine its own level of restrictions under the state of emergency (Section 3.2). In practice, the
restrictions requested by the prefecture government were tougher and people were more obedient to the
requests in the seven prefectures in which the state of emergency was first declared because of their large
number of confirmed COVID-19 cases (Figure A.3(b)) than in other prefectures. Accordingly, we run the
same simulation assuming different rates of reduction for the two types of prefectures, defined as more
and less restricted groups, to investigate how different rates of reduction in one group affect production
in the other.
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Figure 1: Visualisation of supply chains for top 1,000 firms in terms of sales. Each dot indicates a firm.
Firms with a higher HH potential are located more upward in both panels. In the left panel, the grey
lines illustrate the potential flows computed from the HHD. The red and blue node colours respectively
represent higher and lower HH potentials. The right panel shows loop flows computed from HHD, while
the different colours represent different cycles.

Lifting lockdown in only one region In practice, some prefectures lifted their lockdowns earlier
than others (Section 3.2). Although this may have led to the recovery of value added production, or gross
regional product (GRP), the extent of such a recovery should have been affected by the links between
firms in the prefecture and others still locked down. To highlight this network effect, we simulate what
would happen to the GRP of a prefecture if it lifted its lockdown while all others were still imposing
lockdowns. Then, we investigate what network characteristics of each prefecture determine the recovery
from lockdown, measured by the ratio of the increase in the GRP of the prefecture by lifting its lockdown
to the reduction in its GRP because of the lockdown of all prefectures.

In particular, we focus on four types of network characteristics. First, when a prefecture is more
isolated from others in the supply-chain network, the effect of others’ lockdowns should be smaller. We
measure the level of isolation using the number of links within the prefecture relative to the total degree
of firms (total number of links from and to firms) in the prefecture.

Second, an alternative and more interesting measure of isolation is the intensity of loops in supply
chains. Although supply chains usually flow from suppliers of materials to those of parts and components
and to assemblers, some suppliers use final products such as machinery and computers as inputs. This
results in many complex loops in supply chains [29], in which negative shocks circulate and can become
aggravated [5]. Such loops in a network are found to generate instability in the system dynamics litera-
ture [30] and more recently in the context of supply chains [31]. In the case of lifting the lockdown in only
one prefecture, the loops within that prefecture may magnify its recovery because of the circulation of
positive effects in the loops. To measure the intensity of the loops in the supply chains within a prefecture,
we apply the Helmholtz–Hodge decomposition (HHD) to all the flows in the network and decompose each

directed link from firm i to firm j, Fij , into a potential (or gradient) flow component, F
(p)
ij , and a loop

(or circular) flow component, F
(c)
ij [32]. Supplementary Information B.3 explains the details of the HHD.

Figure 1 illustrates potential and loop flows of top 1,000 firms in terms of sales. In particular, the right
panel identifies a number of loops in supply chains. Then, our measure of the intensity of the loops for
prefecture a is the ratio of the total loop flows within the prefecture

∑
i,j∈a F

(c)
ij to the total degree of all

the firms in the prefecture denoted by Fa.
Third, we pay attention to the upstreamness of firms in supply chains. Theoretically, upstream

firms are affected by supply-chain disruptions through a lack of demand, whereas downstream firms are
affected through a lack of supply. However, the effect of upstream and downstream links can differ
in size. A recent sectoral analysis [33] finds that the profits of more upstream sectors in global value
chains are substantially lower than those of more downstream sectors, implying that negative economic
shocks propagate upstream more than downstream. To clarify the possible effect of upstreamness, we
define the upstream position of each firm i in supply chains using its Helmholtz–Hodge potential, φi,
computed from the potential flows obtained from the HHD for the whole network. The HH potential is
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higher when the firm is located in a more upstream position. In practice, it is higher for the mining,
manufacturing, and information and communication sectors, while lower for the wholesale, retail, finance,
healthcare, and accommodation and food service sectors [29]. We average the HH potential over the firms
in each prefecture to measure the upstreamness of the prefecture in supply chains (see Supplementary
Information Figure B.2 for this measure for each prefecture).

Finally, even when the supplies of parts and components from other prefectures are shut down because
of their lockdowns, the negative effect can be mitigated if suppliers can be replaced by those in the
prefecture lifting its lockdown. Existing studies [2, 5] have found that input substitutability can largely
mitigate the propagation of negative economic shocks through supply chains. By assumption, suppliers of
firms in prefecture a that are in other prefectures on lockdown can be replaced by suppliers in prefecture
a that are in the same industry and already connected. To measure the degree of supplier substitutability
for prefecture a, we divide the number of the latter suppliers by the number of the former.

Lifting lockdowns in two regions simultaneously In practice, each prefecture government deter-
mined its restriction level of lockdown after observing the spread of COVID-19 in its prefecture and
typically ignored the economic interactions with other prefectures through supply chains. This may have
led to the misevaluation of the economic effect of lockdown. To emphasise the role of the interactions
between prefectures in the economic effect of lockdown, our simulations analyse the economic effect of
lifting the lockdown in a prefecture on its GRP when another prefecture lifts its lockdown simultaneously.
We define a relative measure of recovery using the ratio of the increase in the GRP of prefecture a when
it lifts its lockdown together with prefecture b (∆GRP ab

a ) to its increase when it lifts its lockdown alone
(∆GRP a

a ).
Presumably, the characteristics of the links between the two prefectures largely affect their recovery.

Expanding the case of lifting the lockdown in only one prefecture described just above, we are particularly
interested in the following variables. First, we define the intensity of the directional links from prefectures
a to b and from b to a by

Linkab ≡
∑

i∈a,j∈b

Fij/Fa (1)

and
Linkba ≡

∑
i∈a,j∈b

Fji/Fa, (2)

respectively, where Fa is the total degree of firms in prefecture a, as defined before. Second, we focus on
potential flows using the HHD as above and define the intensity of potential flows from prefectures a to
b and from b to a by

Potab ≡
∑

i∈a,j∈b

F
(p)
ij /Fa (3)

and
Potba ≡

∑
i∈a,j∈b

F
(p)
ji /Fa, (4)

respectively. Third, the intensity of the loops between prefectures a and b is given by

Loopab ≡
∑

i∈a,j∈b

F
(c)
ij /Fa. (5)

Supplementary Information B.3 describes how to calculate Potab, Potba, and Loopab using a simple
example.

Finally, when suppliers of firms in prefecture a are located outside prefectures a and b and thus
are locked down, they can be replaced by suppliers in the same industry in prefecture b that are already
connected with firms in prefecture a. To measure the degree of this supplier substitutability, we divide the
total number of the latter suppliers by the total number of the former. See Supplementary Information B.4
for the details.
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4 Results

4.1 Simulation of the effect of the actual lockdown

In Figure 2, the blue lines show the results of the 30 Monte Carlo runs conducted to estimate the effect of
the actual lockdown in Japan given the sector-specific rates of reduction in production capacity assumed
in the literature [33, 9] and shown in Supplementary Information B.1. The horizontal axis indicates the
number of days since the declaration of the state of emergency (April 7) and the vertical axis represents
the total value added production, or GDP, of Japan on each day. See Section 3.2 for the sequence of
the state of emergency across the country. Averaged over the 30 runs, the estimated loss in GDP is 13.1
trillion yen (124 billion U.S. dollars), or 2.5% of yearly GDP.

Figure 2: Simulations of value added (GDP) during the actual lockdown. The blue and green lines show
the simulation results given the sector-specific rates of reduction in production capacity assumed in the
literature [33, 9] and shown in Supplementary Information B.1 and 65% of those rates to calibrate the
actual production dynamics, respectively. Each line represents the daily GDP from one Monte Carlo run.
The red segments indicate the daily GDP estimated from pre-lockdown GDP and the post-lockdown
monthly Indices of All Industry Activity (IAIA) for April and May.

Figure 3: Geographical visualisation of the effect of lockdowns. In the left panel, locked-down prefectures
in the first stage of the state of emergency (day 0-8) are shown in red, while the right panel presents the
rate of reduction in production averaged over firms in each municipality on day 5, using different colours
for different rates of reduction.
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Without relying on our model and simulation, we also estimate the changes in daily GDP from pre-
lockdown GDP and the post-lockdown monthly Indices of All Industry Activity (IAIA) [34]. The average
daily GDP in April and May estimated from the IAIA is illustrated by the red lines in Figure 2 (see
Supplementary Information C.1 for the detailed procedures). The total loss of GDP estimated by the
IAIA, or the pink area in Figure 2, is 7.52 trillion yen (1.44% of GDP), 57.4% of the estimate from our
simulations. Our simulation thus overestimates the loss of GDP from the lockdown, possibly because the
assumed rates of reduction in production capacity due to the lockdown taken from the literature [8, 9]
are larger than the actual rates in Japan. Therefore, we experiment with different rates of reduction in
production capacity by multiplying the benchmark rates by a weight to calibrate changes in production.
We find that a weight of 65% results in a close fit between our estimates and those from the IAIA and
show the results using green lines in Figure 2.

In either case (blue or green lines), the production loss rises during the lockdown. For example, value
added declined monotonically from days 9 to 37 when all prefectures were in the state of emergency,
assuming a fixed rate of reduction in production capacity throughout the period. This is because the
economic contraction in different regions interacted with each other through supply chains and thus
worsened over time. This worsening trend in GDP is consistent with GDP estimated using the IAIA.

Another notable finding from the simulation is that prefectures that were not locked down were heavily
affected by those in lockdowns. To highlight this, the left panel of Figure 3 shows locked-down prefectures
in the first stage of the state of emergency (day 0-8) in red, while the lower-right panel presents the rate
of reduction in production averaged over firms in each municipality on day 5. From these figures, it is
clear that the economic effect of lockdowns in some prefectures diffuse to others that are not locked down.
A video is available for the temporal and geographical visualisation. See Appendeix C.1.

In addition, because of the network effect, the earlier lifting of the lockdown in some prefectures does
not result in a full recovery of production in these prefectures. Notably, when the lockdown was lifted
in 39 prefectures on day 37 (14 May), the simulated GDP showed a sharp recovery but dropped again
substantially a few days after the recovery. This drop occurred because the lockdown remained active in
eight prefectures including the top two industrial clusters in Japan, namely, greater Tokyo and greater
Osaka. Although economic activities returned to normal in these 39 prefectures, their production did not
recover monotonically but rather declined again because the major industrial clusters linked with them
were still locked down. This finding points to the interactions of the economic effect of lockdown between
regions through firm-level supply chains.

4.2 Interactions between lockdowns in different regions

Next, we experiment with simulations assuming different restriction levels of lockdown, or different sets of
multipliers for the sector-specific benchmark rates of reduction in production capacity, between the more
and less restricted groups (Section 3.3). The more restricted group comprises the seven prefectures with a
large number of COVID-19 cases (pink ones in panel (b) of Figure A.3), whereas the less restricted group
includes the other 40 prefectures. The left, middle, and right panels of Figure 4 indicate the loss in GDP
for different multipliers for the more restricted group when fixing the multiplier for the less restricted
group at 0%, 50%, and 100%, respectively. Here, 100% corresponds to the rates of reduction shown in
Supplementary Information Table B.1 and used in the previous subsection and 0% means no restriction.
In each bar, the blue and red parts show the loss of value added in the more and less restricted groups,
respectively.

As shown, the total loss of GDP increases in the restriction level of lockdown in both groups. For
example, the total production loss is 1.57% of GDP when the multiplier is 50% for both groups (the
left bar in the middle panel), while it is larger, or 3.89%, when the multiplier is 100% for both (the
right panel). More interestingly, the left panel shows that while the less restricted group imposes no
restrictions, its value added decreases more (i.e. the red part in Figure 4 increases) as the more restricted
group imposes more restrictions. When the level of restrictions in the more restricted group is the highest
(i.e. the multiplier is 100%), the loss in value added in the less restricted group without any lockdown
is large: 3.93 trillion yen, or 2.12% of its pre-lockdown value added. These results clearly indicate that
even when prefectures are not locked down, their economies can be damaged because of the propagation
of the effect of the lockdowns in other prefectures through supply chains.
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Figure 4: Loss in value added as a percentage of total value added (GDP) assuming different restriction
levels of lockdown for 60 days between the more and less restricted groups. A restriction level is defined
by a multiplier for the sector-specific benchmark rates of reduction in production capacity. For example,
the left bar presents the result assuming a multiplier of 0% (i.e., no restriction) for the less restricted
group and 20% for the more restricted group. The red and blue parts of each bar show the loss of value
added in the less and more restricted groups, respectively, as a percentage of GDP.

4.3 Effect of lifting the lockdown in one region

We further examine, when only one prefecture lifts its lockdown, while all the other prefectures remain
locked down, how the recovery of that prefecture from lifting its lockdown is determined by its network
characteristics. Figure 5 illustrates the recovery rate of each prefecture defined as the ratio of the total
gain of its value added, or gross regional production (GRP), from lifting the lockdown to its total loss
from the lockdown of all the prefectures for two weeks. Red prefectures recover the most, yellow ones
recover moderately, and white ones recover slightly. See Supplementary Information Figure C.4 for the
recovery rate of each prefecture.

Figure 5: Choropleth map of the recovery rate for each prefecture. The recovery rate is defined as the
ratio of the total gain of a prefecture’s GRP from lifting its own lockdown to its total loss from the
lockdown of all the prefectures for two weeks.

One notable finding from this figure is that the prefectures that recover the most, or the red prefectures
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in Figure 5, include Hokkaido, Shimane, and Okinawa, which are remote from industrial hubs in terms of
both geography and supply chains, suggesting the effect of network characteristics on economic recovery
by lifting a lockdown (see Supplementary Information Figure A.1 for inter-prefecture supply chains and
Supplementary Information Figure A.2 for the name and location of each prefecture).

We further examine the correlation between the recovery rate and network measures explained in Sec-
tion 3.3 (i.e. those for isolation, loops, upstreamness, and supplier substitution) and test the significance
of the correlation using ordinary least squares (OLS) estimations. Figure 6 illustrates the correlation
between the recovery rate and network measures. To control for the effect of the prefecture’s economic
size on its recovery (Figure 6(f)), we include GRP in logs in all the OLS estimations and exclude the
effect of GRP from the recovery rate in Figure 6. The number of links of each prefecture could also be
controlled for; however, because its correlation coefficient with GRP is 0.965 (Supplementary Informa-
tion Table C.1), we do not use the total links in our regressions to avoid multicollinearity. Supplementary
Information Table C.2 presents the OLS results.

Figure 6: Correlation between the recovery rate and selected network measures. The vertical axis indicates
the recovery rate defined as the ratio of the increase in the GRP of a prefecture by lifting its own lockdown
to its decrease because of the lockdown of all the prefectures. Except for panel (f), the effect of GRP is
excluded from the recovery rate. The horizontal axis indicates the share of the links within the prefecture
to its all links in (a), the share of the loop flows within the prefecture to its total flows in (b), the share
of the links to other prefectures to all links in (c), the standardised potential flows in (d), the share of
substitutable suppliers to all suppliers outside the prefecture in (e), and GRP in logs in panel (f), The
orange line in each panel specifies the fitted value from a linear regression that controls for the effect of
GRP. The blue, black, and red dots show prefectures whose GRP is among the top 10, bottom 10, and
others, respectively.

In panels (a) and (b) of Figure 6, the supply-chain links and loops within the prefecture are found
to be positively correlated with the recovery rate. These results suggest that when a prefecture is more
isolated in the network and has more loops within it, the positive effect of lifting a lockdown circulates in
the loops, which can mitigate the propagation of the negative effects of other prefectures’ lockdowns. By
contrast, the outward links to other prefectures and the HH potential of the prefecture are negatively and
significantly correlated with the recovery rate (panels (d) and (e)). These findings imply that prefectures
with more upstream firms in supply chains tend to recover less from lifting their own lockdowns. Panel
(f) indicates that the recovery rate is higher when more suppliers in other prefectures under lockdown
can be replaced by those in the prefecture lifting its lockdown.
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4.4 Effect of lifting the lockdowns in two regions simultaneously

Finally, we simulate the effect on the production of prefecture a if it lifted its lockdown together with
prefecture b. We compare the recovery in prefecture a’s GRP by lifting its lockdown together with
prefecture b and that by lifting its lockdown alone and compute the relative recovery measure, as shown
in Supplementary Information Figure C.5. Using a regression framework as above, we investigate how
the relative recovery measure of prefecture a is affected by the network relationships between prefectures
a and b. Figure 7 illustrates the correlation between selected key variables and the relative recovery.
In the regression analysis, we always control for the GRP of prefecture b, its squares, and the number
of links between and prefectures a and b that may affect the relative recovery (Figure 7 (e) and (f)).
Then, we exclude these effects from the relative recovery in panels (a)–(d) in the figure. Supplementary
Information Table C.4 presents the results of the OLS estimations.

Figure 7: Correlation between the relative recovery and selected network measures. The vertical axis
indicates the relative recovery of prefecture a, defined as the ratio of the increase in the GRP of prefecture
a by lifting its lockdown together with prefecture b to its increase by lifting its lockdown alone. The effect
of the GRP of b and total links between the two are excluded from the relative recovery measure. The
variable in the horizontal axis is given by Equations 3 and 4 in panels (a) and (b), respectively, Equation
5 in (c), the share of substitutable suppliers in b for those in a among a’s locked-down suppliers in (d),
the number of links between prefectures a and b in (e) and the GRP of b in logs in (f). The orange line
in each panel signifies the fitted value from a linear regression that controls for the effect of the GRP of
b and total number of links between a and b in (a)–(d). The blue, black, and red dots show the pairs of
prefectures a and b for which the GRP of b is among the top 10, bottom 10, and others, respectively.

Panels (a) and (b) of Figure 7 show that even after controlling for the effect of economic size and
number of links between the two prefectures, the ratio of potential flows from prefecture a to b and
from b to a to the total flows of a is positively correlated with the relative recovery. Supplementary
Information Figure C.6 shows similarly positive correlation between for the number of links between the
two, rather than potential flows, and the recovery. These results suggest that the recovery from lifting
a lockdown is greater when two prefectures closely linked through their supply chains, regardless of the
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direction, lift their lockdowns together. Further, we find that prefecture a recovers more when prefectures
a and b are linked through more circular flows (panel (c)), confirming that the positive impacts of lifting
a lockdown can circulate and be strengthened in inter-regional supply-chain loops. Panel (d) indicates
that if prefecture a’s suppliers in other prefectures are locked down but can be replaced by suppliers
in prefecture b easily, prefecture a’s recovery is higher when the two prefectures lift their lockdowns
together. Although the correlation between the relative recovery measure and network variables seems to
be largely driven by the observations for which the GRP of prefecture b is large (depicted by the blue dots
in Figure 7), we find that the positive correlation still exists without these observations (Supplementary
Information Figure C.7).

5 Discussion and Conclusion

Our simulation analysis reveals that the economic effects of lockdowns in different regions interact with
each other through supply chains. Our results and their implications can be summarised as follows.

First, when a firm is locked down, its suppliers and customer firms are affected because of a lack of
demand and supply, respectively. Therefore, the production of regions can recover more by lifting their
lockdowns together when they are closely linked through supply chains in either direction (Figure 7(a)–
(b)). Besides the total number of links between the two regions, the intensity of such links compared
with those with others is also important.

Second, when the firms in a region are in more upstream positions in the whole network or they are
mostly suppliers of simple parts, the production of the region does not recover substantially by lifting
its lockdown alone (Figure 6(d)). Although the negative economic effect of lockdown can propagate
downstream and upstream, firms can mitigate downstream propagation easily using inventory or replacing
locked-down suppliers. The difference between the downstream and upstream effects of lockdown is
aggravated as the effect propagates further through supply chains. This finding is in line with the
literature [33, 35] that also finds the upstream accumulation of negative effects on profits and assets. In
practice, our result implies that a region with many small- and medium-sized suppliers of simple materials
and parts should be cautious about whether it lifts its lockdown, which may not result in a large economic
benefit but still promote the spread of COVID-19.

Third, the production of a region can recover more by lifting its lockdown when it is more isolated
in the network or embodies more supply-chain loops within the region (Figures 6(a) and (b)). Similarly,
the production of the two regions can recover more by lifting their lockdowns together when their inter-
regional links have more loops (Figure 7(c)). These results imply that the positive economic effect of
lifting a lockdown circulates and is intensified in loops, consistent with those in [5]. Supply-chain loops
exist between two regions when the final goods produced are used as inputs by suppliers, while suppliers
provide parts and components to final-good producers and the loop stretches across two regions. The
importance of loops in the diffusion of the economic effects in networks is not fully recognised either in
the academic literature or in policymaking.

Finally, the recovery of a region from its lockdown is greater when suppliers still locked down can
be replaced by those within the region or in other regions without a lockdown in place (Figures 6(e)
and 7(f)). The role of the substitutability of suppliers in mitigating the propagation effect through
supply chains has been empirically found in the literature [2, 7, 5, 6]. In practice, this finding suggests
two management strategies for regional governments and firms. To minimise the economic loss from
lockdown, a region should develop a full set of industries to allow the substitution of any industry to be
possible. Alternatively, the firms in the region should be linked with geographically diverse suppliers so
that suppliers in a locked-down region can be replaced by those in other regions without a lockdown.

All these results point to the need for policy coordination among regions when regional governments
impose or lift a lockdown. Although this study uses the inter-firm supply chains within a country and
considers the economic effect of prefecture-level lockdowns, our results can be applied to the effect of
country-level lockdowns propagating through international supply chains. For example, many suppliers
of German firms are located in Eastern Europe and many suppliers of US firms are in Mexico. Our results
thus suggest that the economic gains of Eastern Europe and Mexico from lifting their lockdowns is minimal
if Germany and the United States, respectively, remain locked down. In addition, our framework can be
applied to the case of other infectious diseases, and it is likely to suggest a need for the inter-regional and
international coordination of lockdown strategies to prevent the spread of infection.
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Supplemantary Information

A Data

A.1 Supply chains

In the TSR data, the maximum number of suppliers and customers reported by each firm is 24. How-
ever, we can capture more than 24 by looking at supplier–customer relations from the opposite direction.
Because the TSR data include the address of the headquarters of each firm, we can identify the longi-
tude and latitude of each headquarters using the geocoding service provided by the Center for Spatial
Information Science at the University of Tokyo.

Because the TSR data do not include the value of each transaction between two firms, we estimate
it in two steps. First, we divide each supplier’s sales into its customers in proportion to the sales of
customers to obtain a tentative sales value. Second, we employ the IO table for Japan in 2015 [38] to
transform these tentative values into more realistic ones. Specifically, we aggregate the tentative values
at the firm-pair level to obtain the total sales for each pair of sectors. We then divide the total sales for
each sector pair by the transaction values for the corresponding pair in the IO tables. The ratio is then
used to estimate the transaction values between firms. The final consumption of each sector is allocated
to all the firms in the sector using their sales as weights.

Although the supply chains used in our simulations are at the firm level, this study often uses features
of the supply chains at the prefecture level because different prefectures imposed lockdowns to different
degrees. Therefore, Figure A.1 illustrates the inter-prefecture supply chains. The red and blue lines
show the inter-prefectural links between Tokyo and other prefectures and between other prefectures than
Tokyo, respectively. We observe that Tokyo is the centre of supply chains in Japan, while several smaller
hubs such as Aichi, Osaka, and Fukuoka also exist.

Figure A.1: Inter-prefectural links. Inter-firm links are aggregated into inter-prefectural links, ignoring
the directions of the links. The inter-prefectural links between two prefectures are not shown here if the
number of inter-firm links is less than 3,000. The links within each prefecture are also ignored. The red
and blue lines show the inter-prefectural links between Tokyo and other prefectures and between two of
other prefectures, respectively.
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A.2 Prefectures in Japan

Because this study uses prefectures as the unit of regions, it is important to provide information on the
prefectures in Japan. Figure A.2 shows the locations, Japan Industrial Standard (JIS) codes, and names
of the 47 prefectures. In Figures C.3 and the JIS codes are shown on the horizontal axis.

Figure A.2: Prefecture locations and their codes. The number on the map is the JIS code of each
prefecture shown in the right table.
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A.3 Geographic presentation of the timeline of lockdowns

Supplementary Information Figure A.3 shows where and when the lockdowns were imposed to prefectures.

B Methods

B.1 Model

We rely on the model of Inoue and Todo [5, 6], an extension of the existing agent-based models used
to examine the propagation of shocks by natural disasters through supply chains, including Hallegatte’s
model [27]. Each firm uses a variety of intermediates as inputs and delivers a sector-specific product to
other firms and final consumers. Firms have an inventory of intermediates to address possible supply
shortages.

In the initial stage before an economic shock, the daily trade volume from supplier j to customer i is
denoted by Ai,j , whereas the daily trade volume from firm i to final consumers is denoted by Ci. Then,
the initial production of firm i in a day is given by

Pinii = ΣjAj,i + Ci. (6)

On day t after the initial stage, the previous day’s demand for firm i’s product is D∗i (t−1). The firm thus
makes orders to each supplier j so that the amount of its product of supplier j can meet this demand,
Ai,jD

∗
i (t− 1)/Pinii. We assume that firm i has an inventory of the intermediate goods produced by firm

j on day t, Si,j(t), and aims to restore this inventory to a level equal to a given number of days ni of the
utilisation of the product of supplier j. The constant ni is assumed to be Poisson distributed, where its
mean is n, which is a parameter. In addition, ni does not take a number smaller than 4, although the
model in the previous literature sets this number to 2. Since the small minimum inventory size causes a
bullwhip effect (fluctuation of production level), we set the number to 4 in this work and recalibrate the
parameters. When the actual inventory is smaller than its target, firm i increases its inventory gradually
by 1/τ of the gap, so that it reaches the target in τ days, where τ is assumed to be 6 to follow the original

Figure A.3: Changes in locked down prefectures. The pink prefectures in each panel show those that
were locked down during the period.
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model [27]. Therefore, the order from firm i to its supplier j on day t, denoted by Oi,j(t), is given by

Oi,j(t) = Ai,j
D∗i (t− 1)

Pinii
+

1

τ
[niAi,j − Si,j(t)] , (7)

where the inventory gap is in brackets. Accordingly, total demand for the product of supplier i on day t,
Di(t), is given by the sum of final demand from final consumers and total orders from customers:

Di(t) = ΣjOj,i(t) + Ci. (8)

Now, suppose that an economic shock hits the economy on day 0 and that firm i is directly affected.
Subsequently, the proportion δi(t) of the production capital of firm i is malfunctioning. In this study,
δi is determined by the sector and prefecture to which firm i belongs, and a term for which a lockdown
is imposed. Hence, the production capacity of firm i, defined as its maximum production assuming no
supply shortages, Pcapi(t), is given by

Pcapi(t) = Pinii(1− δi(t)). (9)

The production of firm i might also be limited by the shortage of supplies. Because we assume that firms
in the same sector produce the same product, the shortage of supplies suffered by firm j in sector s can
be compensated for by supplies from firm k in the same sector s. Firms cannot substitute new suppliers
for affected suppliers after the disaster, as we assume fixed supply chains. Thus, the total inventory of
the products delivered by firms in sector s in firm i on day t is

Stoti,s(t) = Σj∈sSi,j(t). (10)

The initial consumption of products in sector s of firm i before the disaster is also defined for convenience:

Atoti,s = Σj∈sAi,j . (11)

The maximum possible production of firm i limited by the inventory of product of sector s on day t,
Pproi,s(t), is given by

Pproi,s(t) =
Stoti,s(t)

Atoti,s
Pinii. (12)

Then, we can determine the maximum production of firm i on day t, considering its production capacity,
Pcapi(t), and its production constraints due to the shortage of supplies, Pproi,s(t):

Pmaxi(t) = Min
(
Pcapi(t),Mins(Pproi,s(t))

)
. (13)

Therefore, the actual production of firm i on day t is given by

Pacti(t) = Min (Pmaxi(t), Di(t)) . (14)

When demand for a firm is greater than its production capacity, the firm cannot completely satisfy its
demand, as denoted by Equation (9). In this case, firms should ration their production to their customers.
We propose a rationing policy in which customers and final consumers are prioritised if they have small
amount of order to their initial order, instead of being treated equally, as in the previous work [27].

Suppose that firm i has customers j and a final consumer. Then, the ratios of the order from customers
j and the final consumer after the shock to the one before the shock denoted by Orel

j,i and Orel
c , respectively

are determined by the following steps, where Osub
j,i and Osub

c are temporal variables used to calculate the
realised order and are set to be zero initially.

1. Obtain the remaining production r of firm i

2. Calculate Orel
min = Min(Orel

j,i , O
rel
c )

3. If r ≤ (
∑

j O
rel
minOj,i +Orel

minCi) then proceed to 8
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4. Add Orel
min to Osub

j,i and Osub
c

5. Subtract (
∑

j O
rel
minOj,i +Orel

minCi) from r

6. Remove the customer or the final consumer that indicated Orel
min from the calculation

7. Return to Step 2

8. Calculate Orea that satisfies r = (
∑

j O
reaOj,i +OreaCi)

9. Obtain O∗j,i = OreaOj,i +Osub
j,i Oj,i and C∗i = OreaCi +Osub

c Ci, where the realised order from firm
j to supplier i is denoted by O∗j,i(t), and the realised order from a final consumer is C∗i

10. Finalise the calculation

Under this rationing policy, total realised demand for firm i, D∗i (t), is given by

D∗i (t) = ΣjO
∗
i,j(t) + C∗i , (15)

where the realised order from firm i to supplier j is denoted by O∗i,j(t) and that from the final consumers
is C∗i . According to firms’ production and procurement activities on day t, the inventory of firm j’s
product in firm i on day t+ 1 is updated to

Si,j(t+ 1) = Si,j(t) +O∗i,j(t)−Ai,j
Pacti(t− 1)

Pinii
. (16)

Several caveats of this model and data should be mentioned. First, we assume that firms cannot find
any new supplier when facing a shortage of supplies from their current suppliers. Second, for simplicity,
our model assumes that inputs from the service sector can be stored as inventory, just like inputs from
manufacturing. Third, our model ignores changes in the prices of products and wages of labour incorpo-
rated in [39, 40] and focuses on the dynamics of production because of supply-chain disruptions. Fourth,
the TSR data report only the location of the headquarters of each firm, not the location of its branches.
Because the headquarters of firms are concentrated in Tokyo, production activities in Tokyo are most
likely to be overvalued in our analysis. Fifth, because of data limitations, we ignore the international
supply-chain links in our simulations. Finally, this study ignores the impacts of COVID-19 on human
and firm behaviours in the post-COVID era. These behavioural changes may influence consumption and
production that are assumed to remain the same in this era.

B.2 Sectoral differences in production capacity after lockdowns

No data for production capacity (i.e. P cap in the model) during the lockdown of Japan at the firm
or sector level are available. Although the Indices of All Industry Activities (IAIA) provides data for
post-lockdown production at the sector level (Section 3.3), or Pact in our model averaged within a sector,
we need information about production capacity, P cap. Therefore, we assume that the rate of reduction
in production capacity for each sector is given by the degree of the reduction because of exposure to
the virus [8] multiplied by the share of workers who cannot work at home [9] (Section 3.3). The rate
of reduction because of exposure to the virus is determined by how the workers in the sector have to
reduce their activities to avoid contact with others for infection prevention. Because [9] define the rate of
reduction uniformly worldwide, we modify the rate for some sectors that clearly differ from the practice
in Japan. Table B.1 shows the rates of reduction for each sector assumed in our simulations.

Table B.1: Sector-specific rates of reduction in production capacity. Sectors are classified by the JIS
classification [41] at the two-digit level, except for industries 560, 561, and 569 for which we use three-
digit codes to reflect the actual circumstances. The sector names are abbreviated. Table B.2 lists the
sector descriptions and abbreviations.

Code Sector Reduction rate Work-at Exposure Rationale

(abbreviated) -home rate level
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1 AGR. 0.0866 0.134 0.1 Low exposure

2 FRS. 0.0866 0.134 0.1 Low exposure

3 FIS. 0.0866 0.134 0.1 Low exposure

4 AQA. 0.0866 0.134 0.1 Low exposure

5 MIN. 0.3185 0.363 0.5 Ordinary

6 CNS.GEN. 0.379 0.242 0.5 Ordinary

7 CNS.SPC. 0.379 0.242 0.5 Ordinary

8 EQP. 0.379 0.242 0.5 Ordinary

9 MAN.FOD. 0.38 0.240 0.5 Ordinary

10 MAN.BEV. 0.38 0.240 0.5 Ordinary

11 MAN.Tex 0.334 0.332 0.5 Ordinary

12 MAN.LUM. 0.384 0.232 0.5 Ordinary

13 MAN.FUR. 0.384 0.232 0.5 Ordinary

14 MAN.PUL. 0.338 0.324 0.5 Ordinary

15 PRT. 0.338 0.324 0.5 Ordinary

16 MAN.CHM. 0.2645 0.471 0.5 Ordinary

17 MAN.PET. 0.3255 0.349 0.5 Ordinary

18 MAN.PLA. 0.352 0.296 0.5 Ordinary

19 MAN.RUB. 0.352 0.296 0.5 Ordinary

20 MAN.LET. 0.334 0.332 0.5 Ordinary

21 MAN.CER. 0.3545 0.291 0.5 Ordinary

22 MAN.IRN. 0.366 0.268 0.5 Ordinary

23 MAN.NFM. 0.366 0.268 0.5 Ordinary

24 MAN.FBM. 0.3475 0.305 0.5 Ordinary

25 MAN.GNM. 0.302 0.396 0.5 Ordinary

26 MAN.PRM. 0.302 0.396 0.5 Ordinary

27 MAN.BSM. 0.302 0.396 0.5 Ordinary

28 EPT. 0.1665 0.667 0.5 Ordinary

29 MAN.ELM. 0.29 0.420 0.5 Ordinary

30 MAN.INF. 0.1665 0.667 0.5 Ordinary

31 MAN.TRN. 0.252 0.496 0.5 Ordinary

32 MAN.MSC. 0.3525 0.295 0.5 Ordinary

33 ELE. 0 0.377 0 Lifeline

34 GAS. 0 0.377 0 Lifeline

35 HET. 0 0.377 0 Lifeline

36 WTR. 0 0.377 0 Lifeline

37 COM. 0 0.599 0 Lifeline

38 BRD. 0 0.808 0 Lifeline

39 INF.SVC. 0.0485 0.903 0.5 Ordinary

40 INT. 0 0.599 0 Lifeline

41 INF.DST. 0.096 0.808 0.5 Ordinary

42 RLW.TRP. 0 0.299 0 Lifeline

43 PAS.TRP. 0 0.299 0 Lifeline

44 FRE.TRP. 0 0.299 0 Lifeline

45 WTR.TRP. 0 0.299 0 Lifeline

46 AIR.TRP. 0 0.299 0 Lifeline

47 WRH. 0 0.299 0 Lifeline

48 SVC.TRP. 0 0.299 0 Lifeline

49 PST.SVC. 0 0.299 0 Lifeline

50 WHL.GEN. 0.0525 0.475 0.1 Low exposure

51 WHL.TEX. 0.0525 0.475 0.1 Low exposure

52 WHL.FOD. 0.0525 0.475 0.1 Low exposure

53 WHL.MAT. 0.0525 0.475 0.1 Low exposure

54 WHL.MCN. 0.0525 0.475 0.1 Low exposure

55 WHL.MSC. 0.0525 0.475 0.1 Low exposure

560 RTL.ADM. 0.0525 0.475 0.1 Low exposure

561 RTL.DPT. 0.525 0.475 1 Closed

569 RTL.MSC. 0 0.475 0 Lifeline
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57 RTL.GEN. 0.0525 0.475 0.1 Low exposure

58 RTL.FOD. 0.0525 0.475 0.1 Low exposure

59 RTL.MCN. 0.0525 0.475 0.1 Low exposure

60 RTL.MSC. 0.0525 0.475 0.1 Low exposure

61 RTL.NST. 0.0525 0.475 0.1 Low exposure

62 FIN.BNK. 0.0214 0.786 0.1 Low exposure

63 FIN.ORG. 0.0214 0.786 0.1 Low exposure

64 FIN.LON. 0.0214 0.786 0.1 Low exposure

65 FIN.TRN. 0.0214 0.786 0.1 Low exposure

66 FIN.AUX. 0.0214 0.786 0.1 Low exposure

67 INS. 0.0214 0.786 0.1 Low exposure

68 RST.AGN. 0.0423 0.577 0.1 Low exposure

69 RTS.LES. 0.0423 0.577 0.1 Low exposure

70 RNT. 0.0362 0.638 0.1 Low exposure

71 SCI. 0.0172 0.828 0.1 Low exposure

72 SVC.PRF. 0.0362 0.638 0.1 Low exposure

73 ADV. 0.0362 0.638 0.1 Low exposure

74 SVC.TEC. 0.0362 0.638 0.1 Low exposure

75 ACM. 0.889 0.111 1 Closed

76 EAT. 0.4445 0.111 0.5 Ordinary

77 DEL. 0 0.479 0 Lifeline

78 LND. 0.2605 0.479 0.5 Ordinary

79 SVC.PSN. 0.2605 0.479 0.5 Ordinary

80 SVC.AMS. 0.521 0.479 1 Closed

81 SCH. 0.0172 0.828 0.1 Low exposure

82 EDC. 0.0172 0.828 0.1 Low exposure

83 MED. 0 0.247 0 Lifeline

84 HLT. 0 0.247 0 Lifeline

85 WEL. 0 0.247 0 Lifeline

86 PST.OFC. 0 0.638 0 Lifeline

87 CAS. 0.0362 0.638 0.1 Low exposure

88 WAS. 0.0362 0.638 0.1 Low exposure

89 SVC.AUT. 0.0362 0.638 0.1 Low exposure

90 SVC.MCN. 0.0362 0.638 0.1 Low exposure

91 SVC.EMP. 0.0362 0.638 0.1 Low exposure

92 SVC.BUS. 0.0362 0.638 0.1 Low exposure

93 PLT. 0.0362 0.638 0.1 Low exposure

94 REL. 0.0362 0.638 0.1 Low exposure

95 SVC.MSC. 0.0362 0.638 0.1 Low exposure

96 GOV.INT. 0 0.485 0 Lifeline

97 GOV.NAT 0 0.485 0 Lifeline

98 GOV.LOC. 0 0.485 0 Lifeline

99 NEC 0.181 0.638 0.5 Ordinary
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Table B.2: Sector classifications and abbreviations.

Code Description Abbreviation

01 AGRICULTURE AGR.

02 FORESTRY FRS.

03 FISHERIES, EXCEPT AQUACULTURE FIS.

04 AQUACULTURE AQA.

05 MINING AND QUARRYING OF STONE AND GRAVEL MIN.

06 CONSTRUCTION WORK, GENERAL INCLUDING PUBLIC AND PRIVATE CONSTRUCTION WORK CNS.GEN.

07 CONSTRUCTION WORK BY SPECIALIST CONTRACTOR, EXCEPT EQUIPMENT INSTALLATION WORK CNS.SPC.

08 EQUIPMENT INSTALLATION WORK EQP.

09 MANUFACTURE OF FOOD MAN.FOD.

10 MANUFACTURE OF BEVERAGES, TOBACCO AND FEED MAN.BEV.

11 MANUFACTURE OF TEXTILE PRODUCTS MAN.TEX

12 MANUFACTURE OF LUMBER AND WOOD PRODUCTS, EXCEPT FURNITURE MAN.LUM.

13 MANUFACTURE OF FURNITURE AND FIXTURES MAN.FUR.

14 MANUFACTURE OF PULP, PAPER AND PAPER PRODUCTS MAN.PUL.

15 PRINTING AND ALLIED INDUSTRIES PRT.

16 MANUFACTURE OF CHEMICAL AND ALLIED PRODUCTS MAN.CHM.

17 MANUFACTURE OF PETROLEUM AND COAL PRODUCTS MAN.PET.

18 MANUFACTURE OF PLASTIC PRODUCTS, EXCEPT OTHERWISE CLASSIFIED MAN.PLA.

19 MANUFACTURE OF RUBBER PRODUCTS MAN.RUB.

20 MANUFACTURE OF LEATHER TANNING, LEATHER PRODUCTS AND FUR SKINS MAN.LET.

21 MANUFACTURE OF CERAMIC, STONE AND CLAY PRODUCTS MAN.CER.

22 MANUFACTURE OF IRON AND STEEL MAN.IRN.

23 MANUFACTURE OF NON-FERROUS METALS AND PRODUCTS MAN.NFM.

24 MANUFACTURE OF FABRICATED METAL PRODUCTS MAN.FBM.

25 MANUFACTURE OF GENERAL-PURPOSE MACHINERY MAN.GNM.

26 MANUFACTURE OF PRODUCTION MACHINERY MAN.PRM.

27 MANUFACTURE OF BUSINESS ORIENTED MACHINERY MAN.BSM.

28 ELECTRONIC PARTS, DEVICES AND ELECTRONIC CIRCUITS EPT.

29 MANUFACTURE OF ELECTRICAL MACHINERY, EQUIPMENT AND SUPPLIES MAN.ELM.

30 MANUFACTURE OF INFORMATION AND COMMUNICATION ELECTRONICS EQUIPMENT MAN.INF.

31 MANUFACTURE OF TRANSPORTATION EQUIPMENT MAN.TRN.

32 MISCELLANEOUS MANUFACTURING INDUSTRIES MAN.MSC.

33 PRODUCTION, TRANSMISSION AND DISTRIBUTION OF ELECTRICITY ELE.

34 PRODUCTION AND DISTRIBUTION OF GAS GAS.

35 HEAT SUPPLY HET.
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36 COLLECTION, PURIFICATION AND DISTRIBUTION OF WATER, AND SEWAGE COLLECTION, PROCESSING WTR.

37 COMMUNICATIONS COM.

38 BROADCASTING BRD.

39 INFORMATION SERVICES INF.SVC.

40 SERVICES INCIDENTAL TO INTERNET INT.

41 VIDEO PICTURE INFORMATION, SOUND INFORMATION, CHARACTER INFORMATION PRODUCTION AND DISTRIBUTION INF.DST.

42 RAILWAY TRANSPORT RLW.TRP.

43 ROAD PASSENGER TRANSPORT PAS.TRP.

44 ROAD FREIGHT TRANSPORT FRE.TRP.

45 WATER TRANSPORT WTR.TRP.

46 AIR TRANSPORT AIR.TRP.

47 WAREHOUSING WRH.

48 SERVICES INCIDENTAL TO TRANSPORT SVC.TRP.

49 POSTAL SERVICES, INCLUDING MAIL DELIVERY PST.SVC.

50 WHOLESALE TRADE, GENERAL MERCHANDISE WHL.GEN.

51 WHOLESALE TRADE (TEXTILE AND APPAREL) WHL.TEX.

52 WHOLESALE TRADE (FOOD AND BEVERAGES) WHL.FOD.

53 WHOLESALE TRADE (BUILDING MATERIALS, MINERALS AND METALS, ETC) WHL.MAT.

54 WHOLESALE TRADE (MACHINERY AND EQUIPMENT) WHL.MCN.

55 MISCELLANEOUS WHOLESALE TRADE WHL.MSC.

560 ESTABLISHMENTS ENGAGED IN ADMINISTRATIVE OR ANCILLARY ECONOMIC ACTIVITIES RTL.ADM.

561 DEPARTMENT STORES AND GENERAL MERCHANDISE SUPERMARKET RTL.DPT.

569 MISCELLANEOUS RETAIL TRADE, GENERAL MERCHANDISE RTL.MSC.

57 RETAIL TRADE, GENERAL MERCHANDISE RTL.GEN.

58 RETAIL TRADE (FOOD AND BEVERAGE) RTL.FOD.

59 RETAIL TRADE (MACHINERY AND EQUIPMENT) RTL.MCN.

60 MISCELLANEOUS RETAIL TRADE RTL.MSC.

61 NONSTORE RETAILERS RTL.NST.

62 BANKING FIN.BNK.

63 FINANCIAL INSTITUTIONS FOR COOPERATIVE ORGANIZATIONS FIN.ORG.

64 NON-DEPOSIT MONEY CORPORATIONS, INCLUDING LENDING AND CREDIT CARD BUSINESS FIN.LON.

65 FINANCIAL PRODUCTS TRANSACTION DEALERS AND FUTURES COMMODITY TRANSACTION DEALERS FIN.TRN.

66 FINANCIAL AUXILIARIES FIN.AUX.

67 INSURANCE INSTITUTIONS, INCLUDING INSURANCE AGENTS, BROKERS AND SERVICES INS.

68 REAL ESTATE AGENCIES RST.AGN.

69 REAL ESTATE LESSORS AND MANAGERS RTS.LES.

70 GOODS RENTAL AND LEASING RNT.

71 SCIENTIFIC AND DEVELOPMENT RESEARCH INSTITUTES SCI.
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72 PROFESSIONAL SERVICES, N.E.C. SVC.PRF.

73 ADVERTISING ADV.

74 TECHNICAL SERVICES, N.E.C. SVC.TEC.

75 ACCOMMODATION ACM.

76 EATING AND DRINKING PLACES EAT.

77 FOOD TAKE OUT AND DELIVERY SERVICES DEL.

78 LAUNDRY, BEAUTY AND BATH SERVICES LND.

79 MISCELLANEOUS LIVING-RELATED AND PERSONAL SERVICES SVC.PSN.

80 SERVICES FOR AMUSEMENT AND RECREATION SVC.AMS.

81 SCHOOL EDUCATION SCH.

82 MISCELLANEOUS EDUCATION, LEARNING SUPPORT EDC.

83 MEDICAL AND OTHER HEALTH SERVICE MED.

84 PUBLIC HEALTH AND HYGIENE HLT.

85 SOCIAL INSURANCE, SOCIAL WELFARE AND CARE SERVICES WEL.

86 POSTAL OFFICE PST.OFC.

87 COOPERATIVE ASSOCIATIONS, N.E.C. CAS.

88 WASTE DISPOSAL BUSINESS WAS.

89 AUTOMOBILE MAINTENANCE SERVICES SVC.AUT.

90 MACHINE, ETC. REPAIR SERVICES, EXCEPT OTHERWISE CLASSIFIED SVC.MCN.

91 EMPLOYMENT AND WORKER DISPATCHING SERVICES SVC.EMP.

92 MISCELLANEOUS BUSINESS SERVICES SVC.BUS.

93 POLITICAL, BUSINESS AND CULTURAL ORGANIZATIONS PLT.

94 RELIGION REL.

95 MISCELLANEOUS SERVICES SVC.MSC.

96 FOREIGN GOVERNMENTS AND INTERNATIONAL AGENCIES IN JAPAN GOV.INT.

97 NATIONAL GOVERNMENT SERVICES GOV.NAT.

98 LOCAL GOVERNMENT SERVICES GOV.LOC.

99 INDUSTRIES UNABLE TO CLASSIFY NEC
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B.3 Helmholtz-Hodge decomposition

The Helmholtz-Hodge decomposition (HHD) decomposes a flow from a node to another in a network into
a potential flow component and a loop flow component. A potential flow component is determined by
the upstream/downstream location of the node in a network [32], whereas a loop flow component is given
by a constraint such that the summation of the incoming and outgoing loop flows of all the nodes equals
zero. This method has been used to find the structure of potential and loop flows in complex networks.
See, for example, [29, 42, 43, 44].

Suppose we have a flow of a matrix denoted by Bij such that a flow from node i to node j is represented
by Bij . For simplicity, we assume ∀i, j Bij ≥ 0. Aij is a binary adjacency matrix generated from Bij :

Aij = 1 if Bij > 0,

0 otherwise. (17)

We define a ‘net flow’ Fij by
Fij = Bij −Bji, (18)

and a ‘net weight’ wij by
wij = Aij +Aji. (19)

Note that wij is symmetric, wij = wji, and non-negative, wij ≥ 0, for any pair of i and j.
Then, the HHD is given by

Fij = F
(c)
ij + F

(p)
ij , (20)

where the loop flow F
(c)
ij satisfies ∑

j

F
(c)
ij = 0, (21)

meaning that loop flows are divergence-free. The potential flow, F
(p)
ij , can be expressed as

F
(p)
ij = wij(φi − φj), (22)

where φi is the Helmholtz-Hodge potential of node i that identifies its upstream/downstream position
in the network. More precisely, φi is larger when node i is located in a more upstream position in the
network and vice versa. Equation (22) indicates that the potential flow F

(p)
ij is the difference in the HH

potential between two nodes when the two are linked and zero when they are not linked. We further
assume ∑

i

φi = 0 (23)

for normalisation purposes. Then, equations (20)–(23) can be uniquely solved for F
(c)
ij , F

(p)
ij , and φi for

all i and j in the whole network.
Figure B.1 shows a simple example to explain the intuition behind the potential and loop flows,

potential obtained from the HHD, and potential and loop flow measures between two prefectures (i.e.
Potab, Potba, and Loopab defined in Section 4.4). The left panel shows a supply chain with six firms
in prefectures a and b. The right top and bottom panels indicate the potential flows and loop flows,
respectively decomposed by the HHD. The numbers in red in the right top panel represent the HH
potential, or the upstreamness in supply chains, for each firm. Although there is no ‘loop’ in a standard
sense among the firms in this example, the HHD identifies loop flows in the sense that the nodes in the
loop are affected by each other. Hence, shocks circulate in the loop and work differently from those in
the non-loop potential flows.

Specifically, Potab is the sum of the total potential flows from the firms in prefecture a to those in
prefecture b (there is only a potential flow from prefectures a to b in this example) divided by the total
flows of firms in prefecture a. Therefore, Potab = (2/3)/4 = 1/6. Potba is the opposite direction and
Potba = 1/6. Because Loopab is the sum of the total loop flows between the firms in prefectures a and
b (there are two loop flows between a and b in this example), Loopab = (2/3)/4 = 1/6 and, similarly,
Loopba = 1/6.
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Figure B.1: An example of the HHD and loop and potential flow measures of prefectures. The left panel
shows the supply chains of the six firms in the two prefectures. The right top and bottom panels present
the potential flows and loop flows, respectively obtained from the HHD.

Figure B.2 shows the average of the HH potential φi of the firms in the supply-chain network, which
is normalised so that its overall average is zero, for each prefecture. This figure illustrates the large
variation in the upstreamness of the firms at the prefecture level.

Figure B.2: Choropleth map of the potential calculated by the Helmholtz-Hodge decomposition. The
average HH potential over all the firms in each prefecture is presented.
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B.4 Substitutability for two regions

Since the definition of the substitutability measure for two regions is not as simple as the definition for
one region, we provide a further explanation. Figure B.3 is an example for the suppliers of a firm in
prefecture a. The substitutability of prefecture a by prefecture b is a fraction. The denominator is the
total number of suppliers that delivers goods to the firms in prefecture a except suppliers in prefecture a
or b. (Here, we call this Ai in the figure.) Hereafter, a supplier means a supplier of a firm in prefecture
a. The numerator is the total number of substitutable suppliers in Ai. A supplier in Ai is substitutable
if a supplier in prefecture b belongs to the same industry as the focal supplier.

Figure B.3: An example of the substitutability measure for two regions. The bottom shows the equation.
Ai is the total number of suppliers outside prefectures a and b. The bottom two suppliers are applicable.
A supplier in prefecture b belongs to the same industry as the upper firm of the outside suppliers, whereas
the lower firm of the outside suppliers is not substitutable. Hence, Ai = 2 and Bi = 1.

C Results

C.1 Simulation of the effect of the actual lockdown

A video is available for the temporal and geographical visualisation of the lockdown simulation at https:
//youtu.be/q029a_e1akU. The map if the video indicates the rate of reduction in firm production
averaged within each municipality. The red areas indicate that the production in the area is less than
or equal to 20% of firms’ capacity on average, whereas the light red and orange areas show firms with
a more moderate decline in production. The inset in the video indicates Figure 2 and the number of
days from the first lockdown. The visualisation clearly shows the areas that are not locked down are also
affected by lockdowns of other areas. For example, from day 0 to day 8, only seven prefectures are locked
down but most of the areas in Japan are affected (see Section 3.2 and Figure A.3). This reduction of
the production happens because the demand reduction propagates to the suppliers without any buffer.
On the other hand, the supply reduction can be mitigated because each client holds inventories for the
intermediate goods.

C.2 Estimaton of daily GDP from IAIA

The IAIA indicates the changes in production in all industries in Japan compared with that in the
previous month and in the same month in the previous year, based on firm surveys [34]. We assume that
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daily production on 7 April (day 0) is the same as that in March and thus can be calculated from the
IAIA in March. Then, we estimate the daily GDP in April (or May) by (yearly GDP)/365×(IAIA in
April (May))/(IAIA in March) and illustrate it by the left (right) red line in Figure 2.

C.3 Interconnected effect of the different strictness of regional lockdowns

In Section 4.2, we showed that the different lockdown strictness between the more and less restricted
groups affects the economic losses of the two groups, particularly assuming that the lockdown continues
for 60 days. We also experiment with different lockdown durations (i.e. 14 and 30 days) and show the
results in Figures C.1 and C.2. The main result that the strictness of the lockdown in the more restricted
group that includes the major industrial clusters substantially affects the economic loss of the other group
by propagation through supply chains still holds.

Figure C.1: Loss in value added as a percentage of total GDP assuming different restriction levels for
a lockdown of 14 days between the more and less restricted groups. A restriction level is defined by a
multiplier for the sector-specific benchmark rates of reduction in production capacity. The red and blue
parts of each bar show the loss of value added in the less and more restricted groups, respectively as a
percentage of GDP.

Figure C.2: Loss in value added as a percentage of total GDP assuming different restriction levels for
a lockdown of 30 days between the more and less restricted groups. A restriction level is defined by a
multiplier for the sector-specific benchmark rates of reduction in production capacity. The red and blue
parts of each bar show the loss of value added in the less and more restricted groups, respectively as a
percentage of GDP.
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C.4 Effect of lifting the lockdown in one region

Section 4.3 presents the effect of lifting the lockdown in a prefecture on its production, assuming that
all the other prefectures are still locked down. Figure C.3 shows the ratio of the increase in national
GDP from each prefecture lifting its lockdown to the decrease in GDP by all prefectures’ lockdowns.
The prefectures are horizontally aligned in order of JIS cods. The top three prefectures in terms of the
recovery rate are Tokyo, Osaka, and Fukuoka.

Figure C.3: Ratio of the improvement in GDP by lifting the lockdown in each prefecture. The improve-
ment is defined as the ratio of the increase in national GDP by each prefecture lifting its lockdown to the
decrease in GDP by all prefectures’ lockdowns. The horizontal axis indicates the JIS codes of the prefec-
tures. The yellow, dark green, and light green bars show the ratio of the improvement when lockdowns
persist for 14, 30, and 60 days, respectively.

Figure C.4 illustrates the ratio of the increase in the value added production, or gross regional product
(GRP), of each prefecture by lifting its lockdown to the decrease in its GRP by all prefectures’ lockdowns,
which is shown in Figure 5.

Figure C.4: Recovery rate in GRP by lifting the lockdown in each prefecture. The recovery rate is defined
as the ratio of the increase in the GRP of each prefecture by lifting its lockdown to the decrease in its
GRP by all prefectures’ lockdowns. The horizontal axis indicates the JIS codes of the prefectures. The
yellow, dark green, and light green bars show the recovery rate when lockdowns persist for 14, 30, and
60 days, respectively.
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C.5 Regression analyses

In Section 4.3, we conducted regression analyses to examine what attributes of prefectures cause a larger
economic recovery by lifting the lockdown in only one prefecture, using Ordinary Least Squares (OLS)
models. Table C.1 shows the correlation coefficients between all the variables used in the regression
analysis and Table C.2 presents the detailed regression results.

Table C.1: Correlation matrix of the variables used in Section 4.3. The definitions of the variables are as
follows. RecRatio: the recovery rate defined as the ratio of the increase in the GRP of each prefecture
by lifting its lockdown to the decrease in its GRP by all prefectures’ lockdowns. GRP: gross regional
product (log). Links: the degree (log). InLink: the share of links within the prefecture to its all links.
InLoop: the share of loop flows within the prefecture to its all flows. OutLink: the share of outward
inter-prefectural links to all the links of the prefecture. Potential: the average HH potential of the firms in
the prefecture. Sub: the share of substitutable suppliers to all suppliers of the prefecture located outside
the prefecture.

Variable RecRatio GRP Degree InLink InLoop OutLink Potential Sub
RecRatio 1.000
GRP 0.311 1.000
Degree 0.370 0.965 1.000
InLink 0.218 -0.467 -0.374 1.000
InLoop 0.432 0.072 0.151 0.720 1.000
OutLink -0.046 0.676 0.661 -0.688 -0.351 1.000
Potential -0.321 0.104 0.090 -0.046 -0.076 0.193 1.000
Sub 0.449 0.803 0.829 -0.246 0.307 0.573 0.096 1.000

187
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

57
-1

94



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table C.2: Regression results for Section 4.3. The dependent variable is the recovery rate. See the caption of Table C.1 for the definitions of the independent
variables. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

(1) (2) (3) (4) (5) (6) (7)

InLink 0.426*** 0.401
(0.133) (0.242)

InLoop 0.686*** -0.345
(0.216) (0.425)

OutLink -0.639** -0.375
(0.245) (0.278)

Potential -0.540** -0.527***
(0.202) (0.179)

Sub 0.684** 0.709**
(0.275) (0.283)

GRP 0.0261** 0.0443*** 0.0236** 0.0528*** 0.0292** -0.0115 0.0242
(0.0119) (0.0122) (0.0109) (0.0152) (0.0112) (0.0189) (0.0191)

Constant 0.572*** 0.285*** 0.424*** 0.816*** 0.565*** 0.507*** 0.445**
(0.0225) (0.0924) (0.0512) (0.0957) (0.0213) (0.0338) (0.182)

Observations 47 47 47 47 47 47 47
R-squared 0.097 0.267 0.265 0.218 0.223 0.208 0.481

188
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

57
-1

94



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

In Section 4.4, we conducted regression analyses to examine what attributes of prefectures cause a
larger economic recovery by lifting the lockdown in two prefectures simultaneously, using OLS models.
The relative recovery measure defined as the ratio of the increase in the GRP of prefecture a when it
lifts its lockdown together with prefecture b to its increase when prefecture a lifts its lockdown alone.
Table C.3 shows the correlation coefficients between all the variables used in the regression analysis and
Table C.4 presents the detailed regression results.

Figure C.5: Relative recovery from lifting the lockdown together to the recovery from lifting the lockdown
alone. The relative recovery measure is defined as the ratio of the increase in the GRP of prefecture a
when it lifts its lockdown together with prefecture b to its increase when prefecture a lifts its lockdown
alone. The horizontal axis shows the JIS code of prefecture a. The colour of each dot indicates whether
the GRP of prefecture b is among the top 10 (blue), the bottom 10 (black), or others (red).

Table C.3: Correlation matrix of the variables used in Section 4.4. The definitions of the variables are
as follows. Recova: the relative recovery of prefecture a defined as the ratio of the increase in the GRP
of prefecture a by lifting its lockdown together with prefecture b to its increase by lifting its lockdown
alone. Linkab: the share of links from a to b to all links from a. Linkba: the share of links from b to
a to all links from a. Potab: the share of potential flows from b to a to the total links of a. Potba: the
share of potential flows from a to b to the total links of a. Subab: the share of suppliers substitutable by
those in b to a’s suppliers outside a and b. Subba: the share of suppliers substitutable by those in a to
b’s suppliers outside a and b. Loopab: the share of loop flows between a and b to the total flows between
the two. Biab: the number of inter-prefecture links between a and b in logs. GRPj : GRP of b in logs.

Variable Recova Linkab Linkba Potab Potba Subab Subba Loopab Biab GRPb

Recova 1.000
Linkab 0.820 1.000
Linkba 0.818 0.966 1.000
Potab 0.870 0.927 0.961 1.000
Potba 0.808 0.915 0.955 0.968 1.000
Subab 0.071 0.185 0.238 0.182 0.243 1.000
Subba 0.813 0.961 0.966 0.946 0.948 0.237 1.000
Loopab 0.879 0.911 0.952 0.986 0.979 0.206 0.940 1.000
Biab 0.392 0.543 0.564 0.499 0.528 0.572 0.572 0.504 1.000
GRPb 0.563 0.610 0.597 0.602 0.582 0.056 0.643 0.596 0.576 1.000
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Table C.4: Regression results for Section 4.4. The dependent variable is the relative recovery measure. See the caption of Table C.3 for the definitions of the
independent variables. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

(1) (2) (3) (4) (5) (6) (7)

Linkab 0.519*** 0.440***
(0.0175) (0.0306)

Linkba 0.619*** -0.375***
(0.0199) (0.0460)

Potab 8.333*** 0.277
(0.198) (0.624)

Potba 8.076*** -17.82***
(0.271) (0.644)

Loopab 3.841*** 10.06***
(0.0844) (0.309)

Subba 1.564*** -0.248**
(0.0550) (0.0989)

Biab -0.00211*** -0.00288*** -0.00182*** -0.00174*** -0.00225*** -0.00235*** -0.000602**
(0.000413) (0.000415) (0.000352) (0.000407) (0.000341) (0.000423) (0.000298)

GRPb -0.0186*** -0.0186*** -0.0135*** -0.0232*** -0.0120*** -0.0220*** -0.00540***
(0.00210) (0.00205) (0.00181) (0.00202) (0.00175) (0.00208) (0.00146)

GRP 2
b 0.00652*** 0.00676*** 0.00467*** 0.00795*** 0.00431*** 0.00712*** 0.00192***

(0.000490) (0.000471) (0.000422) (0.000458) (0.000405) (0.000489) (0.000350)
Constant 1.019*** 1.023*** 1.016*** 1.021*** 1.017*** 1.024*** 1.006***

(0.00236) (0.00233) (0.00208) (0.00236) (0.00200) (0.00239) (0.00168)

Observations 2,162 2,162 2,162 2,162 2,162 2,162 2,162
R-squared 0.713 0.721 0.778 0.714 0.794 0.706 0.865
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Figure C.6: Correlation between the relative recovery and selected network measures. The vertical axis
indicates the relative recovery of prefecture a, defined as the ratio of the increase in the GRP of prefecture
a by lifting its lockdown together with prefecture b to its increase by lifting its lockdown alone. The effect
of the GRP of b and total links between the two are excluded from the relative recovery measure. The
variable in the horizontal axis is given by Equations 1 and 2 in panels (a) and (b), respectively. The
orange line in each panel signifies the fitted value from a linear regression that controls for the effect of
the GRP of b and total number of links between a and b. The blue, black, and red dots show the pairs
of prefectures a and b for which the GRP of b is among the top 10, bottom 10, and others, respectively.

To check the robustness of our main results, we experimented with different rates of reduction in
production capacity, where we assume the share of working from home is zero for all the sectors in
Supplementary Information Table C.3. In other words, in this alternative simulation analysis, we assume
a stricter level of lockdown. Supplementary Information Figures C.8 and C.9 present the results, which
are essentially the same as our benchmark results in Figures 6 and 7.
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Figure C.7: Correlation between the relative recovery and selected network measures. See the caption of
Figures 7 and C.6 for the definitions of the variables used here. The green line in each panel signifies the
fitted value from a linear regression that controls for the effect of the GRP of b and total number of links
between a and b in (a)–(g). The black and red dots show the pairs of prefectures a and b for which the
GRP of b is among the bottom 10 and between 11 and 37, respectively.
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Figure C.8: Correlation between the recovery rate and selected network measures. See the caption of
Figure 6 for the definitions of the variables used here. The orange line in each panel specifies the fitted
value from a linear regression that controls for the effect of GRP in (b)–(f). The blue, black, and red
dots show the prefectures whose GRP is among the top 10, the bottom 10, or others, respectively.
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Figure C.9: Correlation between the relative recovery and selected network measures. See the caption of
Figures 7 7 for the definitions of the variables used here. The red line in each panel signifies the fitted
value from a linear regression that controls for the effect of the GRP of b and total number of links
between a and b in (a)–(g). The blue, black, and red dots show the pairs of prefectures a and b for which
the GRP of b is among the top 10, the bottom 10, or others, respectively.
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Reopening the economy and food 
security
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The COVID-19 pandemic has posed major challenges, of which food 
insecurity is one, to countries across the world. A number of policies have 
been put in place in response to the development of the outbreak. In this 
paper, I investigate the impacts of one of these policies, the reopening 
of the economy, on food security. Using a recent large-scale household 
survey in the United States, I find that food insecurity is a major problem 
that could adversely affect people’s health. Using a report on containment 
policy across states in the United States to construct the level of this 
policy, I also find that this policy reduced the likelihood of food insecurity. 
While the overall impact of this policy is expected, how it influenced the 
causes of food security is more interesting. In particular, while it helped 
to increase the availability of food to the people in need, it decreased their 
ability to buy food. Not only reopening policy increased the expenses 
on food, which made food less affordable, it also had adverse effect on 
people’s health which prevented them from going out to buy food. I also 
show how effective the multiple food programs were in the presence of 
reopening policy. These findings provide valuable evidence to policy 
makers in mitigating the impacts of the COVID-19 crisis.

1	 Senior Lecturer, Department of Economics and Marketing, Faculty of Business and Law, De Montfort 
University.
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1 Introduction

Food insecurity is a serious problem in the United States. Although

there is some progress in alleviating the problem since 2008 when a surge

of the number of food insecure households took place due to the financial

crisis, there was still 14.3 million households, or 11.1 percent of the total

households, that were classified as food insecure (Coleman-Jensen et al.

2019). This problem is not unique to the United States. Indeed, it was one

of the main goals of the United Nations Millennium Development Goals

and the Sustainable Development Goals initiative.

The consequences of food insecurity have been well established (see Gun-

dersen, Kreider and Pepper 2011 for a review). The determinants of food

insecurity, however, are less well understood. Sen (1981) claims that food

insecurity is more of a demand concern, affecting the poor’s access to food,

than a supply concern, affecting the availability of food at the national level.

Following this paradigm shift, most of the papers focus on looking at the

economic resources of the household as predictors of food insecurity. Ex-

amples are average income (Gundersen and Gruber 2001), income volatility

(Ribar and Hamrick 2003) and income shock (Leete and Bania 2010). How-

ever, income alone cannot explain the problem of food insecurity. According

to Coleman-Jensen et al. (2019), 3.5 percent and 1.9 percent of households

with an income exceeding 185 percent of the federal poverty line were food

insecure and very low food secure, respectively.

The COVID-19 pandemic presents another challenge to reduce the num-

ber of of people suffering from hunger and food insecurity, one of the United

Nation Sustainable Development Goals. Indeed, it is one of the biggest

threats together with Climate Change, Locust Crisis and Conflict. On

April 21, the United Nations projected that ”..(T)he number of people fac-
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ing acute food insecurity (IPC/CH 3 or worse) stands to rise to 265 million

in 2020, up by 130 million from the 135 million in 2019, as a result of

the economic impact of COVID-19” (United Nation World Food Program).

The same week, in the United States, the five-week total of job losses rose

to a staggering 26 million, pushing millions more into food insecurity.

At the same time, this global crisis also provides a golden opportunity to

evaluate the impacts of governmental policies in reducing food insufficiency.

Indeed, governments at different levels (central and regional) responded to

the development of the outbreak with the containment policy at various

levels. This policy affected nearly all aspects of social life and, therefore,

was likely to have an impact on food security. The variation of this policy

across local governments in the United States and across time is the perfect

framework for my analysis.

To the best of my knowledge, this paper brings the first evidence of the

impacts of a policy that is not directly targeted at reducing food insuffi-

ciency. Indeed, most of the works in the literature looked at the impacts

of the food stamp program or safety net program. In this paper, I evaluate

the consequence of the containment policy (or rather the relaxation of this

policy). To measure the degree of the containment policy, I rely on the

reports by the Washington Post that track the development of the contain-

ment policy in each state of the United States. In particular, I characterize

the changes in the containment policy across States by 4 levels: Major,

Moderate, Minor and None, according to the types of business that were

allowed to open. I also compare my measures with the ones provided by

the New York Times to ensure the consistency of the measures.

To measure of the outcome of food security, I make use of a recent

large-scale survey, the 2020 Household Pulse Survey (HPS). The survey

was conducted by the United States Census Bureau in partnership with
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five other agencies from the Federal Statistical System. The survey was

conducted for a total of 8 weeks, starting from the week of April 23 (week

1) to that of June 18 (week 8). The survey was nationally representative

and covered all 50 states and the District of Columbia. In my analysis, I

make use of the answers to the question “In the last 7 days, which of the

statements best describes the food eaten in your household?”. The four

available answers are: (i) Enough of the kinds of food (I/we) wanted to eat

; (ii) Enough but not always the kinds of food (I/we) wanted ; (iii) Some-

times not enough to eat and (iv) Often not enough to eat. These answers

are linked to the 4 levels of food security defined by the United States De-

partment of Agriculture. With these ordered levels of food security, I apply

the ordered logistic regression and the ordered probit regression to evalu-

ate the impact of reopening policy on food security. I find that when the

states relaxed their containment policy from Major restrictions to Moderate

and No/Minor restrictions, the probability of experiencing food insecurity

dropped, even when I control for an exhaustive set of household charac-

teristics. For instance, the probability of having marginal food security is

32.3 percent under Major restriction policy (with a 95 percent confidence

interval being from 31.5 percent to 33.1 percent), compared to 31.5 percent

if under No/Minor restrictions (with a 95 percent confidence interval being

from 30.9 percent to 32 percent) and 31.1 percent if under Moderate re-

strictions (with a 95 percent confidence interval being from 30.7 percent to

31.5 percent). Reopening policy, especially a move from Major restrictions

to Moderate restrictions, also had similar impacts on expected food secu-

rity. To further check my findings, I also apply the same analysis with a

complementary survey, conducted by the National Opinion Research Center

(NORC), University of Chicago. Consistent results are again found with

this survey. In particular, reopening policy is documented to have a posi-

tive impact on food security. In addition, moving from Major restrictions to
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Moderate restrictions was a favorable policy as far as expected food security

is concerned.

The comprehensive HPS survey enables me to provide new evidence on

the causes and the expectations of food security. In the HPS survey the

respondents were asked to provide the causes of their food insecurity. There

are 6 possible reasons from the ability to get food (monetary, logistically

or mentally) to the availability of food (food not delivered, not available

on stores or no free food). These answers recognize the fact that money is

not always the cause of food insufficiency (Davis and You 2011). I find that

reopening policy had positive impacts on the availability of food: more food

were available in the stores and free food was accessible. However, this pol-

icy might backfire because it reduced the ability to get food. More precisely,

more people reported the inability to afford or to get out to buy food with

reopening policy. Indeed, I document that it increased the expenditures on

prepared food and prepared meals, meaning food became less affordable. In

addition, both people’s health status and their mental health deteriorated

with the policy. It suggests that people might not be able to go out to

get food. Finally, the evidence of how reopening policy affected people’s

expectation regarding Food Security will be useful in building a theoretical

framework that explains how governmental policies influence the causes of

Food Security, especially the ones that relate to the people’s behaviors.

All of these results will serve as useful evidence to policymakers in miti-

gating the effects of the COVID-19 crisis. Furthermore, my results suggest

that reopening policy was effective in making free food accessible via home

delivered meal service; religious organizations and family, friends or neigh-

bors. However, there is no evidence that it was effective in food programs

such as school free meals, food bank, soup kitchen or other community

programs.
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The remainder of the paper is organized as follows. In the next section

I review the existing literature that relates to the determinants of food

security, the impacts of the COVID-19 on food security and the effects of

containment policy. In Section 3 I present the conceptual framework. In

Section 4, I explain the identification strategy. The fifth section presents

the data while the evidence is discussed in the fifth section. In particular, I

show evidence of food security affecting mental health. I also characterize

the people who experience food insecurity. The main focus is, however, how

reopening policy affected food security which is also reported in Section 6.

The final section provides the concluding remarks.

2 Related Literature

My paper bridges the gap between three interesting literatures. The first

one looks for the determinants of food security. The second one investigates

the impacts of the COVID-19 pandemic on food security. And the third

one analyses the effects of containment policy.

Although food security is a prevalent problem, little is known about

its determinants. The most salient candidate is the economic resources

available to the households. Gundersen and Gruber (2001) suggested that

average income over a period of time is a better determinant than current

income. Other types of resources are also considered. According to Ribar

and Hamrick (2003), assets can protect against food insecurity. Liquid-

ity constraints (Leete and Bania 2010) and credit access (Fitzpatrick and

Coleman-Jensen 2014) were also shown to affect the likelihood of experi-

encing food insufficiency. However, there is still a large variation of food

insecurity unexplained by income (Coleman-Jensen et al. (2019)).

One of the unexplored venues that need to be addressed is the impacts
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of macro and micro policy on food security. Most of the work focus on the

policy intended directly to address the problem, such as food stamp and

safety net program and the conclusion is pessimistic. Bitler, Gundersen

and Marquis (2005) found that the impact from the Supplemental Nutri-

tion Program for Women, Infants, and Children (WIC) was minimal. Their

result was echoed by Heflin, Arteaga and Gable (2015) where they docu-

mented small effects of the Child and Adult Care Food Program on child

food security. The contribution of my paper is the new evidence of the

impacts of the containment policy on food security. Moreover, my paper

advances the literature by addressing how this policy affected the causes of

food security. In particular, reopening policy influenced not only the mone-

tary cost of food, but also other types of costs such as health and the fear of

going out. This result agrees with Davis and You (2011) that the safety-net

program often ignored the non-monetary cost of food which explained the

small effects of governmental policy.

The second related literature investigates the impact of COVID-19 on

food security. A report by Feeding America (2020) predicted the level of

food security based on different scenarios of unemployment and poverty.

Under the optimistic scenario, food insufficiency would increase by 1 per-

cent, or 3.3 million people. Under the pessimistic scenario, the increase

would be 5.2 percent, or 17.1 million people. Using a survey that focused

on mothers with young children, Bauer (2020) documented that more than

20 percent of households in America experienced food insecurity. The rate

of food insecurity went up to 40 percent among households with children un-

der 12. Perhaps closer to my study is the survey conducted by the National

Opinion Research Center, University of Chicago. This COVID Impact Sur-

vey is complementary to the survey used in my analysis, albeit at a smaller

scale. They reported that 28 percent of respondents being worried about

their food running out before they had money to buy more in the first wave
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of the survey (April 20th to April 26). This rate improved slightly in the

second and third wave, at 27 and 20 percent respectively. Similar to my

findings, they also found that demographic factors, such as race, education,

income and the number of children, played an important role in explaining

food insecurity. My paper differs from these papers by aiming to establish

a causal relationship between the government response to the outbreak and

food security.

This distinction brings me to the third emerging literature that inves-

tigates the impacts of the containment policy. Brodeur et al. (2020) used

Google Trends data and found that containment policy led to mental health

problems as more people searched for boredom, loneliness, worry and sad-

ness. Glover et al. (2020) looked at the distributional effects of contain-

ment policy while Rampini (2020) proposed to lift containment policy se-

quentially, i.e. to allow a large fraction of economic activity by the less

vulnerable population to resume. Baek et al. (2020) looked at the impact

of stay-at-home order on unemployment. They found that the the direct

effect of stay-at-home orders accounted for a significant but minority share

of the overall rise in unemployment claims. So long as the underlying pub-

lic health crisis persisted, undoing stay-at-home orders would only bring

limited economic relief. My paper complements their studies by looking at

the impact of the containment policy on food security.

3 Conceptual Framework

In this section I analyze the food insufficiency problem from both the

demand and supply side.
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3.1 Demand

I employ here a simplified model from Gundersen and Gruber (2001).

There is a household maximizing its utility subject to the budget constraint.

More precisely, the household solves the following problem:

max
{F,OG}

U(F,OG)

subject to pFF + pOGOG ≤ Y

In the above equation, F and OG are food and other good consumption,

pF and pOG are the corresponding prices and Y is the total income. The

first-order condition of this problem is:

∂U/∂F

∂U/∂OG
=

pF
pOG

Assuming the utility is monotone, the optimal solution will be on the

budget line, i.e.:

pFF + pOGOG = Y

Let F be the minimum food consumption and OG be the minimum

consumption on other good. The minimum expenditure is then:

pFF + pOGOG = E

There are two possible explanations for food insufficiency from the de-

mand side. First, the total income Y of the household drops below E. In

this case, the household cannot afford to buy both food and other goods to
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satisfy its needs. Second, the price of food and other goods increase to the

point that the minimum expenditure E is higher than the total income Y .

I know from the HPS survey whether the respondents could afford to buy

food. It could be because of the two reasons mentioned above. In particular,

reported expenses on food and meals in the survey reveal whether food

was affordable. In addition, the survey answers report that some people

were unable or afraid to go out. As a result, the “transportation” cost

rises which in turn increases the transaction price of food and other goods.

This is consistent with Davis and You (2011) where they found that time

was more the constraining factor than money in reaching the food security

target.

3.2 Supply

At the macroeconomic level, the demand for food derived from the

household optimization problem must be no higher than its supply. How-

ever, if the supply of goods, especially food, declined because of the pan-

demic, this condition might not have been satisfied which resulted in food

insufficiency. Indeed, according to a report by OECD (2020), the biggest

risk for food security could be consumers access to food. The stay-at-home

orders might have prevented food from being produced and brought to the

shelves. In theory, the drop in supply can be offset by a rise in price.

However, price rigidity1 implies that some households were unable to have

sufficient food.

1The mean duration of price rigidity is at least 7 months (Klenow and Kryvtsov 2008;
Nakamura and Steinsson 2008).
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4 Identification strategy

4.1 Reopening and food security

In order to find the causal effect of reopening on food insecurity, I need

to establish an econometric model. In my survey, the respondents gave 4

answers to describe their situation: (i) enough food; (ii) enough food but

not the food we wanted; (iii) sometimes not enough to eat and (iv) often

not enough to eat. In the previous section I provide a number of reasons

to explain food insufficiency. Admittedly, the severity of these problems

determine the level of food security. Denote y∗ one of the reasons of food

insufficiency as described in the previous section. I then set up my model

as follows:

yist = 1(Enough food ) if y∗ist ≤ τ1

= 2(Enough but not always the kinds of food (I/we) wanted to eat) if τ1 < y∗ist ≤ τ2

= 3(Sometimes not enough to eat) if τ2 < y∗ist ≤ τ3

= 4(Often not enough to eat) if τ3 < y∗ist

(1)

The cut-offs τi determine the severity of the food insufficiency. My

hypothesis is that y∗ depends on the household’s characteristics and more

importantly, on reopening policy:

y∗ist = α + βPst + γXist + εist (2)

where Pst is the reopening policy in state s at time t. Xist is the vector of

household attributes, including age, marital status, gender, education and
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income level, the number of adults and children in the household. From

Equations (1) and (2) we have:

Prob(yist = y|Us,t−d, Xist) = Pr(τy−1 < y∗y ≤ τy|Xci, Pc) = F (τy)− F (τy−1)

(3)

where τ0 = 0 and F (.) is the cumulative distribution probability of the

error term εist. If we assume εist follows a logistic distribution then we

have an ordered logistic regression. Alternatively, if we assume εist follows

a standard normal distribution then we have an ordered probit regression.

These two regressions will be used in my analysis.

A major concern when I try to establish causality is the possibility of

endogeneity. This come from two main sources: (i) reverse causality and

(ii) omitted variables. If the number of people suffering from food insuf-

ficiency directly affected the reopening order then the coefficient β would

be biased because of reverse causality. However, there is no evidence to

suggest it was the case. Instead, the reopening order is likely to be the

result of public health consideration, business pressure and political/public

opinion. The U.S. government established five criteria for reopening: (i)

a sustained two-week drop in coronavirus cases; (ii) a low number of daily

new Covid-19 cases; (iii) a high coronavirus testing capacity; (iv) a low

test positive rate and (v) a high availability of Intensive Care Unit (ICU)

beds. However, not all the states met these criteria when they reopened.

They had to balance public health concerns with the economic damage the

containment policy inflicted. What tipped the balance was the political

and public opinion. According to Graham (2020), the reason of reopening

came from the “...power of the presidential bully pulpit and intense media

coverage”. Therefore, the effect of food security on reopening was, at best,
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indirect. In other words, the chance of a reverse causality is minimal.

This leaves me to the second possibility: omitted variables. I can think

of two factors that are correlated with both food security and reopening

policy: unemployment and the governor’s partisan affiliation. Indeed, the

unemployment rate increased to a record high 14.7 percent in April 2020

(Bureau of Labor Statistics 2020). The loss of income as a result of un-

employment is one of the causes of food insufficiency as I discussed in the

previous section. At the same time, the growing demand from the public

to end enforced business closures meant that governors would find it harder

to keep the business closed.

In addition to unemployment, the governor partisan identity is another

potential factor that is correlated with both food security and reopening. It

is documented that the Red states are poorer than the Blue states (Gelman

et al. 2008). As a result, food security is more likely to be a problem in

the former than in the latter. Moreover, Republican governors were more

inclined to reopen their states than Democratic governors. Indeed, as of

May 3rd 2020, of the 24 states reopening early, 17 are led by Republicans

and 7 by Democrats.

I try to correct for the omitted variable problem that leads to endo-

geneity bias by controlling for a number of covariates and fixed effects. In

particular, I control for the state-level unemployment rate that could affect

both reopening policy and food security. Since the unemployment rate was

only communicated one month later by the Bureau of Labor Statistics, I

use the unemployment rate one month prior to the time the respondents

were asked in the survey. I also use the state fixed effect to control for all

state-level time-invariant factors, such as the governor’s partisan affiliation,

that could affect both reopening policy and food security.

207
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

95
-2

43



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

4.2 Further investigations

In addition to the econometric techniques discussed above, to establish

the causal relationship between reopening and food security, I look at the

mechanism of how reopening affected food insecurity. The richness of my

data enables me to carry such task. In particular, in my survey, respondents

were asked why they did not have food in the past 7 days. More precisely,

for the people who answered that they did not have enough food in the past

7 days, they were asked if the reason was one of the following: (1) cannot

afford food; (2) cannot go out; (3) afraid to go out; (4) food not delivered or

(5) food not available on stores. Moreover, they also reported whether they

received free food which is also an important factor of food insecurity. Their

answers allow me to investigate how reopening policy affected food security.

More precisely, denote πk the probability that food insufficiency resulted

from one of the aforementioned reasons, I assume that this probability is a

function of the vector of characteristics X and the reopening policy z:

πk = Π(X, z) (4)

Based on this assumption I then set up the following regression (I drop

the subscript k to alleviate the notation):

πist = α + βPst + γXist + uist (5)

Again if we assume the error term uist follows the logistic distribution,

we will have a logistic regression. Alternatively, we have a probit regression

if uist follows the normal distribution.

To put more confidence in my findings, I carry further checks on the

demand side. In particular, I make use of the reported expenses on food
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and the health status of the respondents. In particular, I will have two

additional regressions:

Eist = α + βPst + γXist + uist (6)

Hist = α + βPst + γXist + uist (7)

In Regression 6, the dependent variable Eist is the reported expenses

on food prepared and eaten at home and on prepared meals (e.g. eating

out or delivered food) of a resident i in state s at time t. The estimated

coefficient β in this regression will reveal how reopening policy affected the

affordability of food which is one of the causes of food insecurity.

In Regression 7, the dependent variable Hist is the reported health status

of a resident i in state s at time t. The estimated coefficient β in this re-

gression will reveal how reopening policy affected the ability of the resident

to go out to buy food.

5 Data

5.1 Reopening

The U.S. started the stay-at-home order at the end of March 2020.

Residents were asked not to go to non essential business to contain the

COVID-19 outbreak. Later in May, a number of states began to lift this

containment policy.

I use the Washington Post report to construct the phases of reopening

across different States. In particular I divide the reopening policies into

4 categories: Major, Moderate, Minor and No restrictions. The first cat-
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egory (Major restrictions) refers to the stay-at-home order. According to

the categorization by the Washington Post, it indicates that ”personal care

businesses, such as salons and barbers, gyms and most non-essential busi-

nesses remain closed. Restaurants and bars may not seat patrons. Face

coverings and six-foot distancing are required, and public gatherings larger

than ten are not permitted”. The second category (Moderate restrictions)

starts when the state already reopens 2. It means ”many of the above

businesses may reopen with limited capacity, while bars and gyms remain

closed.” The third category (Minor restrictions) implies further relaxation.

Under this category, ”bars, theaters, casinos or concert halls may reopen,

with larger groups permitted.”

In order to check the validity of my data construction, I compare to

the reopening data provided by Nguyen et al. (2020). Based on the New

York Times articles, they constructed the reopening dates for each state.

In Table A1 in the Appendix I combine the reopening date in Nguyen et al.

(2020) and the reopening categorization in the first four weeks in my data.

In particular, week 1 refers to the week from April 23 to May 5; week 2

refers to the week from May 7 to May 12; week 3 refers to the week from

May 14 to May 19 and week 4 refers to the week from May 21 to May 26.

We can see that in most states, my definition of reopening dates coincide

with Nguyen et al. (2020). For instance, according to Nguyen et al. (2020)

New York reopened on May 15. In my data, I categorize the policy in New

York as Major restrictions until week 4 because May 15 fell into week 3.

There are, however, a number of differences in Arizona, Delaware, Iowa,

Louisiana, Michigan and New Hampshire. I explain the differences in the

Appendix.

2Note that I switch the category after the state changes its policy. For instance,
Alabama started reopening on April 30. As a result, while the category in the first week
(from April 23 to May 5) is Major restrictions, the category in the second week (from
May 7 to May 12) is Moderate restrictions.
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Figure 1 provides the graphical illustration of reopening policy. At the

end of the survey, South West, South East and Mid West reopened relatively

further than other regions. Because there was a few instances (in Missouri

in the final week and in Alaska from week 4) that we had No restrictions,

I put No restrictions in the same category as Minor restrictions.

Stylized Facts 1 More relaxation are observed across states in the United

States

5.2 Food security

Data on food security outcomes and other household level control vari-

ables are from the 2020 Household Pulse Survey (HPS). The survey was

conducted by the United States Census Bureau in partnership with five

other agencies from the Federal Statistical System: The Bureau of Labor

Statistics, the National Center for Health Statistics, the United States De-

partment of Agricultures Economic Research Service, the National Center

for Education Statistics, and the Department of Housing and Urban Devel-

opment collaborated to develop the content for the HPS.

The survey was conducted for a total of 8 weeks, starting from the

week of April 23 (week 1) to that of June 18. The survey is nationally

representative and covers 50 states and the District of Columbia. In my

analysis, I use answers to the question “In the last 7 days, which of the

statements best describes the food eaten in your household?”. The four

available answers are: (i) Enough of the kinds of food (I/we) wanted to eat ;

(ii) Enough but not always the kinds of food (I/we) wanted ; (iii) Sometimes

not enough to eat and (iv) Often not enough to eat. To be consistent with

other studies, I link these answers to the levels of food security set by the

United States Department of Agriculture. Accordingly, the food security

status of each household lies somewhere along a continuum extending from

211
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

95
-2

43



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

7/18/2020 United-States-Map Coloring Page

https://www.thecolor.com/Print/PrintPicture2_2acd0zoolofvvwfirbecob1h_United-States-Map.aspx 1/1

(a) Week 1

7/18/2020 United-States-Map Coloring Page

https://www.thecolor.com/Print/PrintPicture2_bigzf3vgpvwepglbo1vs40cq_United-States-Map.aspx 1/1

(b) Week 2

7/18/2020 United-States-Map Coloring Page

https://www.thecolor.com/Print/PrintPicture2_bigzf3vgpvwepglbo1vs40cq_United-States-Map.aspx 1/1

(c) Week 3

(d) Week 4 (e) Week 5

7/25/2020 United-States-Map Coloring Page

https://www.thecolor.com/Print/PrintPicture2_hsuklg4lky3id2tuu0po2pqq_United-States-Map.aspx 1/1

(f) Week 67/25/2020 United-States-Map Coloring Page

https://www.thecolor.com/Print/PrintPicture2_hsuklg4lky3id2tuu0po2pqq_United-States-Map.aspx 1/1

(g) Week 7

7/18/2020 United-States-Map Coloring Page

https://www.thecolor.com/Print/PrintPicture2_2acd0zoolofvvwfirbecob1h_United-States-Map.aspx 1/1

(h) Week 8

Figure 1. The reopening across States. The colors red, orange, yellow
and green correspong to Major, Moderate, Minor and No restrictions.
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high food security to very low food security. This continuum is divided into

four ranges, characterized as follows:

- High food security - Households had no problems, or anxiety about,

consistently accessing adequate food.

- Marginal food security - Households had problems at times, or anx-

iety about, accessing adequate food, but the quality, variety, and quantity

of their food intake were not substantially reduced.

- Low food security Households reduced the quality, variety, and

desirability of their diets, but the quantity of food intake and normal eating

patterns were not substantially disrupted.

- Very low food security At times during the year, eating patterns

of one or more household members were disrupted and food intake reduced

because the household lacked money and other resources for food.

Following this characterization, I assign each answer to the question “In

the last 7 days, which of the statements best describes the food eaten in

your household?” to the four levels of food security. Alternatively, Gun-

dersen and Oliveira (2001) defined food security as a binary variable. They

then assigned the first two answers to food sufficiency and the last two

answers to food insufficiency. There are two reasons for the characteriza-

tion used in my analysis. First, it is consistent with the way the survey

was designed. Indeed, the respondents who chose the last 3 answers were

deemed food insecure. They were then asked why it was the case. Second,

the 4-level characterization allows me to analyze in more details the food

security situation of households as can be seen in the subsequent analysis.

In addition to the measures of food security, the survey also provides a

number of household’s characteristics that I will use in my analysis. Table

1 provides the statistics of the food security outcomes as well as the key
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characteristics. Compared to the situation prior March 13 2020, the current

situation deteriorated. Indeed, while there were more than three quarters

of the people reported food security prior March 13 2020, only two thirds

of the people reported the same thing in the current situation. Moreover,

people were pessimistic about the future. The percentage of people report-

ing expected food security drops to 58 percent. These numbers confirm the

statement of the United Nations that the COVID-19 pandemic put more

people at risk of food insecurity.

Table 1. Summary statistics

Outcomes
Food security prior March 13, 2020

High Marginal Low Very low
77.80 % 17.14% 4.05% 1.01%

Food security in the past 7 days
High Marginal Low Very low

67.25% 26.68% 4.90% 1.17%
Expected Food security in the next 4 weeks

Very confident Moderately confident Somewhat confident Not at all confident
58.30% 19.45% 16.56% 5.69%

Variables N Mean SD Min Max
Reasons for food insecurity
Cannot afford food (1=YES) 229,268 0.372 0.483 0 1
Cannot get out to buy food (1=YES) 229,268 0.111 0.314 0 1
Afraid to go (1=YES) 229,268 0.269 0.443 0 1
Food not delivered (1=YES) 229,268 0.0692 0.254 0 1
Food not available on stores (1=YES) 229,268 0.522 0.500 0 1
Covariates
Age 720,487 51.59 15.74 18 88
Male (1=YES) 720,487 0.405 0.491 0 1
Hispanic (1=YES) 720,487 0.0851 0.279 0 1
Race 720,487 1.313 0.767 1 4
Recent job loss (1=YES) 716,527 0.391 0.488 0 1
Employed (1=YES) 716,337 0.572 0.495 0 1
Expect job loss (1=YES) 715,661 0.281 0.449 0 1
Kind of work 690,289 4.966746 3.337488 1 9
Number of persons in the household 720,487 2.844 1.620 1 10
Number of children 720,487 0.665 1.070 0 5
Education attainment 720,487 5.273 1.466 1 7
Marital status 715,076 2.208 1.598 1 5
Income 623,083 4.567 2.094 1 8
Unemployment pay 285,582 3.819 0.574 1 4
Note: the education attainment are (1) less than high school; (2) some high school; (3) high school graduate

or equivalent; (4) some college; (5) associate’s degree; (6) bachelor degree; (7) graduate degree.

The races are (1) White, (2) Black, (3) Asian; (4) Others

The marital status are (1) married; (2) widowed; (3) divorced; (4) separated; (5) never married.

The kind of work or unemployment benefits are (1) government; (2) private; (3) non profit; (4) self-employed;

(5) family business; (6) paid leave; (7) full pay without leave; (8) partial pay; (9) no pay.

The income are (1) less than $25,000; (2) $25,000-$34,999; (3) $35,000-$49,999; (4) $50,000-$74,999;

(5)$75,000-$99,999; (6)$100,000-$149,999; (7)$150,000-$199,999; (8) above $200,000
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5.3 Unemployment

The final dataset used in my analysis is the unemployment data which is

taken from the Bureau of Labor Statistics (BLS). Table A2 in the Appendix

reports the state-level unemployment rate from February to May 2020. Note

that the BLS only communicated the unemployment rates with a one-month

lag. As a result, my assumption is that the governors, if they took into

account unemployment when deciding to reopen their state, used the rate

in the previous month. For instance, the rate in March would be used for

reopening policy in April. One thing that I note from Table A2 is that

unemployment started to pick up in February/March and rocketed in April

and May. It coincides with the relaxation of the stay-at-home orders and

suggests that unemployment could be a factor of consideration for reopening

policy.

6 Evidence

6.1 The negative impacts of Food security on health

It is suggested that food security has a long-lasting effect on people’s

health (see Gundersen, Kreider and Pepper 2011). Food insufficiency not

only affects adversely physical but also mental health (Stuff et al. 2004). My

analysis provides additional evidence to support this view. Figures 2a, 2b,

2c and 2d show the percentage of people with various levels of health status

based on their level of food security. In all figures, a consistent pattern

emerges. Among the people who were food secure, more than half did not

feel any mental problems. This percentage drops significantly to 30 percent

among the people who had marginal food security and even further if they

had low or very low food security. By contrast, less than one fifth of the

people who did not experience food insecurity felt the problems frequently
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(more than half the days or nearly everyday). This percentage increases

significantly to fifty percent for the people who had very low food security.

Figure 2e reports the relationship between Food Security and Health in

general. Again Food Security and Health went in opposite direction. One

quarter of the people who experienced food security felt excellent as far as

their health was concerned. This percentage declined with the level of food

security, down to 8 and 10 percent for the people who had low and very low

food security. Similarly, nearly 40 percent of the food secure people felt very

good with their health, but only 11.7 percent of the people who experienced

very low food security felt so. By contrast, only 1.7 percent of the people

who had food security felt poorly with their health. The number for the

people who had very low food security rises up to 20.9 percent. These

numbers confirm that food insecurity could lead to severe mental health

problems. It is, therefore, important to eradicate Food Insecurity.

6.2 Characteristics of people who are food insecure

To check the consistency of the HPS survey, I look at the characteristics

of the people who are food insecure. Table 2 characterizes these people. In

the first two columns, I control for the characteristics such as the outcome

of food security in the previous 7 days, together with demographic and

socioeconomic factors such as age, race, gender, marital status, education

attainment, household size and the number of children, and job-related

variables. In Columns 3 and 4, I control further for the income level and

the kinds of work or unemployment benefit. A number of interesting facts

emerge from Table 2.

First, Food Security is a path dependent problem. People who had food

insufficiency prior to March 13, 2020 were likely to continue this path. All

the coefficients of prior food insecurity are significantly positive, suggesting
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that past food insecurity is a strong predictor of current food insecurity.

Further evidence can be found in Figure 3a which shows the predictive

probability of food security based on the situation prior March 13, 2020.

According to this figure, 74 percent of people who had prior food security

continued to do so. The percentage of people being food secure dropped

to 27 percent and 5 percent for the people who had prior marginal food

security and who had prior low food security, respectively. People who had

prior very low food security had zero chance to be food secure. On the

other hand, none of the people who had prior food security or marginal

food security ended up in very low food security situation. By contrast,

nearly half of the people in very low food security situation before March

13, 2020 continued to be in the same situation.

Second, food security is driven by the person’s characteristics. Young

and female were adversely affected. This is consistent with the situation in

2018 (Coleman-Jensen et al. 2019). White people fared better than Blacks,

although the effect is gone once I controlled for the income level and the kind

of work or unemployment benefit. There is weak evidence that Asians were

in a better situation than Whites. Other races were in a worse situation

than Whites.

In 2018, households with single woman or single man had a rate of food

insecurity above the national average (Coleman-Jensen et al. 2019). This

fact is replicated here as all the coefficients of marital status are significantly

positive. It implies that relative to married people, people who were either

widowed, divorced, separated or never married were more likely to have

some food insecurity problem. Figure 3b predicts that while 59 percent of

married people had food security, only 57, 56 and 54 percent of widowed,

divorced and separated people were food secure, respectively.

Third, not only the personal information but also the household infor-

218
C

ov
id

 E
co

no
m

ic
s 5

6,
 9

 N
ov

em
be

r 2
02

0:
 1

95
-2

43



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

mation can predict the outcomes of food security. Household size, and

especially the number of children, is a strong predictive factor. In partic-

ular, large household with numerous children is more likely to suffer food

shortage, a fact that is consistent with the situation in 2018 (Coleman-

Jensen et al. 2019). Household income is another strong predictor. All the

coefficients of the income levels in Table 2 are significantly negative, im-

plying that relative to the lowest income level (below $25,000), households

of higher income were less likely to have food security problem. Figure 3c

shows that the predicted probability of having food security increases with

the income level, while the predicted probability of having marginal food

security decreases.

A contribution of my study is that I provide additional predictive fac-

tors of food security relative to Coleman-Jensen et al. (2019). In partic-

ular, I show here that education, job-related variables and all kinds of

work/unemployment benefits have significant impacts. The coefficients of

education are significantly negative, suggesting that people with high educa-

tion level were less likely to experience food insecurity. Similarly, employed

people were less likely to suffer food insufficiency. By contrast, people who

lost jobs or expected to lose jobs were more likely to suffer from food inse-

curity. Columns 3 and 4 in Table 2 also show that relative to the people

who worked for the government (public sector), the people who worked for

non-profit/charitable organizations or those who were self-employed were

less likely to have food insecurity. There are no strong evidence to suggest

there is a difference between the public sector and the private sector or fam-

ily business. Among the people who received unemployment benefit, those

with paid leave or received full pay were equally well-off with the people

in the public sector, while the people who received partial pay were more

likely to suffer food insecurity.
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Table 2. Demographics and Food Security

Variables (1) (2) (3) (4)

Food security prior March 13, 2020

Marginal food security 2.721*** 1.433*** 2.623*** 1.371***

(0.026) (0.014) (0.029) (0.016)

Low food security 5.230*** 2.576*** 5.083*** 2.485***

(0.057) (0.031) (0.065) (0.034)

Very low food security 7.932*** 3.869*** 7.900*** 3.853***

(0.126) (0.066) (0.144) (0.075)

Age -0.012*** -0.008*** -0.012*** -0.008***

(0.001) (0.000) (0.001) (0.000)

Gender (male) -0.087*** -0.046*** -0.049** -0.022*

(0.018) (0.011) (0.020) (0.012)

Hispanic -0.005 -0.006 -0.064* -0.042**

(0.030) (0.017) (0.034) (0.019)

Black 0.075** 0.057*** -0.015 0.003

(0.029) (0.018) (0.033) (0.020)

Asian -0.039 -0.034 -0.069 -0.051*

(0.043) (0.024) (0.048) (0.027)

Other race 0.161*** 0.098*** 0.154*** 0.089***

(0.040) (0.023) (0.044) (0.025)

Widowed 0.276*** 0.173*** 0.110** 0.073**

(0.045) (0.026) (0.050) (0.029)

Divorced 0.301*** 0.189*** 0.154*** 0.096***

(0.026) (0.015) (0.029) (0.017)

Separated 0.410*** 0.254*** 0.261*** 0.166***

(0.065) (0.043) (0.072) (0.049)

Continued on next page
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Table 2 – continued from previous page

Variables (1) (2) (3) (4)

Never married 0.100*** 0.066*** -0.026 -0.013

(0.026) (0.015) (0.030) (0.018)

Education -0.079*** -0.052*** -0.021*** -0.017***

(0.006) (0.004) (0.007) (0.004)

Household size 0.009 0.004 0.020** 0.011**

(0.007) (0.004) (0.008) (0.004)

Number of children 0.022* 0.015** 0.025* 0.015**

(0.012) (0.007) (0.013) (0.008)

Employed -0.190*** -0.125*** -0.136*** -0.095***

(0.019) (0.011) (0.039) (0.022)

Job loss 0.349*** 0.213*** 0.328*** 0.200***

(0.022) (0.013) (0.025) (0.015)

Expect job loss 0.584*** 0.351*** 0.586*** 0.350***

(0.023) (0.014) (0.025) (0.015)

Income level

$25,000-$34,999 -0.121*** -0.076***

(0.040) (0.023)

$35,000-$49,999 -0.204*** -0.131***

(0.041) (0.023)

$50,000-$74,999 -0.295*** -0.182***

(0.037) (0.022)

$75,000-$99,999 -0.500*** -0.318***

(0.042) (0.024)

$100,000-$149,999 -0.646*** -0.410***

(0.041) (0.023)

$150,000-$199,999 -0.924*** -0.563***

Continued on next page
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Table 2 – continued from previous page

Variables (1) (2) (3) (4)

(0.046) (0.026)

Above $200,000 -1.139*** -0.679***

(0.050) (0.030)

Kind of work or unemployment benefit

Private sector 0.031 0.022

(0.038) (0.021)

Non profit -0.057 -0.029

(0.047) (0.026)

Self-employed -0.139*** -0.083***

(0.053) (0.030)

Family business -0.190** -0.101**

(0.079) (0.043)

Paid leave -0.213** -0.132**

(0.097) (0.057)

Full pay -0.257*** -0.141***

(0.059) (0.038)

Partial pay -0.117 -0.082*

N 627671 627671 534314 534314

Note: In addition the reported characteristics, I also controlled for the state fixed effects.

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

6.3 Reopening and Food insecurity

The main focus of my analysis is the impact of reopening policy on food

security. Table 3 reports the results. In Columns 1 and 2, I apply the

ordered logistic regression, while in Columns 3 and 4 I apply the ordered

probit regression. Only reopening policy are controlled in Column 1 and
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3, while all other characteristics as in Table 2 are included in Columns 2

and 4. By controlling for the food insecurity status in the week prior to

the survey as well as other characteristics, I pick up the effect of reopening

policy within these groups. In other words, I ensure that the food insecurity

results from the policy and not the historical status or the characteristics

of the individuals.

Results in Table 3 report that all the coefficients of No/Minor restrictions

and Moderate restrictions are significantly negative, implying that a move

from Major restrictions (the omitted policy) to Moderate and No/Minor

restrictions had a significant impact on food insecurity. Indeed, such a

move decreased the probability of being food insecure. Figure 3d shows

the predicted probability of having food security based on reopening policy.

According to this figure, the probability of having food security under Ma-

jor restriction policy is 56.8 percent (with a 95 percent confidence interval

being from 55.5 percent to 58 percent), compared to 58.1 percent if under

No/Minor restrictions (with a 95 percent confidence interval being from

57.4 percent to 58.9 percent) and 58.7 percent if under Moderate restric-

tions (with a 95 percent confidence interval being from 58.4 percent to 59.1

percent). By contrast, the probability of having marginal food security is

32.3 percent under Major restriction policy (with a 95 percent confidence

interval being from 31.5 percent to 33.1 percent), compared to 31.5 percent

if under No/Minor restrictions (with a 95 percent confidence interval be-

ing from 30.9 percent to 32 percent) and 31.1 percent if under Moderate

restrictions (with a 95 percent confidence interval being from 30.7 percent

to 31.5 percent).

Based on my model (Equation 2) I can calculate the probability of each

of the level of food security in every state. Figure A1 in the Appendix

illustrates these predicted probabilities. These probabilities show that the
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Table 3. Impact of Reopening on Food security

(1) (2) (3) (4)
Ordered logistic Ordered probit

No/Minor restrictions -0.012 -0.106** -0.002 -0.051*
(0.033) (0.050) (0.020) (0.029)

Moderate restrictions -0.098*** -0.144*** -0.054*** -0.074***
(0.030) (0.043) (0.019) (0.025)

State FE YES YES YES YES
N 633161 534314 633161 534314

Note: In Column 1 and 3, I only control for reopening policy.

All the characteristics in Table 2 are included in Column 2 and 4.

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Southern States were the places where food insecurity was of great con-

cern while the states in the Pacific Northwest found themselves in a better

situation.

6.4 How reopening affected food security

In the previous section, I provide evidence that reopening reduced the

likelihood of food insecurity. However, to provide policy recommendations,

I would need further investigations that help me understand the causes

of food insufficiency. In the HPS survey, the respondents were asked to

answer why they did not have enough food. They were to choose one of

the following five answers: (i) cannot afford food; (ii) cannot get out to buy

food; (iii) afraid to go out; (iv) food not delivered and (v) food not available

on stores. In addition, the survey also asked if they received free food. All

these answers are used to investigate the causes of food insecurity.

Table 4 reports how reopening affected the causes of food insufficiency.

In Panel A, I use the logit model while in Panel B I use the probit model.

Both models yield similar results. The coefficient of No/Minor and Mod-

erate restrictions are significantly negative in Column 5, suggesting that
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stores had more food after the states reopened (i.e. less people claimed

that they experienced food insufficiency because of this cause). Perhaps

the most intriguing result is that reopening policy affected the ability of

the consumers to buy food. Results in Columns 1 and 2 suggest that more

people did not have enough food because either they could not afford or

they could not go out to buy food.

Figure 3e brings more evidence to illustrate how reopening affected the

causes of food insecurity. According to this figure, under No/Minor restric-

tions, 33 percent of people who were food insecure could not afford food.

This probability was only 30 percent under Moderate restrictions and re-

duced further to 25 percent under Major restrictions. On the other hand,

my model predicts that under No/Minor restrictions, the probability of not

having enough food because food was not available on the stores is 44 per-

cent. This probability increases to 48 percent under Moderate restrictions

and 55 percent under Major restrictions.

To explain how reopening policy affected the ability of consumers to get

food, I look at its impacts on food expenses and people’s health. In Table

5, the dependent variable in Column 1 is the expenses spent on food at

supermarkets, grocery stores and other places. They are to be prepared

and eaten at home. The dependent variable in Column 2 is the expenses on

prepared meals such as eating out, fast food or delivered meals. Both the

coefficients of No/Minor restrictions and Moderate restrictions are signifi-

cantly positive in all categories of expenses, implying that reopening policy

increased the monetary costs of food. Given the income of the respondents

was unlikely to increase during the pandemic, it suggests that food became

less affordable.

Table 6 shows how reopening affected people’s health status and mental

health. The level of health status is the dependent variable in Column 1.
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Table 4. Causes of Food Insecurity

(1) (2) (3) (4) (5) (6)

Panel A: Logit model

No/Minor restrictions 0.488*** 0.268** 0.068 0.045 -0.761*** 0.338***
(0.083) (0.106) (0.082) (0.131) (0.079) (0.095)

Moderate restrictions 0.216*** 0.166* -0.069 -0.051 -0.422*** 0.186**
(0.072) (0.089) (0.072) (0.106) (0.069) (0.086)

Panel B: Probit model

No/Minor restrictions 0.295*** 0.145*** 0.038 0.024 -0.455*** 0.170***
(0.049) (0.055) (0.048) (0.063) (0.047) (0.046)

Moderate restrictions 0.131*** 0.092** -0.041 -0.024 -0.251*** 0.097**
(0.042) (0.046) (0.042) (0.051) (0.042) (0.041)

State FE YES YES YES YES YES YES
N 172633 172633 172633 172633 172633 534116

Note: Each column, except Column 6, corresponds to one particular reason for not having enough food.

They are (1) cannot afford food (2) cannot get out (3) afraid to go out (4) food not delivered

(5) food not available on stores.

Column 6 corresponds to the question whether the respondent received free food in the past 7 days.

All the person and household characteristics are included, as in Table 2 .
Standard errors in parentheses * p<0.1, ** p<0.05, *** p<0.01
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Table 5. Reopening and food expenditure

(1) (2)
Prepared food Prepared meal

No/Minor restrictions 24.485*** 15.265***
(2.911) (1.891)

Moderate restrictions 11.698*** 8.153***
(2.404) (1.584)

State FE YES YES
N 526339 523631
R-squared 0.152 0.0974

Note: In the first column, the dependent variable is the expenditure on food to prepare

and eat at home. In the second column, the dependent variable is the expenditure on

prepared meals. All the household characteristics are controlled.

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

Its value ranges from 1 (Excellent) to 5 (Poor). The frequency that people

felt anxious, worried, had little interest and depressed are the dependent

variables in Columns 2 to 5. The values of the frequency are from 1 (Not

at all) to 5 (Nearly everyday).

Column 1 reports that reopening policy led to a deteriorating health

status. As a result, people were not able to go out to buy food. Moreover,

they felt more anxious, worried, depressed and had little interest (Columns

2 to 5), suggesting that they might have been afraid of going out. Indeed, if

the belief was that reopening was imposed too soon, it would lead to more

virus infection and more fear of going out.

Another cause of food insufficiency is the lack of free food. Column 6

in Table 4 suggests that state reopening increased the probability of people

receiving free food. It prompts the question of how reopening affected the

source of free food. Table 7 provides the evidence to answer this question.

In this table, I employ the answers to the question of where people got free

food. The available answers are (1) school or program aimed at children;
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Table 6. Reopening and Health

(1) (2) (3) (4) (5)
Health Status Anxiety Worried Little interest Depression

Panel A: Ordered Logistic Regression
No/Minor restrictions 0.142*** 0.169*** 0.221*** 0.101** 0.185***

(0.039) (0.039) (0.040) (0.040) (0.041)

Moderate restrictions 0.036 0.042 0.090*** 0.010 0.066*
(0.032) (0.033) (0.034) (0.033) (0.034)

Panel B: Ordered Probit Regression
No/Minor restrictions 0.088*** 0.101*** 0.132*** 0.067*** 0.118***

(0.022) (0.023) (0.024) (0.024) (0.024)

Moderate restrictions 0.025 0.026 0.057*** 0.014 0.046**
(0.018) (0.020) (0.020) (0.020) (0.020)

State FE YES YES YES YES YES
N 534864 534864 534864 534864 534864

Note: In Column 1, the dependent variable is the health status of the respondents, from 1 (Excellent)

to 5 (Poor). From Column 2 to Column 5, the dependent variables are the frequency of the mental health

problem, from 1 (Not at all) to 5 (Nearly everyday).

All the household characteristics are controlled.

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01
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(2) food pantry or food bank; (3) home delivered meal service; (4) religious

organizations; (5) shelter or soup kitchen; (6) other community program or

(7) family; friends or neighbors. For each answer, I study how reopening

affected the probability of having free food from these sources. Each col-

umn in Table 7 corresponds to one of the answers above. The coefficients

of reopening policies are significantly positive in Columns 3, 4 and 7. It

suggests that the relaxation of the stay-at-home order helped the meal de-

livery service and the religious organizations such as churches, temples or

mosques to reach out more to people in need of food. At the same time,

these people were more likely to receive assistance from their family, friends

or neighbors.

6.5 Reopening and the expected food security

In the previous section, I show how reopening influenced the causes of

Food Security. An interesting feature is that not only the monetary cause

was affected but also other causes such as the ability to go out for food.

It suggests that the government’s policy could alter the people’s behavior

and mitigate the problem. Building such a theoretical framework will be an

interesting venue for future research. It requires, however, evidence of how

reopening policy affects the people’s expectation, as far as Food Security is

concerned.

As far as I know, there is a lack of evidence on the expected food security.

Table 8 provides evidence to fill this gap. The respondents in the survey

were asked how confident they were that they could afford enough food in

the next 4 weeks. The answers were from ”Not at all confident” to ”Very

confident”. In other words, the answers ranged from very low food security

to high food security.

In Columns 1 and 2, I apply the ordered logistic regression while in
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Table 7. The sources of free food

(1) (2) (3) (4) (5) (6) (7)

Panel A: Logit model

No/Minor restrictions -0.008 0.216 0.637 0.816*** -0.213 -0.006 0.541**
(0.182) (0.227) (0.393) (0.252) (0.478) (0.213) (0.220)

Moderate restrictions 0.223 0.006 0.715** 0.207 -0.244 0.029 0.057
(0.152) (0.208) (0.318) (0.234) (0.370) (0.184) (0.204)

Panel B: Probit model

No/Minor restrictions 0.001 0.134 0.297* 0.454*** -0.091 0.007 0.311**
(0.106) (0.131) (0.174) (0.132) (0.195) (0.119) (0.127)

Moderate restrictions 0.112 0.004 0.319** 0.113 -0.080 0.021 0.032
(0.089) (0.120) (0.145) (0.121) (0.158) (0.104) (0.117)

State FE YES YES YES YES YES YES YES
N 32599 32599 32599 32599 32599 32599 32599

Note: each column corresponds to the question where they got free groceries and free food.

The answers are (1) school or program aimed at children; (2) food pantry or food bank

(3) home delivered meal service; (4) religious organizations; (5) shelter or soup kitchen

(6) other community program or (7) family; friends or neighbors

Standard errors in parentheses * p<0.1, ** p<0.05, *** p<0.01
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Columns 3 and 4 I apply the ordered probit regression. In Columns 1 and

3, only the reopening policies are controlled while all the characteristics

that are controlled previously (for example in Table 2) are controlled in

Columns 2 and 4.

In all specifications, the coefficients of No/Minor restrictions are nega-

tive. Since the Major restriction policy is the omitted policy, these results

imply that people who lived in the states where the containment policy

moved from Major restrictions to None or Minor restrictions expected to

experience food insufficiency. By contrast, the coefficients of Moderate

restrictions are all positive, although not statistically significant. They sug-

gest that people slightly expected an improving food security situation when

the states moderately relaxed their stay-at-home orders. These two results

suggest that people prefer a measured reopening to a more drastic move as

far as expected food security is concerned.

Table 8. Impact of Reopening on expected Food security

(1) (2) (3) (4)
Ordered logistic Ordered probit

No/Minor restrictions -0.148*** -0.025 -0.090*** -0.014
(0.031) (0.045) (0.019) (0.025)

Moderate restrictions 0.020 0.030 0.010 0.018
(0.029) (0.038) (0.018) (0.021)

State FE YES YES YES YES
N 592186 534328 592186 534328

Note: In Column 1 and 3, I only control for reopening policy.

All the characteristics in Table 2 are included in Column 2 and 4

Standard errors in parentheses. * p<0.1, ** p<0.05, *** p<0.01

6.6 Robustness checks

In this section, I provide further evidence to support the finding that

reopening policy alleviated food insecurity. First, I include data on state-
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level unemployment to address the potential omitted variables. Second, I

employ an alternative dataset to check if the finding is driven by my survey.

As I discussed in the identification strategy section, unemployment is

a variable that is potentially correlated with both the dependent variable,

food security, and the independent variable, reopening policy. Since unem-

ployment rates were only communicated one month later by the Bureau of

Labor Statistics, I add the unemployment rate of the previous month in

Columns 1 and 2 in Table 9. The results in both columns confirm that my

finding remains unchanged: reopening policy reduced the likelihood of food

insecurity.

In the second robustness check, I employ another survey, conducted

by the National Opinion Research Center (NORC), University of Chicago.

This survey is at a smaller scale than the HPS: it only covered 17 states

in the U.S., compared to 51 states in the HPS. The NORC has 3 waves,

compared to 8 waves in the HPS. And finally, in each wave there were

8-9000 responses while the HPS has ten times the responses.

Although smaller in size, the NORC survey can provide complementary

evidence. In this survey, the respondents were asked if they did not have

the money to buy the food needed. I will use their answers as an indicator

of food security. In particular, the answers ranged from ”Often true” to

”Sometimes true” and ”Never true”. They are then assigned to ”Very Low

Food Security” to ”Low Food Security” and ”Food Security”.

In addition to answering whether they had money to buy food, respon-

dents were also asked if they worried that food would run out before they

had money to buy more. I use their answers as an indicator of the ex-

pected food security. This survey, however, does not have information on

the reasons of food insecurity.
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Table 9 provides the results. In Columns 3 and 4, the dependent variable

is the current Food security. We can see that in all specifications, the

coefficients of No/Minor restrictions and Moderate restrictions are positive.

Note that a high answer means more food security. Therefore, the results

suggest that moving from Major restrictions to Moderate and No/Minor

restrictions improved the food security. In Columns 5 and 6, the dependent

variable is the expected Food security. The coefficients of both types of

reopening policy are positive, although only those of Moderate restrictions

are significant. Again it is consistent with the finding with the HPS survey

that people were in favor of a move from Major restrictions to Moderate

restrictions.

7 Concluding remarks

The COVID-19 pandemic has posed major challenges to governments

across the world. Food insecurity is one of the threats that this pandemic

is projected to bring. Policy makers have responded to the development

of the outbreak with a number of policies, including the containment (and

the relaxation) policy. My analysis shows that reopening policy reduced

the likelihood of experiencing food insufficiency. While the overall impact

of this policy is expected, how it influenced the causes of food security is

more interesting. In particular, while reopening policy increased the food

supply (more food available on stores and more people receiving free food),

it reduced the people’s ability to get food (either they could not afford to

buy food or they could not go out to get food). In addition, there is evidence

that reopening policy helped a number of venues to get free food, such as

meal service, religious organizations and from friends/relatives/neighbors.

While my findings must be taken with some cautions due to the iden-

tification assumptions, they yield valuable evidence to policy makers to
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Table 9. Robustness checks

(1) (2) (3) (4) (5) (6)
HPS survey NORC survey

Food Security Expected Food Security

No/Minor restrictions -0.015 -0.004 0.065 0.044 0.188 0.088
(0.038) (0.022) (0.167) (0.093) (0.147) (0.083)

Moderate restrictions -0.082*** -0.041*** 0.154 0.096 0.282*** 0.162***
(0.025) (0.015) (0.111) (0.059) (0.092) (0.050)

State FE YES YES YES YES YES YES
N 597883 597883 14207 14207 14296 14296

Note: In Columns 1 and 2 I use the HPS survey while in Columns 3 to 6 I use the NORC survey. The dependent variables in Columns 1 and 2 are the

food security outcomes, as in previous tables. In Columns 3 and 4, respondents were asked if they did not have money to buy food. The answers were ordered

so that low level corresponded to low food security and high level corresponded to high food security. Similarly, in Columns 5 and 6, respondents were asked

if they worried their food would run out before they got money to buy more. In Columns 3 and 5 the ordered logistic regression was applied while in Columns 4

and 6 the ordered probit regression was applied. Standard errors in parentheses * p<0.1, ** p<0.05, *** p<0.01
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mitigate the effects of the pandemic on food security. In particular, while

reopening policy in general alleviated the problem of food insufficiency, it

might have some unintended effects such as making it more difficult to the

people to get the food they needed. My findings prompt future research to a

number of interesting venues. For instance, at the time this paper was writ-

ten there was lack of understanding of how reopening policy was decided. It

made the task to find the appropriate instrument to address the potential

endogeneity bias a challenging one. Additionally, a theoretical framework

is also an interesting venue. For example, while the literature focuses on

the economic and financial constraints as determinants of food insecurity,

my findings show that there are more factors such as transportation and

the fear of going out, especially during the time of crisis, that might have

significant impacts on the ability to get sufficient food.
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8 Appendix

8.1 The reopening dates

Nguyen et al. (2020) provides the reopening dates based on the articles

in the New York Times, while I use the categorization in the Washington

Post. While in most states, my data provide the same dates, there are still

a number of differences. I explain the differences as below.

In Arizona, my reopening date is May 1 because ”On April 22, the

governor issued an order that elective surgeries could resume May 1.” The

reopening date in Nguyen et al. (2020) is May 8.

In Delaware, my reopening date is May 8 because ”On May 5, the gov-

ernor announced interim steps for small businesses to begin reopening May

8.” The reopening date in Nguyen et al. (2020) is June 1.

In Iowa, the reopening day is May 15 because while ”On May 1, 77 of

Iowas 99 counties that hadnt had coronavirus cases or had seen a downward

trend in infections over the previous two weeks began operating again with

limited capacity”, only ”On May 15, the remaining 22 counties were al-

lowed to reopen gyms and restaurant dine-in services, and personal services

such as hair salons and barbershops could reopen by appointment. Social

gatherings of more than 10 people are still prohibited.” The reopening date

in Nguyen et al. (2020) is May 1.

In Louisiana, the reopening day is May 1 because ”restaurant patrons

were now being allowed to eat their takeout food in outdoor seating areas

as long as no employees serve them beginning May 1.” The reopening date

in Nguyen et al. (2020) is May 15.

In Michigan, the reopening date in my data is May 22 because ” On May

22, businesses and restaurants in northern Michigan reopened at reduced
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capacity under a new executive order the governor issued May 18.” The

reopening date in Nguyen et al. (2020) is May 7.

In New Hampshire, the reopening date is May 11 because ”On May 1,

the governor announced a modified stay-at-home order in effect until May

31. Under the new order, certain businesses such as golf courses, retail stores

and salons began reopening May 11, with certain occupancy and physical

distancing restrictions.” The reopening date in Nguyen et al. (2020) is May

4.
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8.2 Supplementary table and figure

Table A1. Reopening policy across states

State Reopening date Week 1 Week 2 Week 3 Week 4
Alabama 30/04/2020 Major Moderate Moderate Moderate
Alaska 24/04/2020 Major Moderate Moderate None
Arizona 08/05/2020 Major Moderate Minor Minor
Arkansas 04/05/2020 Major Moderate Moderate Moderate
California 08/05/2020 Major Major Moderate Moderate
Colorado 01/05/2020 Major Moderate Moderate Moderate
Connecticut 20/05/2020 Major Major Major Moderate
Delaware 01/06/2020 Major Major Moderate Moderate
District of Columbia 29/05/2020 Major Major Major Major
Florida 04/05/2020 Major Moderate Moderate Moderate
Georgia 24/04/2020 Major Moderate Moderate Moderate
Hawaii 07/05/2020 Major Moderate Moderate Moderate
Idaho 01/05/2020 Major Moderate Moderate Moderate
Illinois 01/05/2020 Major Moderate Moderate Moderate
Indiana 04/05/2020 Major Moderate Moderate Moderate
Iowa 01/05/2020 Major Major Major Moderate
Kansas 04/05/2020 Major Moderate Moderate Moderate
Kentucky 11/05/2020 Major Major Moderate Moderate
Louisiana 15/05/2020 Major Moderate Moderate Moderate
Maine 01/05/2020 Major Moderate Moderate Moderate
Maryland 15/05/2020 Major Major Major Moderate
Massachusetts 18/05/2020 Major Major Major Major
Michigan 07/05/2020 Major Major Major Major
Minnesota 27/04/2020 Major Moderate Moderate Moderate
Mississippi 27/04/2020 Major Moderate Moderate Minor
Missouri 04/05/2020 Major Minor Minor Minor
Montana 26/04/2020 Major Moderate Moderate Moderate
Nebraska 04/05/2020 Major Moderate Moderate Moderate
Nevada 09/05/2020 Major Major Moderate Moderate
New Hampshire 04/05/2020 Major Major Moderate Moderate
New Jersey 02/05/2020 Major Moderate Moderate Moderate
New Mexico 01/05/2020 Major Moderate Moderate Moderate
New York 15/05/2020 Major Major Major Moderate
North Carolina 08/05/2020 Major Major Moderate Moderate
North Dakota 01/05/2020 Major Minor Minor Minor
Ohio 01/05/2020 Major Moderate Moderate Moderate
Oklahoma 24/04/2020 Major Moderate Moderate Minor
Oregon 15/05/2020 Major Major Major Moderate
Pennsylvania 08/05/2020 Major Major Moderate Moderate
Rhode Island 09/05/2020 Major Major Moderate Moderate
South Carolina 20/04/2020 Moderate Moderate Moderate Moderate
South Dakota 01/05/2020 Major Minor Minor Minor
Tennessee 27/04/2020 Major Moderate Moderate Moderate
Texas 01/05/2020 Major Moderate Moderate Moderate
Utah 01/05/2020 Major Moderate Moderate Moderate
Vermont 27/04/2020 Major Moderate Moderate Moderate
Virginia 15/05/2020 Major Major Major Moderate
Washington 05/05/2020 Major Moderate Moderate Moderate
West Virginia 04/05/2020 Major Moderate Moderate Moderate
Wisconsin 20/04/2020 Major Major Moderate Moderate
Wyoming 01/05/2020 Major Moderate Moderate Minor
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Table A2. Monthly unemployment rates by State

Feb March April May (projected)
Alabama 2.7 3.0 13.8 9.9
Alaska 5.8 5.2 13.5 12.6
Arizona 4.5 6.1 13.4 8.9
Arkansas 3.5 5 10.8 9.5
California 3.9 5.5 16.4 16.3
Colorado 2.5 5.2 12.2 10.2
Connecticut 3.8 3.4 8.3 9.4
Delaware 3.9 5.0 14.9 15.8
District of Columbia 5.1 6.0 11.7 8.9
Florida 2.8 4.4 13.8 14.5
Georgia 3.1 4.6 12.6 9.7
Hawaii 2.7 2.4 23.8 22.6
Idaho 2.7 2.5 11.8 8.9
Illinois 3.4 4.2 17.2 15.2
Indiana 3.1 3.0 17.5 12.3
Iowa 2.8 3.3 11.0 10.0
Kansas 3.1 2.8 11.9 10.0
Kentucky 4.2 5.2 16.6 11.0
Louisiana 5.2 6.7 15.1 13.3
Maine 3.2 3.0 10.4 9.3
Maryland 3.3 3.3 10.1 9.9
Massachusetts 2.8 2.8 16.2 16.3
Michigan 3.6 4.3 24.0 21.2
Minnesota 3.1 2.9 8.7 9.9
Mississippi 5.4 5.1 16.3 10.6
Missouri 3.5 3.9 10.2 10.1
Montana 3.5 3.6 11.9 9.0
Nebraska 2.9 4.0 8.7 5.2
Nevada 3.6 6.9 30.1 25.3
New Hampshire 2.6 2.4 17.1 14.5
New Jersey 3.8 3.7 16.3 15.2
New Mexico 4.8 6.3 11.9 9.2
New York 3.7 4.1 15.3 14.5
North Carolina 3.6 4.3 12.9 12.9
North Dakota 2.2 2.0 9.1 9.1
Ohio 4.1 5.8 17.6 13.7
Oklahoma 3.2 2.9 14.7 12.6
Oregon 3.3 3.5 14.9 14.2
Pennsylvania 4.7 5.8 16.1 13.1
Puerto Rico 8.8
Rhode Island 3.4 4.7 18.1 16.3
South Carolina 2.5 3.2 12.8 12.5
South Dakota 3.3 3.1 10.9 9.4
Tennessee 3.4 3.3 15.5 11.3
Texas 3.5 5.1 13.5 13.0
Utah 2.5 3.8 10.4 8.5
Vermont 2.4 3.1 16.5 12.7
Virginia 2.6 3.3 11.2 9.4
Washington 3.8 5.1 16.3 15.1
West Virginia 4.9 6.0 15.9 12.9
Wisconsin 3.5 3.1 13.6 12.0
Wyoming 3.7 3.8 9.6 8.8
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AK #### #####
AL #### #####
AR #### #####
AZ #### #####
CA #### #####
CO #### #####
CT #### #####
DC #### #####
DE #### #####
FL #### #####
GA #### #####
HI #### #####
IA #### #####
ID #### #####
IL #### #####
IN #### #####
KS #### #####
KY #### #####
LA #### #####
MA #### #####
MD #### #####
ME #### #####
MI #### #####
MN #### #####
MO #### #####
MS #### #####
MT #### #####
NC #### #####
ND #### #####
NE #### #####
NH #### #####
NJ #### #####
NM #### #####
NV #### #####
NY #### #####
OH #### #####
OK #### #####
OR #### #####
PA #### #####
RI #### #####
SC #### #####
SD #### #####
TN #### #####
TX #### #####
UT #### #####
VA #### #####
VT #### #####

(a) Food Security

AK 0.3 0.3
AL 0.3 0.3
AR 0.3 0.3
AZ 0.3 0.3
CA 0.3 0.3
CO 0.3 0.3
CT 0.3 0.3
DC 0.3 0.3
DE 0.3 0.3
FL 0.3 0.3
GA 0.3 0.3
HI 0.3 0.3
IA 0.3 0.3
ID 0.3 0.3
IL 0.3 0.3
IN 0.3 0.3
KS 0.3 0.3
KY 0.3 0.3
LA 0.3 0.3
MA 0.3 0.3
MD 0.3 0.3
ME 0.3 0.3
MI 0.3 0.3
MN 0.3 0.3
MO 0.3 0.3
MS 0.3 0.3
MT 0.3 0.3
NC 0.3 0.3
ND 0.3 0.3
NE 0.3 0.3
NH 0.3 0.3
NJ 0.3 0.3
NM 0.3 0.3
NV 0.3 0.3
NY 0.3 0.3
OH 0.3 0.3
OK 0.3 0.3
OR 0.3 0.3
PA 0.3 0.3
RI 0.3 0.3
SC 0.3 0.3
SD 0.3 0.3
TN 0.3 0.3
TX 0.3 0.3
UT 0.3 0.3
VA 0.3 0.3
VT 0.3 0.3

(b) Marginal Food Security

AK 0.08 0.08
AL 0.07 0.07
AR 0.08 0.08
AZ 0.08 0.08
CA 0.08 0.08
CO 0.08 0.08
CT 0.09 0.09
DC 0.08 0.08
DE 0.08 0.08
FL 0.08 0.08
GA 0.08 0.08
HI 0.08 0.08
IA 0.07 0.07
ID 0.08 0.08
IL 0.08 0.08
IN 0.08 0.08
KS 0.08 0.08
KY 0.08 0.08
LA 0.08 0.08
MA 0.08 0.08
MD 0.09 0.09
ME 0.08 0.08
MI 0.08 0.08
MN 0.07 0.07
MO 0.09 0.09
MS 0.08 0.08
MT 0.07 0.07
NC 0.08 0.08
ND 0.08 0.08
NE 0.08 0.08
NH 0.09 0.09
NJ 0.08 0.08
NM 0.08 0.08
NV 0.08 0.08
NY 0.07 0.07
OH 0.08 0.08
OK 0.08 0.08
OR 0.08 0.08
PA 0.08 0.08
RI 0.08 0.08
SC 0.08 0.08
SD 0.08 0.08
TN 0.08 0.08
TX 0.08 0.08
UT 0.07 0.07
VA 0.08 0.08
VT 0.08 0.08

(c) Low Food Security

AK 0.021 0.021

AL 0.019 0.019

AR 0.021 0.021

AZ 0.023 0.023

CA 0.021 0.021

CO 0.022 0.022

CT 0.025 0.025

DC 0.022 0.022

DE 0.021 0.021

FL 0.023 0.023

GA 0.022 0.022

HI 0.023 0.023

IA 0.019 0.019

ID 0.023 0.023

IL 0.022 0.022

IN 0.02 0.02

KS 0.022 0.022

KY 0.023 0.023

LA 0.021 0.021

MA 0.022 0.022

MD 0.024 0.024

ME 0.022 0.022

MI 0.021 0.021

MN 0.019 0.019

MO 0.024 0.024

MS 0.021 0.021

MT 0.017 0.017

NC 0.021 0.021

ND 0.02 0.02

NE 0.023 0.023

NH 0.025 0.025

NJ 0.022 0.022

NM 0.022 0.022

NV 0.022 0.022

NY 0.019 0.019

OH 0.022 0.022

OK 0.022 0.022

OR 0.02 0.02

PA 0.022 0.022

RI 0.021 0.021

SC 0.022 0.022

SD 0.022 0.022

TN 0.023 0.023

TX 0.022 0.022

UT 0.02 0.02

VA 0.02 0.02

VT 0.023 0.023

(d) Very Low Food Security

Figure A1. Predicted probability of food security outcomes. From red to
green indicates decreasing probabilities. The colors are only consistent in
each map and are not comparable across maps. The numbers in each state
are the predicted probability of the levels of food security.
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